Organosilicon Containing Coating Material Patents (Class 427/503)
  • Patent number: 6962727
    Abstract: The present invention provides an organosiloxane comprising at least 80 weight percent of Formula 1: [Y0.01-1.0SiO1.5-2]a{Z0.01-1.0SiO1.5-2]b[H0.01-1.0SiO1.5-2]c (where Y is aryl; Z is alkenyl; a is from 15 percent to 70 percent of Formula 1; b is from 2 percent to 50 percent of Formula 1; and c is from 20 percent to 80 percent of Formula 1. The present organosiloxane may be used as ceramic binder, high temperature encapsulant, and fiber matrix binder. The present composition is also useful as an adhesion promoter in that it exhibits good adhesive properties when coupled with other materials in non-microelectronic or microelectronic applications. Preferably, the present compositions are used in microelectronic applications as etch stops, hardmasks, and dielectrics.
    Type: Grant
    Filed: June 3, 2002
    Date of Patent: November 8, 2005
    Assignee: Honeywell International Inc.
    Inventors: William B. Bedwell, Nigel P. Hacker, Roger Y. Leung, Nancy Iwamoto, Jan Nedbal, Songyuan Xie, Lorenza Moro, Shyama P. Mukherjee
  • Patent number: 6916541
    Abstract: The present invention relates to a substrate for attachment of biomolecules. The substrate is coated with a multiamino organosilane. If desired, the substrate can be further modified prior to coating with a multiamino organosilane. Optional surface modifications include coating the substrate with SiO2 or leaching with acid to form a SiO2 rich layer. DNA, nucleic acids, or any bimolecules can be attached to the coated substrates of the invention. Although a variety of substrates are contemplated, the preferred substrate is a low self-fluorescent glass.
    Type: Grant
    Filed: September 7, 2001
    Date of Patent: July 12, 2005
    Assignee: Penn State Research Foundation
    Inventors: Carlo G. Pantano, Ezz Metwalli, Samuel Conzone, Dan Haines
  • Patent number: 6911055
    Abstract: The invention concerns a method which comprises irradiating at least one face of an article with UV radiation, causing the article to be photodegraded over a thickness of at least 1 ?m and contacting the irradiated face of the article with a coloring agent, so as to diffuse the coloring agent in the entire thickness of the photodegraded surface layer of the article. The invention is useful for optical and ophthalmologic articles.
    Type: Grant
    Filed: May 12, 2004
    Date of Patent: June 28, 2005
    Assignee: Essilor International Compagnie General d'Optique
    Inventor: Gilles Baillet
  • Patent number: 6869541
    Abstract: An epoxy resin composition suitable for forming a film of excellent water repellency which comprises an epoxy resin having one or more water repellent groups and two or more cyclic aliphatic epoxy groups per molecule, a triazine-base catalyst for cationic polymerization and a non-polar solvent.
    Type: Grant
    Filed: February 21, 2003
    Date of Patent: March 22, 2005
    Assignee: Canon Kabushiki Kaisha
    Inventors: Akihiko Shimomura, Hiromichi Noguchi, Isao Imamura
  • Patent number: 6867242
    Abstract: The invention relates to a method for producing a sealed impregnation and/or release coating of flat joints, in particular of cylinder-head gaskets such as composite seals, metallic joints and multi-layered steel joints. The invention uses a silicone composition including at least a polyorganosiloxane A crosslinkable by a cationic and/or radical process by appropriate crosslinking functional groups, for example, of the alkenyl ether, acrylic, acrylate, epoxide and/or oxethane type; at least an initiator salt B selected among onium borates or an organometallic complex; and at least a reactive diluent C including a nonorganosilicon or organosilicon compound comprising in its structure at least a crosslinking functional group and optionally a secondary functional group different from the crosslinking functional group but capable of chemically reacting with a crosslinking functional group, for example of the hydroxyl, alkoxy and/or carboxyl type.
    Type: Grant
    Filed: June 8, 2000
    Date of Patent: March 15, 2005
    Assignee: Rhodia Chimie
    Inventors: Jean-Marc Frances, Olivier Loubet
  • Patent number: 6821564
    Abstract: Apparatus and method to improve vapor phase diffusion coating of articles. The apparatus provides a barrier to segregate the portion of the article requiring coating from the portion of the article not requiring coating. The fixture is reusable, being unaffected by the coating gases. The fixture reduces the exposure of the coating gases with the portion of the article not requiring coating. By use of an optional seal, the portion of the article not requiring coating can be isolated from the coating gases.
    Type: Grant
    Filed: April 25, 2003
    Date of Patent: November 23, 2004
    Assignee: General Electric Company
    Inventors: Nripendra Nath Das, Raymond William Heidorn, Thomas Edward Mantkowski, Patricia Ann Charles
  • Patent number: 6764718
    Abstract: A method for forming an electrically insulating thin film coating the surface of an electronic device with an electrically insulating thin-film-forming resin composition and crosslinking the composition by a method selected from the group consisting of heating and irradiation with high-energy rays.
