Electromagnetic Or Particulate Radiation Utilized (e.g., Ir, Uv, X-ray, Gamma Ray, Actinic, Microwave, Radio Wave, Atomic Particle; I.e., Alpha Ray, Beta Ray, Electron, Etc.) Patents (Class 427/595)
  • Patent number: 10325789
    Abstract: Embodiments described herein relate to apparatus and methods for thermally processing substrates. In one embodiment, a processing system includes a factory interface coupled to a plurality of load lock chambers. The plurality of load lock chambers are coupled to a transfer chamber which houses a robot. A thermal processing chamber is coupled to the transfer chamber and the robot is configured to transfer substrate between the load lock chambers and the thermal processing chamber. A multi-substrate support, which is disposed within the thermal processing chamber, rotates to facilitate efficient substrate thermal processing. A gas curtain apparatus disposed in a port plenum provides environment separation between the processing chamber and the transfer chamber while enabling efficient substrate transfer between the thermal processing chamber and the transfer chamber.
    Type: Grant
    Filed: November 18, 2016
    Date of Patent: June 18, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventor: Jacob Newman
  • Patent number: 10273574
    Abstract: A continuous method for manufacturing graphene films using a metal substrate, wherein a first surface of the metal substrate is heated such that a top layer of the first surface melts to form a molten metal layer, and devices for carrying out the same.
    Type: Grant
    Filed: March 13, 2017
    Date of Patent: April 30, 2019
    Assignee: HONDA MOTOR CO., LTD.
    Inventor: Avetik Harutyunyan
  • Patent number: 10099422
    Abstract: A method of solid free form fabrication (SFF) is disclosed. The method comprises: receiving SFF data collectively pertaining to a three-dimensional shape of the object and comprising a plurality of slice data each defining a layer of the object. The method also comprises, for each of at least a few of the layers, dispensing a building material on a receiving medium, straightening the building material, and selectively ablating the building material according to respective slice data.
    Type: Grant
    Filed: September 14, 2017
    Date of Patent: October 16, 2018
    Assignee: IO TECH GROUP LTD.
    Inventors: Michael Zenou, Ziv Gilan
  • Patent number: 10088704
    Abstract: A display device includes a substrate and a wire grid polarizer disposed on the substrate. The wire grid polarizer includes a first wire grid layer, a first middle layer, and a second wire grid layer. The first wire grid layer includes a plurality of first wire grid lines separated from each other. The first middle layer is disposed on the first wire grid layer. The first middle layer includes a first portion having a first middle layer thickness and a second portion having a second middle layer thickness thinner than the first middle layer thickness. The second middle layer thickness is thinner than a thickness of each first wire grid line. The second wire grid layer is disposed on the first middle layer and includes a plurality of second wire grid lines separated from each other. The second wire grid lines overlap the second portion of the first middle layer.
    Type: Grant
    Filed: February 21, 2017
    Date of Patent: October 2, 2018
    Assignee: Samsung Display Co., Ltd.
    Inventors: Hyun Eok Shin, Dong Min Lee, Chang Oh Jeong
  • Patent number: 10040119
    Abstract: A printer that produces objects from liquid conductive material is disclosed. In one embodiment, the print head has a chamber for containing liquid conductive material surrounded by an electromagnetic coil. A DC pulse is applied to the electromagnetic coil, resulting in a radially-inward force on the liquid conductive material. The force on the liquid conductive material in the chamber results in a drop being expelled from an orifice. In response to a series of pulses, a series of drops fall onto a platform in a programmed pattern, resulting in the formation of an object.
    Type: Grant
    Filed: March 13, 2017
    Date of Patent: August 7, 2018
    Inventors: Scott Vader, Zachary Vader
  • Patent number: 9825199
    Abstract: A laser processing system can be utilized to produce high-performance interdigitated back contact (IBC) solar cells. The laser processing system can be utilized to ablate, transfer material, and/or laser-dope or laser fire contacts. Laser ablation can be utilized to remove and pattern openings in a passivated or emitter layer. Laser transferring may then be utilized to transfer dopant and/or contact materials to the patterned openings, thereby forming an interdigitated finger pattern. The laser processing system may also be utilized to plate a conductive material on top of the transferred dopant or contact materials.
