Direct Application Of Electrical, Magnetic, Wave, Or Particulate Energy Patents (Class 427/457)
  • Patent number: 10624205
    Abstract: The present invention relates to a metallic nano structure including a plurality of metallic nano materials; and a junction locally disposed in a region where the metallic nano materials adjacent to each other among the plurality of metallic nano materials are in contact with each other in order to bond the adjacent metallic nano materials.
    Type: Grant
    Filed: April 30, 2018
    Date of Patent: April 14, 2020
    Assignee: UNIVERSITY-INDUSTRY FOUNDATION (UIF), YONSEI UNIVERSITY
    Inventors: Dahl-Young Khang, Sung-Soo Yoon
  • Patent number: 9914122
    Abstract: A sample ampoule for calorimetric measurements includes a vial, a lid and a sealing member. The vial, lid and sealing member are adapted to form a hermetically sealed sample ampoule. The vial has a first contact surface and the lid has a second contact surface, the first and second contact surfaces are in contact with each other in a sealed position of the ampoule, and the vial and lid are formed out of materials with different strength.
    Type: Grant
    Filed: August 20, 2014
    Date of Patent: March 13, 2018
    Assignee: SYMCEL SVERIGE AB
    Inventors: Christer Wallin, Magnus Jansson
  • Patent number: 9604880
    Abstract: A method of controlling the setting time of a geopolymer by coating aluminosilicate particles with nanoparticles to slow the geopolymerization reaction. The coating effectiveness of the nanoparticles may be enhanced by pretreating the aluminosilicate particles with a layer-by-layer assembly of polyelectrolytes. A geopolymer is formed by mixing about 39% to about 66% by weight aluminosilicate source, about 0% to about 40% by weight sand, about 19% to about 33% by weight of alkali activator solution, and about 1% to about 4% nanoparticles.
    Type: Grant
    Filed: August 27, 2014
    Date of Patent: March 28, 2017
    Assignee: Louisiana Tech Research Corporation
    Inventors: Erez Allouche, Yuri Lvov, Carlos Montes, Anupam Joshi
  • Patent number: 9418979
    Abstract: Disclosed herein is a method of assembling an array of light emitting diode (LED) dies on a substrate comprising: positioning dies in fluid; exposing the dies to a magnetic force to attract the dies onto magnets that are arranged at pre-determined locations either on or near the substrate; and forming permanent connections between the dies and the substrate thereby constituting an array of LED dies on a substrate.
    Type: Grant
    Filed: December 14, 2015
    Date of Patent: August 16, 2016
    Assignee: RENSSEALER POLYTECHNIC INSTITUTE
    Inventors: Robert F. Karlicek, Jr., James Jian-Qiang Lu, Charles Sanford Goodwin, Anton Tkachenko
  • Patent number: 9276293
    Abstract: A dynamic formation protocol for a lithium-ion battery cell. An “SEI formation end voltage” is identified, which is the voltage reached during formation at which the SEI layer is substantially formed. Charge rates are selected for the formation, with a first charge current rate to be used until the SEI formation end voltage is reached, and a second charge current rate, faster than the first charge current rate, to be used thereafter the SEI formation end voltage. These charge rates are applied to the cell for at least a first cycle of the dynamic formation process.
    Type: Grant
    Filed: August 30, 2013
    Date of Patent: March 1, 2016
    Assignee: SOUTHWESTERN RESEARCH INSTITUTE
    Inventor: Jeff Qiang Xu
  • Patent number: 9245875
    Abstract: Disclosed herein is a method of assembling an array of light emitting diode (LED) dies on a substrate comprising: positioning dies in fluid; exposing the dies to a magnetic force to attract the dies onto magnets that are arranged at pre-determined locations either on or near the substrate; and forming permanent connections between the dies and the substrate thereby constituting an array of LED dies on a substrate.
    Type: Grant
    Filed: April 19, 2013
    Date of Patent: January 26, 2016
    Assignee: RENSSELAER POLYTECHNIC INSTITUTE
    Inventors: Robert F. Karlicek, James Jian-Qiang Lu, Charles Sanford Goodwin, Anton Tkachenko
  • Publication number: 20150140230
    Abstract: A machine tool arranged to deliver an energy source through a processing head onto a work-piece, wherein; the machine-tool has a clamping mechanism arranged to temporarily receive the processing-head, or another machining or processing-head, to process a work-piece; the processing-head comprising one or more guiding mechanisms arranged to direct the energy source onto a work-piece and a processing-head docking-manifold arranged to have connected thereto one or more media to be, in use, supplied to the processing-head to facilitate processing of the work-piece; wherein the processing-head docking-manifold allows the one or more media to be supplied to the processing-head when the processing-head is connected to the clamping mechanism; and wherein the machine-tool also comprises at least one mechanism arranged to move a supply docking-manifold into and/or out of connection with the processing-head docking-manifold such that when the two manifolds are connected the or each media is supplied to the processing
    Type: Application
    Filed: December 10, 2014
    Publication date: May 21, 2015
    Inventors: Jason B. Jones, Peter Coates
  • Patent number: 9022228
    Abstract: A domestic appliance filter for use in a laundry treatment device includes a basic filter material with a hydrophobic coating for filtering out matter from a process water duct or a process air duct. The basic filter material includes a material which is resistant to temperatures of 160° C. or more and the hydrophobic coating on the basic filter material effects a surface energy of less than 35 mN/m.