    Type: Grant
    Filed: December 9, 2002
    Date of Patent: July 20, 2004
    Assignee: Dow Corning Toray Silicone Co., Ltd.
    Inventors: Takashi Nakamura, Kiyotaka Sawa, Akihiko Kobayashi, Katsutoshi Mine
  • Patent number: 6764965
    Abstract: A method for improving the coating capability of low dielectric layer is disclosed. The method includes steps of an etching stop layer is deposited a semiconductor substrate, an adhesion promoter layer is spun-on the etching stop layer. The pre-wetting process being performed on the adhesion promoter layer to enhance the coating capability of the low-k dielectric layer, and thus improve the coating quality through the pre-wetting process of baked adhesion promoter layer before the low-k dielectric layer is applied.
    Type: Grant
    Filed: August 17, 2001
    Date of Patent: July 20, 2004
    Assignee: United Microelectronics Corp.
    Inventors: Tsung-Tang Hsieh, Cheng-Yuan Tsai, Chih-An Huang
  • Patent number: 6743737
    Abstract: A method and apparatus for depositing a low dielectric constant film includes depositing a silicon oxide based film, preferably by reaction of an organosilicon compound and an oxidizing gas at a low RF power level from about 10 W to about 500 W, exposing the silicon oxide based film to water or a hydrophobic-imparting surfactant such as hexamethyldisilazane, and curing the silicon oxide based film at an elevated temperature. Dissociation of the oxidizing gas can be increased in a separate microwave chamber to assist in controlling the carbon content of the deposited film. The moisture resistance of the silicon oxide based films is enhanced.
    Type: Grant
    Filed: August 22, 2002
    Date of Patent: June 1, 2004
    Assignee: Applied Materials, Inc.
    Inventors: Wai-Fan Yau, David Cheung, Nasreen Gazala Chopra, Yung-Cheng Lu, Robert Mandal, Farhad Moghadam
  • Patent number: 6713128
    Abstract: An alkylsiloxane-containing epoxy resin composition can suitably be used as water-repellent agent or a water-repellent coating to be advantageously applied to areas that are apt to be brought into contact with solutions and substances containing one or more than one components that can damage the film forming property and the adhesion of an ordinary water-repellent agent. The resin composition comprises at least an alkylsiloxane-containing epoxy resin having two or more than two alkylsiloxane groups and two or more than two cyclic aliphatic epoxy groups in a molecule and a cationic polymerization catalyst.
    Type: Grant
    Filed: March 18, 2003
    Date of Patent: March 30, 2004
    Assignee: Canon Kabushiki Kaisha
    Inventors: Akihiko Shimomura, Hiromichi Noguchi, Isao Imamura, Tamaki Sato
  • Patent number: 6641899
    Abstract: A method for forming a self aligned pattern on an existing pattern on a substrate comprising applying a coating of the masking material to the substrate; and allowing at least a portion of the masking material to preferentially attach to portions of the existing pattern. The pattern is comprised of a first set of regions of the substrate having a first atomic composition and a second set of regions of the substrate having a second atomic composition different from the first composition. The first set of regions may include one or more metal elements and the second set of regions may include a dielectric. The masking material may comprise a polymer containing a reactive grafting site that selectively binds to the portions of the pattern.
    Type: Grant
    Filed: November 5, 2002
    Date of Patent: November 4, 2003
    Assignee: International Business Machines Corporation
    Inventors: Matthew E Colburn, Stephen M Gates, Jeffrey C Hedrick, Elbert Huang, Satyanarayana V Nitta, Sampath Purushothaman, Muthumanickam Sankarapandian
  • Patent number: 6638579
    Abstract: A paper machine substrate modified to resist contamination by adhesive materials. The paper machine substrate includes: a paper machine substrate; and an active agent that is grafted to the surface of the paper machine substrate to lower the surface energy of the paper machine substrate so that the substrate resists contamination by adhesive material. The papermachine substrate may be made by a process that includes the steps of: providing a paper machine substrate; applying an active agent to the paper machine substrate; and exposing the paper machine substrate to greater than about 2 million rads (Mrad) of radiation to cause a reaction between the active agent and the substrate so the active agent becomes joined to the substrate. The active agent may be a fluorinated monomer, a fluorinated polymer, a perfluorinated polymers, or a polyalkyl siloxane.
    Type: Grant
    Filed: July 30, 2002
    Date of Patent: October 28, 2003
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Russell Frederick Ross, Ali Yahiaoui
  • Patent number: 6573020
    Abstract: In a method for the manufacture, by means of lithography, of ceramic small and micro-parts, a pre-ceramic silicon containing polymer layer is deposited on a highly temperature resistant substrate and then dried at room temperature. The layer is then exposed in an image pattern to electromagnetic radiation and the exposed layer is developed in an organic solvent to remove the non-exposed areas. The preparation is then pyrolyzed at more than 900° C. and finally sintered at a temperature of at least 1600° C. to form a ceramic structured layer on the substrate.