    Type: Grant
    Filed: December 28, 2016
    Date of Patent: November 21, 2017
    Assignee: NATCORE TECHNOLOGY, INC.
    Inventor: David E. Carlson
  • Patent number: 9646825
    Abstract: The invention relates to a method for fabricating a composite structure comprising a layer to be separated by irradiation, the method comprising the formation of a stack containing: a support substrate formed from a material that is at least partially transparent at a determined wavelength; a layer to be separated; and a separation layer interposed between the support substrate and the layer to be separated, the separation layer being adapted to be separated by exfoliation under the action of radiation having a wavelength corresponding to the determined wavelength. Furthermore, the method comprises, during the step for forming the composite structure, a treatment step modifying the optical properties in reflection at an interface between the support substrate and the separation layer or on an upper face of the support substrate.
    Type: Grant
    Filed: July 18, 2012
    Date of Patent: May 9, 2017
    Assignee: SOITEC
    Inventors: Christophe Figuet, Christophe Gourdel
  • Patent number: 9238220
    Abstract: A method for forming a titanium oxide film that can be formed on a surface of a base material without a heating step. In Step 0, a surface of a molded product (base material) composed of a cyclic olefin-based resin is irradiated with ultraviolet light in an air atmosphere. In Step 1, the base material is immersed in a mixed liquid of an aqueous solution of titanium chloride and a nitrite ion-containing aqueous solution. A titanium oxide film grows by repeating oxidation of a titanium ion. In Step 2, the base material is pulled out from the mixed liquid, and then washed to stop the reaction. The film thickness can be controlled by controlling this immersion time. In Step 3, the base material after washing is dried at room temperature.
    Type: Grant
    Filed: November 15, 2013
    Date of Patent: January 19, 2016
    Assignee: Ushio Denki Kabushiki Kaisha
    Inventors: Kinichi Morita, Toshikazu Kawaguchi, Katsuaki Shimazu, Tadao Kimijima
  • Patent number: 9195112
    Abstract: An electro-optic modulator for the modulation of optical radiation of a predetermined wavelength, the electro-optic modulator having at least one optical resonator in which a standing optical wave can be formed for the predetermined wavelength. In the resonator, at least two doped semiconductor sections—as seen in the longitudinal direction of the resonator —are arranged at a distance from one another, and the at least two doped semiconductor sections respectively lie locally at an intensity minimum of the standing optical wave.
    Type: Grant
    Filed: March 2, 2012
    Date of Patent: November 24, 2015
    Assignees: TECHNISCHE UNIVERSITÄT BERLIN, IHP GMBH—INNOVATIONS FOR HIGH PERFORMANCE MICROELECTRONICS
    Inventors: Stefan Meister, Aws Al-Saadi, Hans Joachim Eichler, Bulent Franke, Lars Zimmermann, Bernd Tillack
  • Patent number: 9156999
    Abstract: The present disclosure is drawn toward compositions, systems, and methods for printing of three-dimensional objects. In one embodiment, a liquid inkjettable material for 3-dimensional printing can comprise from 0.1 wt % to 10 wt % of a pigment, from 10 wt % to 90 wt % of a UV-curable polymer, and from 0.1 wt % to 70 wt % of a polymeric filler. Additionally, the liquid inkjettable material can be jettable from piezo electric inkjet printer nozzles and has acceptable decap performance measured by jetting a normal 50 picoliter ink drop within 10 electric firing pulses after the piezo electric inkjet printer nozzles have been fired and have been subsequently rested for 24 hours.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: October 13, 2015
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Hou T. Ng, Doris Chun
  • Patent number: 9120676
    Abstract: Technologies described herein are generally related to graphene production. In some examples, a system is described that may include a first container, a second container, and/or a chamber. The first container may include a first solution with a reducing agent, while the second container may include a second solution with graphene oxide. The chamber may be in operative relationship with the first and the second containers, and configured effective to receive the first and second solutions and provide reaction conditions that facilitate contact of the first and second solutions at an interfacial region sufficient to produce graphene at the interfacial region.