    Type: Grant
    Filed: December 1, 2009
    Date of Patent: May 5, 2015
    Assignee: BSH Bosch und Siemens Hausgeräte GmbH
    Inventor: Klaus Grunert
  • Publication number: 20150105863
    Abstract: A fiber-reinforced hydrogel composite is provided. The composite includes a hydrogel and a fibrous component containing a plurality of fibers. Length of each of the plurality of fibers is less than about 1,000 ?m. A method of preparing a fiber-reinforced hydrogel composite is also provided. The method includes coating a hydrogel precursor solution on a substrate to form a hydrogel precursor film, depositing the plurality of fibers onto the hydrogel precursor film, and allowing the hydrogel precursor film to form a hydrogel film, (ii) thereby forming the fiber-reinforced hydrogel composite. A scaffold containing the fiber-reinforced composite, and a tissue repair method (iii) using the fiber-reinforced composite are also provided.
    Type: Application
    Filed: May 15, 2013
    Publication date: April 16, 2015
    Applicant: National University of Singapore
    Inventors: Eyal Zussman, Srinivasa Reddy Chaganti, Jayarama Reddy Venugopal, Seeram Ramakrishna, Omri Regev
  • Publication number: 20150083978
    Abstract: There are provided a composite perovskite powder, a preparation method thereof, and a paste composition for an internal electrode having the same, the composite perovskite powder capable of preventing ions from being eluted from an aqueous system at the time of synthesis while being ultra-atomized, such that when the composite perovskite powder is used as an inhibitor powder for an internal electrode, sintering properties of the internal electrode may be deteriorated, and sintering properties of a dielectric material may be increased; accordingly, connectivity of the internal electrode may be improved, and permittivity and reliability of a multilayer ceramic capacitor (MLCC) may be increased.
    Type: Application
    Filed: January 13, 2014
    Publication date: March 26, 2015
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Kum Jin PARK, Chang Hak CHOI, Sang Min YOUN, Kwang Hee NAM, Ki Myoung YUN, Hyung Joon JEON, Jong Hoon YOO
  • Publication number: 20150064602
    Abstract: Disclosed are a polymer electrolyte membrane, a method for manufacturing the same and a membrane-electrode assembly comprising the same, the polymer electrolyte membrane includes a hydrocarbon-containing ion conductive layer; and a fluorine-containing ion conductor discontinuously dispersed on the hydrocarbon-containing ion conductive layer.
    Type: Application
    Filed: March 28, 2013
    Publication date: March 5, 2015
    Applicant: KOLON INDUSTRIES, INC.
    Inventors: Moo Seok Lee, Yong Cheol Shin, Na Young Kim, Dong Hoon Lee
  • Patent number: 8967079
    Abstract: This impregnation device comprises at least a first dielectric insulating screen and first and second opposite-facing electrodes which are separated by a passage for the porous material to be impregnated provided with powder and are capable of producing an alternating electric field in this passage after having been connected to an alternating voltage generator. At least first electrode comprises at least two conducting strips, each of which has an internal face covered by the first dielectric screen and, overall, is turned towards the second electrode and also a longitudinal edge running along a separating slot, which strips are separated from each other by this separating slot and are electrically connected to one another.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: March 3, 2015
    Assignee: Fibroline France
    Inventor: Joric Marduel
  • Patent number: 8940266
    Abstract: The present invention provides a method for producing a large substrate of single-crystal diamond, including the steps of preparing a plurality of single-crystal diamond layers separated form an identical parent substrate, placing the single-crystal diamond layers in a mosaic pattern on a flat support, and growing a single-crystal diamond by a vapor-phase synthesis method on faces of the single-crystal diamond layers where they have been separated from the parent substrate. According to the method of the invention, a mosaic single-crystal diamond having a large area and good quality can be produced relatively easily.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: January 27, 2015
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Hideaki Yamada, Akiyoshi Chayahara, Yoshiaki Mokuno, Shinichi Shikata
  • Patent number: 8932682
    Abstract: It is an object of the present invention to provide a deposition device that can selectively form a thin film without using a shadow mask with respect to a substrate having a large size. In the deposition device, an evaporation source is provided with a cylinder cell, a heater for heating a lower part of the cylinder cell, and a heater for heating an upper part of the cylinder cell. A hot plate can control a temperature by a heater provided inside thereof. The hot plate heats an evaporation material supplied into the cylinder cell from a material supply portion that is connected to the cylinder cell, and vaporizes the evaporation material by evaporation or sublimation. A rotating mechanism for rotating the hot plate in the cylinder cell may be provided to achieve uniformity of a temperature. A heater for heating the material supply potion may be provided to raise a temperature of the evaporation material supplied into the cylinder cell.