    Type: Grant
    Filed: September 30, 2000
    Date of Patent: June 3, 2003
    Assignee: Forschungszentrum Karlsruhe GmbH
    Inventors: Thomas Hanemann, Jürgen Hausselt
  • Patent number: 6541077
    Abstract: A silicon-containing polymer having a tetrafunctional siloxane portion as the basic skeleton, and containing a carboxylic acid group-containing triorganosiloxane portion and a carboxylic acid derivative group-containing triorganosiloxane portion in a specific proportion. It may be advantageously used as a negative non-chemical amplification resist polymer or a positive chemical amplification resist polymer.
    Type: Grant
    Filed: May 9, 2001
    Date of Patent: April 1, 2003
    Assignee: Fujitsu Limited
    Inventors: Miwa Kozawa, Keiji Watanabe, Ei Yano
  • Patent number: 6511714
    Abstract: The invention relates to a process for combating the appearance of mist (misting) during the coating of flexible supports with at least one liquid silicone (RTV polyaddition) composition which is a precursor of silicone coating(s) using a roll coating device operating at high speed. The targeted aim is to increase the speed of appearance of the misting and subsequently to improve the appearance, the coverage and the mechanical properties of the silicone coating and industrial hygiene. For this, use is made of a liquid coating composition obtained by mixing: a silicone phase comprising one or more POSs (A) and optionally one or more (crosslinking) compound(s) (B), the viscosity &eegr; of which at 25° C. is between 100 and 800 mPa·s; with 1 to 10% by weight of noncellulose antimist particles (talc, silica, kaolin, TiO2), the D50 (in &mgr;m) of which is: 0.01≦D50≦2; and optionally with a liquid (D)—water/solvent.
    Type: Grant
    Filed: June 26, 2001
    Date of Patent: January 28, 2003
    Assignee: Rhodia Chimie
    Inventors: Paul Branlard, Frédéric Garnes, Yves Giraud, Christophe Guyot, Frédéric Magd
  • Patent number: 6500552
    Abstract: The present invention relates to an electrically conductive coating that is producible by hydrolytic condensation of a mixture comprising at least one silicon compound of the general formula SiXnR(4−n) (I), wherein at least one of the groups R is a mercapto-substituted alkyl or aryl group; and a compound of the general formula ZaSiYbR(a−4−b) (II), wherein the group Z is a quaternary ammonium salt, for example. Said coating is particularly suitable for toner transfer drums, and exhibits high scratch resistance and good adhesion to the substrate.
    Type: Grant
    Filed: September 5, 2000
    Date of Patent: December 31, 2002
    Assignee: AEG Elektrofotografie GmbH
    Inventors: Sabine Dreihofer, Gert Neumann, Alexandra Geiss, Klaus Rose
  • Patent number: 6497961
    Abstract: A ceramer composition is provided that comprises a plurality of colloidal inorganic oxide particles and a free-radically curable binder precursor. The free-radically curable binder precursor comprises a fluorochemical component that further comprises at least two free-radically curable moieties and at least one fluorinated moiety. By virtue of the inclusion of the fluorochemical component, the ceramer compositions of the present invention can be used to provide ceramer composites and ceramer composite structures with excellent stain, oil and/or water repellency characteristics as well as a high level of abrasion resistance and hardness.
    Type: Grant
    Filed: March 29, 2001
    Date of Patent: December 24, 2002
    Assignee: 3M Innovative Properties Company
    Inventors: Soonkun Kang, George G. I. Moore, Thomas W. Rambosek
  • Patent number: 6449413
    Abstract: A curable composition is disclosed that is useful for securing color coded optical fibers in a matrix of an optical fiber cable. The matrix material can be stripped from the individual fibers without removing the color coding associated with the individual fibers. The matrix material is also resistant to solvents used in the stripping process.
    Type: Grant
    Filed: June 6, 2000
    Date of Patent: September 10, 2002
    Assignee: Borden Chemical, Inc.
    Inventor: David C. Duecker
  • Patent number: 6448187
    Abstract: A method and apparatus for depositing a low dielectric constant film includes depositing a silicon oxide based film, preferably by reaction of an organosilicon compound and an oxidizing gas at a low RF power level from about 10W to about 500W, exposing the silicon oxide based film to water or a hydrophobic-imparting surfactant such as hexamethyldisilazane, and curing the silicon oxide based film at an elevated temperature. Dissociation of the oxidizing gas can be increased in a separate microwave chamber to assist in controlling the carbon content of the deposited film. The moisture resistance of the silicon oxide based films is enhanced.