    Type: Grant
    Filed: March 6, 2012
    Date of Patent: September 1, 2015
    Assignee: Empire Technology Development LLC
    Inventor: Seth Adrian Miller
  • Patent number: 9090635
    Abstract: Disclosed herein are a copper organic metal, a method for preparing a copper organic metal and a copper paste. The copper organic metal is constituted to combine a copper atom, [R—CO2] and amine based ligand (L), thereby making it possible to be subjected to a low temperature sintering process and having an improved conductivity at the time of forming a conductive pattern as compared to the related art.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: July 28, 2015
    Assignee: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Kwi Jong Lee, Ji Han Kwon, Dong Hoon Kim
  • Patent number: 9087877
    Abstract: A method for forming an integrated circuit includes forming a low-k dielectric layer over a semiconductor substrate, etching the low-k dielectric layer to form an opening, forming a dielectric barrier layer covering at least sidewalls of the opening, performing a treatment to improve a wetting ability of the dielectric barrier layer, and filling the opening with a conductive material, wherein the conductive material is in contact with the dielectric barrier layer.
    Type: Grant
    Filed: October 24, 2006
    Date of Patent: July 21, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Chi Ko, Ting-Yu Shen, Keng-Chu Lin, Chia-Cheng Chou, Tien-I Bao, Shwang-Ming Jeng, Chen-Hua Yu
  • Patent number: 9034089
    Abstract: The disclosed invention relates to the use of molybdenum (VI) peroxo complex containing an amino acid, such as MoO(O2)2(GLY)(H2O), in marking applications, as well as to ink formulations comprising such complexes.
    Type: Grant
    Filed: August 12, 2011
    Date of Patent: May 19, 2015
    Assignee: Tetra Laval Holdings & Finance S.A.
    Inventors: Anthony Jarvis, Martin Walker, Adam O'Rourke, Richard Cook
  • Publication number: 20150132596
    Abstract: Provided are a heat-absorbing material having high heat resistance and high wavelength selectivity, and a process for producing the same. The heat-absorbing material includes: a heat-resistant metal having the substantially same periodic structure in the light incidence plane as the wavelength of sunlight having a specific wavelength in the wavelength regions of visible light and near-infrared rays; and a cermet formed on the light incidence plane of the heat-resistant metal. Thus, there can be achieved desirable absorption and radiation characteristics being such that absorption is performed in the visible light region meanwhile reflection is performed in the infrared region. Furthermore, the cermet does not need complicated film-formation control, and therefore, the high heat resistance can be maintained.
    Type: Application
    Filed: May 1, 2013
    Publication date: May 14, 2015
    Inventors: Takatoshi Yamada, Akio Takada, Hiroo Yugami, Fumitada Iguchi, Makoto Shimizu
  • Publication number: 20150099809
    Abstract: Many fragrances that provide a scent of freshness tend to be highly volatile and are therefore not very economical when used in typical applications such as washing or cleaning processes, so they have to be used in relatively large quantities to be able to produce adequate effects. The disclosed photolabile pro-fragrances provide a much longer-lasting sense of fragrance, in particular with a scent of freshness, when used in typical applications, thus allowing said fragrances to be used efficiently.
    Type: Application
    Filed: December 15, 2014
    Publication date: April 9, 2015
    Inventors: Thomas Gerke, Christian Kropf, Ursula Huchel, Axel Griesbeck, Agnieszka Landes
  • Patent number: 8980797
    Abstract: A method for manufacturing a base material 2 for a superconductive conductor which includes: a conductive bed layer forming process of forming a non-oriented bed layer 24 having conductivity on a substrate 10; and a biaxially oriented layer forming process of forming a biaxially oriented layer 26 on the bed layer 24.
    Type: Grant
    Filed: August 24, 2012
    Date of Patent: March 17, 2015
    Assignee: Furukawa Electric Co., Ltd.