    Type: Grant
    Filed: October 10, 2006
    Date of Patent: January 13, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Yasuyuki Arai
  • Patent number: 8906735
    Abstract: A donor substrate includes a base layer, a light to heat conversion layer on the base layer, an interlayer on the light to heat conversion layer, a low molecular weight transfer layer on the interlayer and an organic transfer layer on the low molecular weight transfer layer. The low molecular weight transfer layer includes an element in Group I or a compound of elements in Group I and Group VII.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: December 9, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Ha-Jin Song, Sang-Woo Pyo, Byeong-Wook Yoo, Hyo-Yeon Kim, Ji-Young Kwon, Kwan-Hee Lee
  • Patent number: 8906791
    Abstract: Methods, apparatus, and systems for depositing materials with gaseous precursors are provided. In certain implementations, the methods involve providing a wafer substrate to a chamber of an apparatus. The apparatus includes a showerhead to deliver a gas to the chamber, a volume, and an isolation valve between the volume and the showerhead. A gas is delivered the volume when the isolation valve is closed, pressurizing the volume. The isolation valve is opened to allow the gas to flow to the showerhead when the gas is being delivered to the volume. A material is formed on the wafer substrate using the gas. In some implementations, releasing the pressurized gas from the volume reduces the duration of time to develop a spatially uniform gas flow across the showerhead.
    Type: Grant
    Filed: June 3, 2011
    Date of Patent: December 9, 2014
    Assignee: Novellus Systems, Inc.
    Inventors: Kie-Jin Park, Karl Leeser, Frank Greer, David Cohen
  • Patent number: 8906611
    Abstract: The present invention generally relates to devices and methods for immobilizing nucleic acids on a substrate. In certain embodiments, devices of the invention include a voltage source, and a substrate coupled to the voltage source, in which hydrophobicity of the substrate changes in response to an applied electric field and a surface of the substrate is coated with a substance that retains nucleic acids.
    Type: Grant
    Filed: July 26, 2011
    Date of Patent: December 9, 2014
    Assignee: OpGen, Inc.
    Inventor: Wenlong Jiang
  • Publication number: 20140355184
    Abstract: Disclosed herein is a method of forming a multilayer thin film by depositing target particles, detached from a target by plasma discharge of inert gas, on a metal object using a multilayer thin film deposition apparatus and a multilayer thin film formed by the method. More specifically, a sputtering deposition apparatus is used as the multilayer thin film deposition apparatus. The method includes coating a metal object with a coating layer, depositing at least one hardness-enhancing layer on the coating layer, and depositing a color layer on the at least one hardness-enhancing layer.
    Type: Application
    Filed: May 30, 2014
    Publication date: December 4, 2014
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jin Sub KIM, Hyong Jun YOO, Min Chul JUNG, Hyun Jun JUNG, Jin Hyun CHO
  • Patent number: 8900471
    Abstract: Methods and apparatus for in-situ plasma cleaning of a deposition chamber are provided. In one embodiment a method for plasma cleaning a deposition chamber without breaking vacuum is provided. The method comprises positioning a substrate on a susceptor disposed in the chamber and circumscribed by an electrically floating deposition ring, depositing a metal film on the substrate and the deposition ring in the chamber, grounding the metal film deposited on the deposition ring without breaking vacuum, and removing contaminants from the chamber with a plasma formed in the chamber without resputtering the metal film on the grounded deposition ring and without breaking vacuum.
    Type: Grant
    Filed: February 16, 2010
    Date of Patent: December 2, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Richard J. Green, Cheng-hsiung Tsai, Shambhu N. Roy, Puneet Bajaj, David H. Loo
  • Patent number: 8903464
    Abstract: An apparatus and process for the production of a niobium cavity exhibiting high quality factors at high gradients is provided. The apparatus comprises a first chamber positioned within a second chamber, an RF generator and vacuum pumping systems. The process comprises placing the niobium cavity in a first chamber of the apparatus; thermally treating the cavity by high temperature in the first chamber while maintaining high vacuum in the first and second chambers; and applying a passivating thin film layer to a surface of the cavity in the presence of a gaseous mixture and an RF field. Further a niobium cavity exhibiting high quality factors at high gradients produced by the method of the invention is provided.