    Type: Grant
    Filed: February 21, 2001
    Date of Patent: September 10, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Wai-Fan Yau, David Cheung, Nasreen Gazala Chopra, Yung-Cheng Lu, Robert Mandal, Farhad Moghadam
  • Patent number: 6426127
    Abstract: The invention pertains to dielectric films for the production of microelectronic devices. A spin-on glass film is produced by depositing a silazane polymer containing composition film onto a substrate and then exposing the film to electron beam radiation. The electron beam exposing step is conducted by overall exposing the dielectric layer with a wide, large beam of electron beam radiation from a large-area electron beam source.
    Type: Grant
    Filed: December 28, 1999
    Date of Patent: July 30, 2002
    Assignee: Electron Vision Corporation
    Inventors: Matthew Ross, Heike Thompson
  • Patent number: 6383641
    Abstract: A transparent coated molded product comprising a transparent synthetic resin substrate and two or more transparent cured material layers provided on at least one part of the surface of the transparent synthetic resin substrate, wherein an inner layer in contact with the outermost layer of the two or more transparent cured material layers is an abrasion-resistant layer which is a cured material of an active energy ray-curable coating agent (A) containing a polyfunctional compounds (a) having at least 2 active energy ray-curable polymerizable functional groups and the outermost layer is a silica layer which is a cured material of a curable coating agent (B) of polysilazane or a curable coating agent (B) containing polysilazane.
    Type: Grant
    Filed: August 13, 1998
    Date of Patent: May 7, 2002
    Assignee: Asahi Glass Company Ltd.
    Inventors: Satoshi Kondou, Toshihiko Higuchi, Hirotsugu Yamamoto, Takashi Shibuya, Mika Yokoyama, Junko Asakura
  • Patent number: 6361837
    Abstract: The invention provides a system and a method for densifying a surface of a porous film. By reducing the porosity of a film, the method yields a densified film that is more impenetrable to subsequent liquid processes. The method comprises the steps of providing a film having an exposed surface. The film can be supported by a semiconductor substrate. When the film is moved to a processing position, a focused source of radiation is created by a beam source. The exposed surface of the film is then irradiated by the beam source at the processing position until a predetermined dielectric constant is achieved. The film or beam source may be rotated, inclined, and/or moved between a variety of positions to ensure that the exposed surface of the film is irradiated evenly.
    Type: Grant
    Filed: January 15, 1999
    Date of Patent: March 26, 2002
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Suzette K. Pangrle, Richard J. Huang, Shekhar Pramanick
  • Patent number: 6355310
    Abstract: A substantially water-free, water-washable, energy-curable composition includes an epoxy oligomer and/or urethane oligomer having at least two ethylenically unsaturated moieties, at least one alkoxylated polyol monomer having at least two ethylenically unsaturated moieties and capable of being copolymerized with the oligomer, and a surface active agent capable of being integrated into the molecular structure of the cured polymer and further capable of rendering the uncured composition dispersible in water. Optionally, the composition can contain a photoinitiator. The composition is self-dispersible in water and is especially suitable for use as a coating material for a printing screen.
    Type: Grant
    Filed: June 22, 2000
    Date of Patent: March 12, 2002
    Assignee: Henkel Corporation
    Inventor: Marie-Esther Saint Victor
  • Publication number: 20020001725
    Abstract: A low refractive index SiO2 film is provided which uses a starting material for forming an SiO2 film and has a lower refractive index than the conventional SiO2 film.
    Type: Application
    Filed: December 5, 1997
    Publication date: January 3, 2002
    Applicant: DAI NIPPON PRINTING CO., LTD
    Inventor: KOJI ICHIMURA
  • Publication number: 20020001710
    Abstract: A ceramer composition is provided that comprises a plurality of colloidal inorganic oxide particles and a free-radically curable binder precursor. The free-radically curable binder precursor comprises a fluorochemical component that further comprises at least two free-radically curable moieties and at least one fluorinated moiety. By virtue of the inclusion of the fluorochemical component, the ceramer compositions of the present invention can be used to provide ceramer composites and ceramer composite structures with excellent stain, oil and/or water repellency characteristics as well as a high level of abrasion resistance and hardness.
    Type: Application
    Filed: March 29, 2001
    Publication date: January 3, 2002
    Inventors: Soonkun Kang, George G.I. Moore, Thomas W. Rambosek
  • Publication number: 20010038889
    Abstract: The invention provides a system and a method for densifying a surface of a porous film. By reducing the porosity of a film, the method yields a densified film that is more impenetrable to subsequent liquid processes. The method comprises the steps of providing a film having an exposed surface. The film can be supported by a semiconductor substrate. When the film is moved to a processing position, a focused source of radiation is created by a beam source. The exposed surface of the film is then irradiated by the beam source at the processing position until a predetermined dielectric constant is achieved. The film or beam source may be rotated, inclined, and/or moved between a variety of positions to ensure that the exposed surface of the film is irradiated evenly.