    Inventors: Yoshikazu Okuno, Hiroyuki Fukushima, Yuko Hayase, Eiji Kojima
  • Publication number: 20150064364
    Abstract: A method of forming a metalloid-containing material comprises the step of preparing a hydrometalloid compound in a low volume on-demand reactor. The method further comprises the step of feeding the hydrometalloid compound prepared in the microreactor to a deposition apparatus. Additionally, the method comprises the step of forming the metalloid-containing material from the hydrometalloid compound via the deposition apparatus. A deposition system for forming the metalloid-containing material comprises at least one low volume on-demand reactor coupled to and in fluid communication with a deposition apparatus.
    Type: Application
    Filed: February 14, 2013
    Publication date: March 5, 2015
    Inventors: Binh Nguyen, Michael Telgenhoff
  • Publication number: 20150050494
    Abstract: A multi-walled titanium-based nanotube array containing metal or non-metal dopants is formed, in which the dopants are in the form of ions, compounds, clusters and particles located on at least one of a surface, inter-wall space and core of the nanotube. The structure can include multiple dopants, in the form of metal or non-metal ions, compounds, clusters or particles. The dopants can be located on one or more of on the surface of the nanotube, the inter-wall space (interlayer) of the nanotube and the core of the nanotube. The nanotubes may be formed by providing a titanium precursor, converting the titanium precursor into titanium-based layered materials to form titanium-based nanosheets, and transforming the titanium-based nanosheets to multi-walled titanium-based nanotubes.
    Type: Application
    Filed: March 19, 2013
    Publication date: February 19, 2015
    Applicant: The Hong Kong University of Science and Technology
    Inventors: King Lun Yeung, Shammi Akter Ferdousi, Wei Han
  • Patent number: 8956563
    Abstract: A molding method includes drawing cross-section elements of a three-dimensional object as a molding target on a drawing surface of a drawing stand with a liquid whose curing is precipitated by receiving activation energy as cross-section patterns; applying the activation energy to the liquid configuring the cross-section patterns in a state in which the cross-section patterns is pinched between the drawing stand and a molding stand; and detaching the cross-section patterns after being applied with the activation energy from the drawing stand and transferring the cross-section patterns to the molding stand side, wherein the drawing surface has a liquid repellent area that is an area representing liquid repellency for the liquid and a lyophilic area that is independently formed in an island shape within the liquid repellent area and is an area representing lyophillicity stronger than that of the liquid repellent area for the liquid.
    Type: Grant
    Filed: February 24, 2014
    Date of Patent: February 17, 2015
    Assignee: Seiko Epson Corporation
    Inventors: Eiji Okamoto, Toshimitsu Hirai, Kohei Ishida
  • Publication number: 20150044407
    Abstract: A barrier liner for a composite vessel, the barrier liner including (A) a polymeric substrate; and (B) a gas barrier coating layer attached to at least a portion of the polymeric substrate; a composite vessel containing the above barrier liner; and a UV curable composition for producing the above barrier liner.
    Type: Application
    Filed: April 3, 2013
    Publication date: February 12, 2015
    Applicant: Dow Global Technologies LLC
    Inventors: Abhijit Som, Vikrant V. Agrawal, Hiren Patel, Saurabh Kaujalgikar, Lakshmi Narasimha Vutukuru
  • Publication number: 20140377790
    Abstract: Methods of forming metal nanoparticle decorated carbon nanotubes are provided. The methods include mixing a metal precursor with a plurality of carbon nanotubes to form a metal precursor-carbon nanotubes mixture. The methods also include exposing the metal precursor-carbon nanotubes mixture to electromagnetic radiation to deposit metal nanoparticles on a major surface of the carbon nanotubes.