    Type: Grant
    Filed: October 23, 2010
    Date of Patent: December 2, 2014
    Assignee: Jefferson Science Associates, LLC
    Inventors: Ganapati Rao Myneni, John P. Wallace
  • Publication number: 20140342441
    Abstract: The present invention provides, among others, apparatus for detecting a disease, comprising a system delivery biological subject and a probing and detecting device, wherein the probing and detecting device includes a first micro-device and a first substrate supporting the first micro-device, the first micro-device contacts a biologic material to be detected and is capable of measuring at the microscopic level an electric, magnetic, electromagnetic, thermal, optical, acoustical, biological, chemical, physical, or mechanical property of the biologic material.
    Type: Application
    Filed: April 4, 2013
    Publication date: November 20, 2014
    Applicant: ANPAC BIO-MEDICAL SCIENCE CO., LTD.
    Inventors: Chris C. Yu, Xuedong Du, He Yu
  • Patent number: 8883266
    Abstract: A method of fabricating quantum confinements is provided. The method includes depositing, using a deposition apparatus, a material layer on a substrate, where the depositing includes irradiating the layer, before a cycle, during a cycle, and/or after a cycle of the deposition to alter nucleation of quantum confinements in the material layer to control a size and/or a shape of the quantum confinements. The quantum confinements can include quantum wells, nanowires, or quantum dots. The irradiation can be in-situ or ex-situ with respect to the deposition apparatus. The irradiation can include irradiation by photons, electrons, or ions. The deposition is can include atomic layer deposition, chemical vapor deposition, MOCVD, molecular beam epitaxy, evaporation, sputtering, or pulsed-laser deposition.
    Type: Grant
    Filed: June 11, 2013
    Date of Patent: November 11, 2014
    Assignees: The Board of Trustees of the Leland Stanford Junior University, Honda Patents & Technologies North America, LLC
    Inventors: Timothy P. Holme, Andrei Iancu, Hee Joon Jung, Michael C Langston, Munekazu Motoyama, Friedrich B. Prinz, Takane Usui, Hitoshi Iwadate, Neil Dasgupta, Cheng-Chieh Chao
  • Publication number: 20140318836
    Abstract: A conductive glass substrate includes a glass substrate, a silicon dioxide layer, and a conductive mesh line, the glass substrate defines a meshed groove on a surface thereof; the silicon dioxide layer is attached to the surface of the glass substrate having the groove; the conductive mesh line have a shape adapted to that of the groove, the conductive mesh line is deposited in the groove and attached to the glass substrate via the silicon dioxide layer. In the conductive glass substrate, the conductive mesh line is received in the groove, compared with the conventional conductive glass substrate, a flexible substrate as a supporting body is not needed, the cost is down, and the structure of the conductive glass substrate is simple, further reducing the process, saving manpower and resources. A method of preparing the conductive glass substrate is provided.
    Type: Application
    Filed: July 5, 2013
    Publication date: October 30, 2014
    Inventor: Zhao He
  • Publication number: 20140313574
    Abstract: Disclosed are methods for forming nanoparticle films using electrophoretic deposition. The methods comprise exposing a substrate to a solution, the solution comprising substantially dispersed nanoparticles, an organic solvent, and a polymer characterized by a backbone comprising Si—O groups. The methods further comprise applying an electric field to the solution, whereby a nanoparticle film is deposited on the substrate. Suitable polymers include polysiloxanes, polysilsesquioxanes and polysilicates. Coated glass windows and methods of forming the coated glass windows using the solutions are also disclosed.
    Type: Application
    Filed: January 14, 2014
    Publication date: October 23, 2014
    Applicant: SOUTH DAKOTA STATE UNIVERSITY
    Inventors: Braden Bills, Nathan Morris, Qi Hua Fan, Mukul Dubey, David Galipeau
  • Publication number: 20140302595
    Abstract: A nanosensor and methods to manufacture are disclosed. For example, a detection system for detecting the presence of a target substance can include a nanosensor that includes a sensing layer, and a plurality of sockets embedded within the body of the sensing layer, each socket having a physical profile matching a shape of the target substance such that, when target substances occupy the sockets, at least one measurable physical characteristic of the sensing layer changes.