    Type: Application
    Filed: January 15, 1999
    Publication date: November 8, 2001
    Inventors: SUZETTE K. PANGRLE, RICHARD HUANG, SHEKHAR PRAMANICK
  • Patent number: 6303229
    Abstract: The present invention provides a process for forming a hydrophilic inorganic coated film on a surface of a base material, the process comprising the steps of: (1) preparing an inorganic coating composition which contains, as a major component, a silicone resin obtained by hydrolyzing and condensation-polymerizing only the tetra-functional alkoxysilane represented by the formula: Si(OR)4 [wherein R represents an alkyl group having carbon atoms up to and including 7 or an aryl group], and has a total solid content of not more than 5% by weight; (2) applying the inorganic coating composition to a surface of the base material to form a coated layer; and (3) drying and curing the coated layer to form a cured coated film having a thickness of 0.01 to 0.5 &mgr;m. The hydrophilic inorganic coated film formed by the process of the present invention is highly hydrophilic just after the film is formed, even in the case that it is not irradiated with ultraviolet rays.
    Type: Grant
    Filed: December 8, 1999
    Date of Patent: October 16, 2001
    Assignee: Matsushita Electric Works, Ltd.
    Inventors: Koichi Takahama, Minoru Inoue, Junko Ikenaga, Shoichi Nakamoto
  • Patent number: 6303523
    Abstract: A method and apparatus for depositing a low dielectric constant film by reaction of an organosilicon compound and an oxidizing gas at a constant RF power level from about 10 W to about 200 W or a pulsed RF power level from about 20 W to about 500 W. Dissociation of the oxidizing gas can be increased prior to mixing with the organosilicon compound, preferably within a separate microwave chamber, to assist in controlling the carbon content of the deposited film. The oxidized organosilane or organosiloxane film has good barrier properties for use as a liner or cap layer adjacent other dielectric layers. The oxidized organosilane or organosiloxane film may also be used as an etch stop and an intermetal dielectric layer for fabricating dual damascene structures. The oxidized organosilane or organosiloxane films also provide excellent adhesion between different dielectric layers.
    Type: Grant
    Filed: November 4, 1998
    Date of Patent: October 16, 2001
    Assignee: Applied Materials, Inc.
    Inventors: David Cheung, Wai-Fan Yau, Robert P. Mandal, Shin-Puu Jeng, Kuo-Wei Liu, Yung-Cheng Lu, Michael Barnes, Ralf B. Willecke, Farhad Moghadam, Tetsuya Ishikawa, Tze Wing Poon
  • Patent number: 6299945
    Abstract: Release liners and processes for making the same are disclosed. The release liners include no more than about 1.5 micrograms/square centimeter of nonreacted silicone materials (extractables). The release liners are prepared using solvent coating of radiation curable silicone release materials.
    Type: Grant
    Filed: January 28, 1999
    Date of Patent: October 9, 2001
    Assignee: Loparex Inc.
    Inventors: William J. Mertz, Danny Charles Thompson, Katherine Yiu-Kit Leung
  • Patent number: 6287990
    Abstract: A method and apparatus for depositing a low dielectric constant film by reaction of an organosilane or organosiloxane compound and an oxidizing gas at a low RF power level from 10-250 W. The oxidized organosilane or organosiloxane film has good barrier properties for use as a liner or cap layer adjacent other dielectric layers. The oxidized organosilane or organosiloxane film may also be used as an etch stop or an intermetal dielectric layer for fabricating dual damascene structures. The oxidized organosilane or organosiloxane films also provide excellent adhesion between different dielectric layers. A preferred oxidized organosilane film is produced by reaction of methylsilane, CH3SiH3, or dimethylsilane, (CH3)2SiH2, and nitrous oxide, N2O, at an RF power level from about 10 to 200 W or a pulsed RF power level from about 20 to 250 W during 10-30% of the duty cycle.
    Type: Grant
    Filed: September 29, 1998
    Date of Patent: September 11, 2001
    Assignee: Applied Materials, Inc.
    Inventors: David Cheung, Wai-Fan Yau, Robert R. Mandal
  • Publication number: 20010010840
    Abstract: An electrically insulating thin-film-forming resin composition comprising (A) an inorganic or organic electrically insulating resin having silicon atom-bonded hydrogen atoms, (B) a compound having groups able to react with the silicon atom-bonded hydrogen atoms in component (A) and having a boiling point under atmospheric pressure of at least 250° C., and (C) a solvent; and a method for forming an electrically insulating thin film therefrom.
    Type: Application
    Filed: January 18, 2001
    Publication date: August 2, 2001
    Inventors: Akihiko Kobayashi, Katsutoshi Mine, Takashi Nakamura, Kiyotaka Sawa
  • Patent number: 6245690
    Abstract: A method and apparatus for depositing a low dielectric constant film includes depositing a silicon oxide based film, preferably by reaction of an organosilicon compound and an oxidizing gas at a low RF power level from about 10 W to about 500 W, exposing the silicon oxide based film to water or a hydrophobic-imparting surfactant such as hexamethyldisilazane, and curing the silicon oxide based film at an elevated temperature. Dissociation of the oxidizing gas can be increased in a separate microwave chamber to assist in controlling the carbon content of the deposited film. The moisture resistance of the silicon oxide based films is enhanced.