    Type: Application
    Filed: November 12, 2013
    Publication date: December 25, 2014
    Applicant: INDIAN INSTITUTE OF TECHNOLOGY MADRAS
    Inventors: Sundara RAMAPRABHU, Mridula BARO, Pranati NAYAK, Tessy THERES BABY
  • Patent number: 8900467
    Abstract: A method for making a chemical contrast pattern uses directed self-assembly of block copolymers (BCPs) and sequential infiltration synthesis (SIS) of an inorganic material. For an example with poly(styrene-block-methyl methacrylate) (PS-b-PMMA) as the BCP and alumina as the inorganic material, the PS and PMMA self-assemble on a suitable substrate. The PMMA is removed and the PS is oxidized. A surface modification polymer (SMP) is deposited on the oxidized PS and the exposed substrate and the SMP not bound to the substrate is removed. The structure is placed in an atomic layer deposition chamber. Alumina precursors reactive with the oxidized PS are introduced and infuse by SIS into the oxidized PS, thereby forming on the substrate a chemical contrast pattern of SMP and alumina. The resulting chemical contrast pattern can be used for lithographic masks, for example to etch the underlying substrate to make an imprint template.
    Type: Grant
    Filed: May 25, 2013
    Date of Patent: December 2, 2014
    Assignee: HGST Netherlands B.V.
    Inventors: Yves-Andre Chapuis, Ricardo Ruiz, Lei Wan
  • Patent number: 8895113
    Abstract: A method of manufacturing a film with a coating layer includes a preparing step of preparing a coating liquid containing one or more photopolymerization initiator, a solvent, an actinic-ray curable monomer, and an actinic-ray curable resin, an applying step of applying the coating liquid onto a support to form a coating layer; and a irradiation step of irradiating the coating layer with an actinic ray, wherein in the irradiation step, the coating layer is irradiated with the actinic ray in a state where the coating layer contains the solvent of 10 wt % or more.
    Type: Grant
    Filed: August 2, 2012
    Date of Patent: November 25, 2014
    Assignee: FUJIFILM Corporation
    Inventors: Satoshi Kuniyasu, Tamotsu Saikawa
  • Patent number: 8895456
    Abstract: A method of depositing a film of forming a doped oxide film including a first oxide film containing a first element and doped with a second element on substrates mounted on a turntable including depositing the first oxide film onto the substrates by rotating the turntable predetermined turns while a first reaction gas containing the first element is supplied from a first gas supplying portion, an oxidation gas is supplied from a second gas supplying portion, and a separation gas is supplied from a separation gas supplying portion, and doping the first oxide film with the second element by rotating the turntable predetermined turns while a second reaction gas containing the second element is supplied from one of the first and second gas supplying portions, an inert gas is supplied from another one, and the separation gas is supplied from the separation gas supplying portion.
    Type: Grant
    Filed: December 18, 2013
    Date of Patent: November 25, 2014
    Assignee: Tokyo Electron Limited
    Inventors: Mitsuhiro Tachibana, Hiroaki Ikegawa, Yu Wamura, Muneyuki Otani, Jun Ogawa, Kosuke Takahashi
  • Patent number: 8883266
    Abstract: A method of fabricating quantum confinements is provided. The method includes depositing, using a deposition apparatus, a material layer on a substrate, where the depositing includes irradiating the layer, before a cycle, during a cycle, and/or after a cycle of the deposition to alter nucleation of quantum confinements in the material layer to control a size and/or a shape of the quantum confinements. The quantum confinements can include quantum wells, nanowires, or quantum dots. The irradiation can be in-situ or ex-situ with respect to the deposition apparatus. The irradiation can include irradiation by photons, electrons, or ions. The deposition is can include atomic layer deposition, chemical vapor deposition, MOCVD, molecular beam epitaxy, evaporation, sputtering, or pulsed-laser deposition.
    Type: Grant
    Filed: June 11, 2013
    Date of Patent: November 11, 2014
    Assignees: The Board of Trustees of the Leland Stanford Junior University, Honda Patents & Technologies North America, LLC
    Inventors: Timothy P. Holme, Andrei Iancu, Hee Joon Jung, Michael C Langston, Munekazu Motoyama, Friedrich B. Prinz, Takane Usui, Hitoshi Iwadate, Neil Dasgupta, Cheng-Chieh Chao
  • Publication number: 20140315045
    Abstract: The use of supermalloy-like materials for the side and top shields of a magnetic bit sensor is shown to provide better shielding protection from stray fields because of their extremely high permeability.