    Type: Application
    Filed: April 4, 2014
    Publication date: October 9, 2014
    Applicant: Lockheed Martin Corporation
    Inventors: Rebecca Schwartz, John Arthur Wood
  • Publication number: 20140295198
    Abstract: Described are coating materials comprising (a) at least one polymeric polyol selected from the group consisting of poly(meth)acrylate polyols, polyester polyols, polyurethane polyols and polysiloxane polyols, (b) at least one crosslinking agent selected from the group consisting of blocked and nonblocked polyisocyanates, amino resin crosslinkers, and TACT, and (c) at least one glycerol diester of the general formula (I) wherein one of the two radicals R1 or R2 is hydrogen and the radical of the two radicals R1 and R2 that is not hydrogen is a radical the radicals R3, R4, R5, R6, R7, and R8 independently of one another are hydrogen or a saturated, aliphatic radical having 1 to 20 carbon atoms, with the proviso that the radicals R3, R4 and R5 together contain at least 5 carbon atoms and the radicals R6, R7 and R8 together contain at least 5 carbon atoms. Also described are multicoat paint systems and their production, the use of the coating materials, and substrates coated therewith.
    Type: Application
    Filed: November 16, 2012
    Publication date: October 2, 2014
    Inventors: Peter Hoffmann, Sebastien Porcher, Jean-Francois Stezycki
  • Patent number: 8846537
    Abstract: A mold having an open interior volume is used to define patterns. The mold has a ceiling, floor and sidewalls that define the interior volume and inhibit deposition. One end of the mold is open and an opposite end has a sidewall that acts as a seed sidewall. A first material is deposited on the seed sidewall. A second material is deposited on the deposited first material. The deposition of the first and second materials is alternated, thereby forming alternating rows of the first and second materials in the interior volume. The mold and seed layer are subsequently selectively removed. In addition, one of the first or second materials is selectively removed, thereby forming a pattern including free-standing rows of the remaining material. The free-standing rows can be utilized as structures in a final product, e.g., an integrated circuit, or can be used as hard mask structures to pattern an underlying substrate. The mold and rows of material can be formed on multiple levels.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: September 30, 2014
    Assignee: Micron Technology, Inc.
    Inventor: Gurtej S. Sandhu
  • Patent number: 8846421
    Abstract: A method of manufacturing a lead frame for a light-emitting device package and a light-emitting device package are provided. The method of manufacturing a lead frame for a light-emitting device package includes: preparing a base substrate for the lead frame; forming diffusion roughness on the base substrate; and forming a reflective plating layer on the diffusion roughness formed base substrate.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: September 30, 2014
    Assignee: MDS Co. Ltd.
    Inventors: Jin-Woo Lee, Jae-Hoon Jang, Dong-Hoon Lee, Jae-Ha Kim
  • Publication number: 20140272172
    Abstract: A method of producing a transparent and conductive film, comprising (a) forming aerosol droplets of a first dispersion comprising a first conducting nano filaments in a first liquid; (b) forming aerosol droplets of a second dispersion comprising a graphene material in a second liquid; (c) depositing the aerosol droplets of a first dispersion and the aerosol droplets of a second dispersion onto a supporting substrate; and (d) removing the first liquid and the second liquid from the droplets to form the film, which is composed of the first conducting nano filaments and the graphene material having a nano filament-to-graphene weight ratio of from 1/99 to 99/1, wherein the film exhibits an optical transparence no less than 80% and sheet resistance no higher than 300 ohm/square.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Inventors: Aruna Zhamu, Yi-jun Lin, Bor Z. Jang
  • Publication number: 20140272314
    Abstract: Certain example embodiments involve the production of a broadband and at least quasi-omnidirectional antireflective (AR) coating. The concept underlying certain example embodiments is based on well-established and applied mathematical tools, and involves the creation of nanostructures that facilitate these and/or other features. Finite element (FDTD) simulations are performed to validate the concept and develop design guidelines for the nanostructures, e.g., with a view towards improving visible transmission. Certain example embodiments provide such structures on or in glass, and other materials (e.g., semiconductor materials that are used to convert light or EM waves to electricity) alternatively or additionally may have such structures formed directly or indirectly thereon.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Inventor: Vijayen S. VEERASAMY
  • Patent number: 8819930
    Abstract: The invention addresses the problem of improving the adhesion between silver surfaces and resin materials, such as epoxy resins and mold materials, used in the production of electronic devices. The invention provides a method for improving the adhesion between a silver surface and a resin material comprising a step of electrolytically treating the silver surface with a solution containing a hydroxide selected from alkali metal hydroxides, alkaline earth metal hydroxides, ammonium hydroxides and mixtures thereof, wherein the silver surface is the cathode.