    Type: Grant
    Filed: November 4, 1998
    Date of Patent: June 12, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Wai-Fan Yau, David Cheung, Nasreen Gazala Chopra, Yung-Cheng Lu, Robert Mandal, Farhad Moghadam
  • Patent number: 6242339
    Abstract: An interconnection structure includes an interlevel insulating film, made of organic-containing silicon dioxide, between lower- and upper-level metal interconnects. A phenyl group, bonded to a silicon atom, is introduced into silicon dioxide in the organic-containing silicon dioxide.
    Type: Grant
    Filed: February 24, 1999
    Date of Patent: June 5, 2001
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventor: Nobuo Aoi
  • Patent number: 6238798
    Abstract: A ceramer composition is provided that comprises a plurality of colloidal inorganic oxide particles and a free-radically curable binder precursor. The free-radically curable binder precursor comprises a fluorochemical component that further comprises at least two free-radically curable moieties and at least one fluorinated moiety. By virtue of the inclusion of the fluorochemical component, the ceramer compositions of the present invention can be used to provide ceramer composites and ceramer composite structures with excellent stain, oil and/or water repellency characteristics as well as a high level of abrasion resistance and hardness.
    Type: Grant
    Filed: February 22, 1999
    Date of Patent: May 29, 2001
    Assignee: 3M Innovative Properties Company
    Inventors: Soonkun Kang, George G. I. Moore, Thomas W. Rambosek
  • Patent number: 6207621
    Abstract: A surface of a given base material is hydrophilized by irradiating, for example, a vacuum ultraviolet light to itself. Then, on the surface is formed a monomolecular film made of a fluoroalkylsilane preferably having at least one of a long fluoroalkyl-chain and a long alkyl-chain which preferably have lengths of not less than 1 nm. Then, the base material and the monocular film are thermally treated and thereby a member having a high lubricative surface can be obtained which has strong couplings between the base material and the molecular film through a dehydrating condensation reaction.
    Type: Grant
    Filed: February 29, 2000
    Date of Patent: March 27, 2001
    Assignee: Nagoya University
    Inventors: Osamu Takai, Atsushi Hozumi, Hiroyuki Sugimura
  • Patent number: 6191183
    Abstract: The instant invention pertains to a composition that can form silica thin films, wherein said composition performs well as a substrate planarizing coating when applied to a substrate and can be converted by exposure to high-energy radiation into silica thin film with an excellent electrical insulating performance. The composition for the formation of silica thin films comprises (A) a hydrogen silsesquioxane resin that contains at least 45 weight % hydrogen silsesquioxane resin with a molecular weight no greater than 1,500; and (B) solvent. A silica thin film is produced by evaporating the solvent (B), and then converting at least a portion of the hydrogen silsesquioxane resin (A) to silica by exposing the surface of the said substrate to high-energy radiation. The preferred substrate is a semiconductor substrate having at least one electrically conductive layer.
    Type: Grant
    Filed: October 5, 1999
    Date of Patent: February 20, 2001
    Assignee: Dow Corning Toray Silicone Co., Ltd.
    Inventors: Akihiko Kobayashi, Katsutoshi Mine, Takashi Nakamura, Motoshi Sasaki, Kiyotaka Sawa
  • Patent number: 6180185
    Abstract: An apparatus for forming a film on a substrate includes a gas inlet and an insert attached to the gas inlet, the insert including a deposition source material such as lithium. To form the film on the substrate, the substrate is mounted in a vacuum chamber. After the vacuum chamber is pumped down to a subatmospheric pressure, a first process gas such as argon is provided through the gas inlet and insert and into a plasma region proximate the substrate. Power is then coupled to generate a plasma inside of the insert which heats the insert and causes the deposition source material to vaporize. The deposition source material vapor is mixed with a plasma polymerizable material in the plasma region proximate the substrate causing a plasma enhanced chemical vapor deposition (PECVD) thin film such as silicon oxide including the deposition source material (e.g. lithium) to be deposited on the substrate.
    Type: Grant
    Filed: November 30, 1999
    Date of Patent: January 30, 2001
    Inventor: John T. Felts
  • Patent number: 6177142
    Abstract: An apparatus for forming a film on a substrate includes a gas inlet and an insert attached to the gas inlet, the insert including a deposition source material such as lithium. To form the film on the substrate, the substrate is mounted in a vacuum chamber. After the vacuum chamber is pumped down to a subatmospheric pressure, a first process gas such as argon is provided through the gas inlet and insert and into a plasma region proximate the substrate. Power is then coupled to generate a plasma inside of the insert which heats the insert and causes the deposition source material to vaporize. The deposition source material vapor is mixed with a plasma polymerizable material in the plasma region proximate the substrate causing a plasma enhanced chemical vapor deposition (PECVD) thin film such as silicon oxide including the deposition source material (e.g. lithium) to be deposited on the substrate.