    Type: Grant
    Filed: September 10, 2009
    Date of Patent: September 2, 2014
    Assignee: Atotech Deutschland GmbH
    Inventors: Christian Wunderlich, Robert Rüther, Jürgen Barthelmes, Sia-Wing Kok, Nadine Menzel
  • Publication number: 20140242417
    Abstract: A method for the photocatalytically active coating of surfaces is presented and described, as well as an article (1) photocatalytically actively coated according to this method. The object of providing a method for the photocatalytically active coating of, in particular, metallic surfaces, whereby a permanently stable coating is produced without negatively affecting the photocatalytic activity of the layer, is achieved by a method, in which a substrate article is prepared which has a surface, a metallic adhesion-promoting layer is applied to the surface of the substrate article, a photocatalytically active layer consisting of one or more metal oxides is applied to the adhesion-promoting layer, wherein the metallic adhesion-promoting layer and the surface of the substrate article consist of a different material and the adhesion-promoting layer is selected such that it is not oxidized or reduced by the photocatalytically active layer.
    Type: Application
    Filed: September 18, 2012
    Publication date: August 28, 2014
    Applicant: LINDE AKTIENGESELLSCHAFT
    Inventors: Jan-Oliver Kliemann, Henning Gutzmann, Thomas Klassen, Frank Gaertner
  • Patent number: 8802970
    Abstract: Formulations and methods of making solar cell contacts and cells therewith are disclosed. The invention provides a photovoltaic cell comprising a front contact, a back contact, and a rear contact. The back contact comprises, prior to firing, a passivating layer onto which is applied a paste, comprising aluminum, a glass component, wherein the aluminum paste comprises, aluminum, another optional metal, a glass component, and a vehicle. The back contact comprises, prior to firing, a passivating layer onto which is applied an aluminum paste, wherein the aluminum paste comprises aluminum, a glass component, and a vehicle.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: August 12, 2014
    Assignee: Heraeus Precious Metals North America Conshohocken LLC
    Inventors: Nazarali Merchant, Aziz S. Shaikh, Srinivasan Sridharan
  • Publication number: 20140212594
    Abstract: An apparatus (20, 21) and method (80) operable to: feed (82) a granulated feedstock (26) into a chamber (22); apply (84) a melting or sintering energy (28) in programmable scans (30) producing a material deposit (32) overlaid with slag (34) in the chamber (22); position (86) a slag removal device (40, 52) such that its cutting surface (35) is coincident with a top surface (33) of the material deposit; cut or break the slag free (88) from the material deposit with the slag removal device; separate (92) the removed slag from a reusable portion of the granulated feedstock in a separator (42); and feed (94) the reusable portion of the granulated feedstock to the top surface of the material deposit for repeating (96) the above operations.
    Type: Application
    Filed: January 31, 2013
    Publication date: July 31, 2014
    Inventors: Gerald J. Bruck, Ahmed Kamel
  • Publication number: 20140170330
    Abstract: An apparatus and method sinters or partially sinters green pellets in a selected temperature range to make proppant particles as the green pellets pass through a first central portion of the first vortex gas flow and exit the second end of the first cylindrical vessel and/or pass through a second central portion of the second vortex flow and exit the fourth end of the second cylindrical vessel.
    Type: Application
    Filed: December 11, 2013
    Publication date: June 19, 2014
    Applicant: FORET PLASMA LABS, LLC
    Inventor: Todd Foret
  • Publication number: 20140151111
    Abstract: Carbon nanostructures can convey enhanced electrical conductivity to various substrates, while maintaining a high surface area and low density per unit area. Such substrates can provide good shielding against electromagnetic radiation over a wide range of frequencies. Electrically conductive structures can include a support layer containing a plurality of fibers having apertures defined between the fibers, and a plurality of carbon nanostructures at least partially conformally coating the fibers and bridging across the apertures defined between adjacent fibers to form a continuous carbon nanostructure layer. Each carbon nanostructure can include a plurality of carbon nanotubes that are branched, crosslinked, and share common walls with one another.
    Type: Application
    Filed: November 25, 2013
    Publication date: June 5, 2014
    Applicant: APPLIED NANOSTRUCTURED SOLUTIONS, LLC
    Inventors: Tushar K. Shah, Han Liu, Jess Michael Goldfinger, John J. Morber
  • Publication number: 20140154423
    Abstract: A deposition apparatus according to the embodiment includes a gas supply part for supplying a first gas; an ionization part connected to the gas supply part to supply a second gas, which is obtained by ionizing the first gas; and a reaction part into which the second gas is introduced to create a reaction. A deposition method according to the embodiment includes the steps of preparing a first gas; supplying a second gas, which is obtained by ionizing the first gas; and reacting the second gas with a substrate.
    Type: Application
    Filed: June 21, 2012
    Publication date: June 5, 2014
    Applicant: LG INNOTEK CO., LTD.