    Type: Grant
    Filed: June 2, 1999
    Date of Patent: January 23, 2001
    Inventor: John T. Felts
  • Patent number: 6171703
    Abstract: The present invention relates to a method of forming a ceramic or ceramic-like coating on a substrate in the absence of oxygen. The method comprises coating the substrate with a solution comprising a solven and one or more preceramic materials selected from the group consisting of hydrogen silsesquioxane and hydrolyzed or partially hydrolyzed RxSi(OR)4-x wherein R is independently selected from the group consisting of alkyl, aryl and unsaturated hydrocarbons and x is 0-2. The solvent is evaporated and a preceramic coating thereby deposited on the substrate. The preceramic coating is then ceramified by heating the coated substrate to a temperature of between about 500 up to about 1000° C. under an inert gas atmosphere to thereby produce a ceramic or ceramic-like coating on the substrate. The process of the invention is useful for forming protective coatings on any substrate prone to oxidation at the temperature necessary for ceramification.
    Type: Grant
    Filed: August 22, 1994
    Date of Patent: January 9, 2001
    Assignee: Dow Corning Corporation
    Inventor: Loren Andrew Haluska
  • Patent number: 6150430
    Abstract: Described is a process for producing an adherent organic polymeric layer on organic polymeric substrates following the steps of (a) treating the surface of the polymeric substrate to provide reactive groups; (b) applying to the treated surface a polymerizable composition of a surface modifying amount of an organofunctional silane, a catalyzing amount of material which generates acid upon exposure to actinic radiation, and a solvating amount of solvent; (c) exposing the coated surface to an adhesion improving amount of actinic radiation; and (d) applying and curing a photochromic or non-photochromic polymer-forming composition on the coated surface. Also described are articles produced by the process.
    Type: Grant
    Filed: July 6, 1999
    Date of Patent: November 21, 2000
    Assignee: Transitions Optical, Inc.
    Inventors: Robert W. Walters, Kevin J. Stewart
  • Patent number: 6122428
    Abstract: A curable composition is disclosed that is useful for securing color coded optical fibers in a matrix of an optical fiber cable. The matrix material can be stripped from the individual fibers without removing the color coding associated with the individual fibers. The matrix material is also resistant to solvents used in the stripping process.
    Type: Grant
    Filed: March 1, 1999
    Date of Patent: September 19, 2000
    Assignee: Borden Chemical, Inc.
    Inventor: David Clarke Duecker
  • Patent number: 6028020
    Abstract: A single crystal quartz thin film having a thickness of 5 nm to 50 .mu.m can be prepared by forming the thin film on a single crystal substrate by a sol-gel process and peeling the thin film from the substrate. The present invention can provide the single crystal quartz thin film at a low price without a large and complex apparatus.
    Type: Grant
    Filed: December 5, 1995
    Date of Patent: February 22, 2000
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Motoyuki Tanaka, Takahiro Imai, Naoji Fujimori
  • Patent number: 5994424
    Abstract: A free-radical curable polish composition is described. The composition can be applied and cured as an ultra thin film on finished surfaces to provide enhanced chemical and mar resistance. The composition comprises an aqueous emulsion including an olefin-functional polymer or an olefin-functional prepolymer, and a silicone or silicone copolymer preferably with photoinitiators for UV and EB cure. The polish/emulsion can be applied, for example, to wet the surface of nitrocellulose lacquer wood finishes. The polish wet surface is first wiped to remove excess polish and thereafter exposed to UV radiation to provide a thin, polymerized protective film.
    Type: Grant
    Filed: February 12, 1998
    Date of Patent: November 30, 1999
    Assignee: Lilly Industries, Inc.
    Inventors: Eugen Safta, Frank Chen, Greg Muselman, James V. Mirante, Danny R. Linthicum
  • Patent number: 5968605
    Abstract: Electron beam radiation curing of inks on game balls, golf balls and the like is disclosed. Production inks, logo inks and methods for forming production prints and logos on golf balls, game balls and the like are disclosed. To form an electron beam radiation curable water-insoluble production ink, at least an adhesion promoting component is added to an ink base.
    Type: Grant
    Filed: February 27, 1997
    Date of Patent: October 19, 1999
    Assignee: Acushnet Company
    Inventor: Mitchell E. Lutz
  • Patent number: 5954907
    Abstract: This invention relates to a process for applying a coating material comprising a release coating composition or a pressure sensitive adhesive composition to a substrate, the process comprising: (A) atomizing and electrically charging said coating material; and (B) spraying the atomized and charged coating material from step (A) on to a substrate which overlies a grounded support structure. In one embodiment, the coating material sprayed during step (B) is a release coating composition, said process further comprising the additional steps of: (C) curing said release coating composition; (D) atomizing and electrically charging a pressure sensitive adhesive composition; (E) spraying the pressure sensitive adhesive composition from step (D) on to said substrate over the cured release coating composition from step (C); and (F) placing another substrate over the sprayed pressure sensitive adhesive composition from step (E).