    Inventors: Yeong Deuk Jo, Seok Min Kang, Moo Seong Kim
  • Publication number: 20140147609
    Abstract: A method for coating a substrate includes impacting a substrate with a plurality of particles such that the particles adhere to the substrate, bonding the particles to the substrate to form an overlayer, and crosslinking the particles in the overlayer to coat the substrate with a crosslinked polymer coating. The particles comprise a polyphenyl polymer. An article includes a substrate and a crosslinked polymer coating bonded to the substrate. The crosslinked polymer coating is a product of crosslinking polyphenylene sulfide, polyphenylsulfone, self-reinforced polyphenylene, or a combination thereof on a surface of the substrate.
    Type: Application
    Filed: November 28, 2012
    Publication date: May 29, 2014
    Inventors: Jiaxiang Ren, David Gerrard
  • Patent number: 8734899
    Abstract: The present invention relates to particles which have been modified by a modifier and a dispersion medium comprising the modified particles.
    Type: Grant
    Filed: August 28, 2009
    Date of Patent: May 27, 2014
    Assignee: BASF SE
    Inventors: Imme Domke, Andrey Karpov, Hartmut Hibst, Radoslav Parashkov, Ingolf Hennig, Marcel Kastler, Friederike Fleischhaker, Lothar Weber, Peter Eckerle
  • Publication number: 20140134409
    Abstract: A method for producing a thin oxidized carbon film according to the present disclosure includes: a first step of preparing a thin carbon film and a copper oxide being in contact with the thin carbon film and containing a mixture of Cu2O and CuO; and a second step of applying a voltage or a current between the thin carbon film and the copper oxide, with an electrical potential of the thin carbon film being positive relative to that of the copper oxide, and thereby oxidizing and converting a contact area of the thin carbon film with the copper oxide into an oxidized portion composed of oxidized carbon so as to form a thin oxidized carbon film having the oxidized portion.
    Type: Application
    Filed: January 15, 2014
    Publication date: May 15, 2014
    Applicant: PANASONIC CORPORATION
    Inventors: Akihiro ODAGAWA, Nozomu MATSUKAWA
  • Patent number: 8721833
    Abstract: A replaceable chamber element for use in a plasma processing system, such as a plasma etching system, is described. The replaceable chamber element includes a chamber component configured to be exposed to plasma in a plasma processing system, wherein the chamber component is fabricated of a ferroelectric material.
    Type: Grant
    Filed: February 5, 2012
    Date of Patent: May 13, 2014
    Assignee: Tokyo Electron Limited
    Inventors: Zhiying Chen, Jianping Zhao, Lee Chen, Merritt Funk, Radha Sundararajan
  • Publication number: 20140127520
    Abstract: A method for coating a metallic surface by contacting it with an aqueous copolymer dispersion, wherein the aqueous copolymer dispersion comprises an effective amount of magnesium ions and phosphate or phosphonate ions, the copolymers present in the dispersion being constructed from the following components: (A) from 20 to 95 weight % of monoethylenically unsaturated hydrocarbons and/or hydrocarbons having two conjugated double bonds, (B) from 5 to 80 weight % of monoethylenically unsaturated monomers which contain acid groups, and/or anhydrides or salts thereof. Further provided are metallic surfaces coated with such copolymers, and the use of such aqueous copolymer dispersions to coat metallic surfaces.
    Type: Application
    Filed: November 6, 2013
    Publication date: May 8, 2014
    Applicant: BASF SE
    Inventors: Christian SCHADE, Tobias Urban
  • Patent number: 8715802
    Abstract: The invention provides a transferring apparatus for a flexible electronic device and method for fabricating a flexible electronic device. The transferring apparatus for the flexible electronic device includes a carrier substrate. A release layer is disposed on the carrier substrate. An adhesion layer is disposed on a portion of the carrier substrate, surrounding the release layer and adjacent to a sidewall of the release layer. A flexible electronic device is disposed on the release layer and the adhesion layer, wherein the flexible electronic device includes a flexible substrate.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: May 6, 2014
    Assignee: Industrial Technology Research Institute
    Inventors: Pao-Ming Tsai, Liang-You Jiang, Yu-Yang Chang, Hung-Yuan Li
  • Patent number: 8699655
    Abstract: The present invention relates to tubular elements, such as fuel assembly tubes, which are designed to be used in high pressure and high temperature water in nuclear reactors, such as pressurized water nuclear reactors. In particular, the present invention relates to a method of improving wear resistance and corrosion resistance by depositing a protective coating having a depth of from about 5 to about 25 ?m on the surface of the tubular elements. The coating is provided by nitriding the tubular element at a temperature of from about 400° C. to about 440° C. The nitridation of the tubular element can be carried out for a duration of from about 12 hours to about 40 hours.
    Type: Grant
    Filed: March 10, 2011
    Date of Patent: April 15, 2014
    Assignee: Westinghouse Electric Company, LLC
    Inventor: Nagwa Mahmoud Elshaik
  • Publication number: 20140096380
    Abstract: Disclosed herein are a hybrid heat-radiating substrate including a metal core layer; an oxide insulating core layer that is formed in a thickness direction of the metal core layer to have a shape where the oxide insulating core layer is integrally formed with the metal core layer, an oxide insulating layer that is formed on one surface or both surfaces of the metal core layer, and a circuit layer that is configured to include first circuit patterns formed on the oxide insulating core layer and second circuit patterns formed on the oxide insulating layer, and a method of manufacturing the same.
    Type: Application
    Filed: December 18, 2013
    Publication date: April 10, 2014
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Chang Hyun LIM, Jung Eun KANG, Heung Soo PARK, Seog Moon CHOI, Kwang Soo KIM, Joon Seok CHAE, Sung Keun PARK
  • Publication number: 20140093654
    Abstract: A method of fabricating quantum confinements is provided. The method includes depositing, using a deposition apparatus, a material layer on a substrate, where the depositing includes irradiating the layer, before a cycle, during a cycle, and/or after a cycle of the deposition to alter nucleation of quantum confinements in the material layer to control a size and/or a shape of the quantum confinements. The quantum confinements can include quantum wells, nanowires, or quantum dots. The irradiation can be in-situ or ex-situ with respect to the deposition apparatus. The irradiation can include irradiation by photons, electrons, or ions. The deposition is can include atomic layer deposition, chemical vapor deposition, MOCVD, molecular beam epitaxy, evaporation, sputtering, or pulsed-laser deposition.
    Type: Application
    Filed: June 11, 2013
    Publication date: April 3, 2014
    Inventors: Timothy P. Holme, Andrei Iancu, Hee Joon Jung, Michael C. Langston, Munekazu Motoyama, Friedrich B. Prinz, Takane Usui, Hitoshi Iwadate, Neil Dasgupta, Cheng-Chieh Chao
  • Publication number: 20140057054
    Abstract: A co-evaporation alloy material includes a first evaporation material and a second evaporation material, the first evaporation material being completely covered by the second evaporation material. The second evaporation material is a metal or metal alloy different from the first evaporation material. The melting point of the first evaporation material is lower than the melting point of second evaporation material. An evaporation coating method using the co-evaporation alloy material is also provided.
    Type: Application
    Filed: April 24, 2013
    Publication date: February 27, 2014
    Applicants: FIH (HONG KONG) LIMITED, SHENZHEN FUTAIHONG PRECISION INDUSTRY CO., LTD.
    Inventor: DA-HUA CAO
  • Publication number: 20140050872
    Abstract: Polydiorganosiloxane polyoxamide, linear, block copolymers and methods of making the copolymers are provided. The method of making the copolymers involves reacting a diamine with a precursor having at least one polydiorganosiloxane segment and at least two oxalyamino groups. The polydiorganosiloxane polyoxamide block copolymers are of the (AB)n type.
    Type: Application
    Filed: October 21, 2013
    Publication date: February 20, 2014
    Applicant: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Charles M. Leir, Karl E. Benson, Richard G. Hansen, Mark D. Purgett, Albert I. Everaerts, Audrey A. Sherman
  • Patent number: 8652347
    Abstract: Provided are new compositions of ruthenates in the pervoskite and layered pervoskite family, wherein the ruthenate compositions exhibit large magnetoresistance (MR) and electric-pulse-induced resistance (EPIR) switching effects, the latter observable at room temperature. This is the first time large MR and EPIR effects have been shown together in ruthenate compositions. Further provided are methods for synthesizing the class of ruthenates that exhibits such properties, as well as methods of use therefor in electromagnetic devices, thin films, sensors, semiconductors, insulators and the like.
    Type: Grant
    Filed: April 23, 2007
    Date of Patent: February 18, 2014
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: I-Wei Chen, Alexander Mamchik
  • Publication number: 20140044977
    Abstract: A method for coating a substrate with a coating having a controlled morphology is disclosed, the method comprising providing a substrate, depositing a nucleating layer on a surface of the substrate using an aerosol assisted deposition method and depositing at least one further layer by chemical vapour deposition. The nucleating layer and further layer preferably comprise tin oxide. The substrate is preferably glass. The method results in high transmittance and a low diffuse transmission across the visible and infrared region.
    Type: Application
    Filed: April 17, 2012
    Publication date: February 13, 2014
    Applicants: UNIVERSITY COLLEGE LONDON, PILKINGTON GROUP LIMITED
    Inventors: Troy Manning, Ivan Paul Parkin, Mathew Robert Waugh