    Type: Grant
    Filed: October 7, 1997
    Date of Patent: September 21, 1999
    Assignee: Avery Dennison Corporation
    Inventors: Joseph A. LaRose, Jeffrey J. DeMange, Tamara L. McCartney, Robert J. Takacs
  • Patent number: 5948484
    Abstract: An an improved process for surface modification of solid substrates, such as polymers and carbon-based materials, is disclosed. The preferred process comprises three steps: a first activation step wherein reactive hydrogen groups are formed in a surface layer of a polymeric or carbon-based material; a second silylation step wherein the reactive hydrogen groups are reacted with a silylating agent to form silicon-containing groups; and a third stabilization step wherein an upper portion of the activated, silylated layer is oxidatively converted to a silicon and oxygen enriched surface layer. The process can be performed using materials not having pre-existing reactive hydrogen groups or precursor groups. Modified materials according to the present invention have improved properties, such as erosion resistance and oxygen and water barrier properties, and are potentially useful in numerous industries, such as aerospace and packaging.
    Type: Grant
    Filed: June 5, 1997
    Date of Patent: September 7, 1999
    Inventors: Yuri Gudimenko, Jasha I. Kleiman, Grant R. Cool, Zelina A. Iskanderova, Roderick C. Tennyson
  • Patent number: 5945172
    Abstract: A coating agent composition comprising an organopolysiloxane resin: with the organopolysiloxane resin having a number average molecular weight of at least 500 and acrylic or methacrylic functional group-attached silicon atoms in a proportion of 5 to 100 mole % to the total silicon atoms; and with the resin comprising units represented by formula R.sup.1 LSiX.sub.3 in a proportion of 30 to 100 mole %, wherein R.sup.1 is a hydrogen atom or a substituted or unsubstituted organic group having 1 to 18 carbon atoms and X is a hydroxyl group, a hydrolyzable group or a siloxane residue, provided that at least one X is a siloxane residue; wherein from 30 to 80 mole % of the R.sup.1 SiX.sub.3 units are one silanol group-containing units represented by formula R.sup.1 Si(OH)Y.sub.2 wherein Y is a siloxane residue.
    Type: Grant
    Filed: July 10, 1997
    Date of Patent: August 31, 1999
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Masaaki Yamaya, Kazuharu Sato, Hiroaki Kizaki, Masahiro Furuya
  • Patent number: RE38752
    Abstract: A method of contacting s substrate having a surface containing hydroxyl groups with a non-aqueous solution containing a material having a chrolosilyl group; washing if desired; coating the substrate with a non-aqueous solvent containing a compound having a fluorocarbon group and a chlorosilane group or a solvent containing a compound containing a fluorocarbon group and an alkoxysilane; and baking the substrate if necessary in order to form a fluorocarbon-based polymer coating film chemically bonded to the substrate surface. The hydroxyl groups on the substrate surface and chlorosilyl groups are reacted to form a thin film having a large number of silanol groups (—SiOH) capable of connecting the polymer coating film to the substrate to form a heat-, weather-, and wear-resistant film on various surfaces.
    Type: Grant
    Filed: July 9, 1998
    Date of Patent: July 5, 2005
    Assignee: Matsushita Electric Industrial Co., Ltd
    Inventors: Kazufumi Ogawa, Mamoru Soga
  • Patent number: RE38753
    Abstract: An interconnection structure includes an interlevel insulating film, made of organic-containing silicon di oxide, between lower- and upper-level metal interconnects. A phenyl group, bonded to a silicon atom, is introduced into silicon di oxide in the organic-containing silicon di oxide.
    Type: Grant
    Filed: May 5, 2003
    Date of Patent: July 5, 2005
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventor: Nobuo Aoi
  • Patent number: RE37698
    Abstract: A method of contacting a substrate having a surface containing hydroxyl groups with a non-aqueous solution containing a material having a chrolosilyl group; washing if desired; coating the substrate with a non-aqueous solvent containing a compound having a fluorocarbon group and a chlorosilane group or a solvent containing a compound containing a fluorocarbon group and an alkoxysilane; and baking the substrate if necessary in order to form a fluorocarbon-based polymer coating film chemically bonded to the substrate surface. The hydroxyl groups on the substrate surface and chlorosilyl groups are reacted to form a thin film having a large number of silanol groups (—SiOH) capable of connecting the polymer coating film to the substrate to form a heat-, weather-, and wear-resistant film on various surfaces.
    Type: Grant
    Filed: July 10, 2000
    Date of Patent: May 14, 2002
    Assignee: Matsushita Electric Industrial Co.
    Inventors: Kazufumi Ogawa, Mamoru Soga