    Type: Application
    Filed: April 18, 2013
    Publication date: October 23, 2014
    Applicant: Headway Technologies, Inc.
    Inventor: Headway Technologies, Inc.
  • Publication number: 20140295107
    Abstract: A scratch or similar surface roughness in a solid surface is reduced by gas cluster ion beam irradiation. A gas-cluster-ion-beam solid surface smoothing method includes an irradiation step in which the solid surface is irradiated with a gas cluster ion beam. The irradiation step includes a process of causing clusters from a plurality of directions to collide with at least an area (spot) irradiated with the gas cluster ion beam in the solid surface. Collision of clusters from a plurality of directions with the spot can be brought about by emitting a divergent gas cluster ion beam which releases clusters in diverging directions with respect to the beam center, for example.
    Type: Application
    Filed: December 20, 2013
    Publication date: October 2, 2014
    Applicant: JAPAN AVIATION ELECTRONICS INDUSTRY, LIMITED
    Inventors: Akinobu SATO, Akiko SUZUKI, Emmanuel BOURELLE, Jiro MATSUO, Toshio SEKI
  • Publication number: 20140287161
    Abstract: Provided are methods and systems for vacuum coating the outside surface of tubular devices for use in oil and gas exploration, drilling, completions, and production operations for friction reduction, erosion reduction and corrosion protection. These methods include embodiments for sealing tubular devices within a vacuum chamber such that the entire device is not contained within the chamber. These methods also include embodiments for surface treating of tubular devices prior to coating. In addition, these methods include embodiments for vacuum coating of tubular devices using a multitude of devices, a multitude of vacuum chambers and various coating source configurations.
    Type: Application
    Filed: October 3, 2012
    Publication date: September 25, 2014
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Mehmet D. Ertas, Michael B. Ray, Srinivasan Rajagopalan, Bo Zhao, Erika A. Ooten Biediger
  • Patent number: 8840971
    Abstract: A method for manufacturing coated panels of the type including at least a substrate and a top layer, provided on the substrate, with a motif, may involve providing a synthetic material layer on the substrate, and providing a relief on the surface of the synthetic material layer. The relief may show a pattern of recesses and/or protrusions. The pattern may be at least partially determined using a light-projection technique.
    Type: Grant
    Filed: June 17, 2011
    Date of Patent: September 23, 2014
    Assignee: Flooring Industries Limited, SARL
    Inventors: Laurent Meersseman, Christophe Maesen
  • Publication number: 20140263246
    Abstract: Gas is introduced into molten metal during an additive metal fabrication process and/or during a metal fusion process. The gas may comprise a process gas that flows through a tubular feed wire. The amount of process gas introduced can be controlled to vary the composition and/or material properties of metal deposits formed from a molten metal. Material properties such as yield strength, hardness, and fracture toughness can be increased or decreased in specific regions to provide material property gradients that closely correspond to expected requirements of components fabricated utilizing additive and/or fusion processes.
    Type: Application
    Filed: March 12, 2014
    Publication date: September 18, 2014
    Applicant: U.S.A. as represented by the Administrator of the National Aeronautics and Space Administration
    Inventor: Craig A. Brice
  • Publication number: 20140272196
    Abstract: A method may include exposing a porous, carbon-containing material to a fuel source and an oxidizing agent; allowing the porous, carbon-containing material to adsorb at least some of the fuel source; and heating the porous, carbon-containing material to a temperature at which combustion of the adsorbed fuel source occurs, so that the porous, carbon-containing material is homogeneously oxidized throughout its thickness. Another method may include exposing a microporous, carbon-containing material to a fuel and an oxidizing agent, allowing the microporous, carbon-containing material to adsorb at least some of the fuel, and heating the microporous, carbon-containing material to a temperature at which combustion of the fuel occurs, to seal pores of the microporous, carbon-containing material adjacent to its surface.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventor: INTERNATIONAL BUSINESS MACHINES CORPORATION
  • Patent number: 8834967
    Abstract: A method of reducing the diameter of pores formed in a graphene sheet includes forming at least one pore having a first diameter in the graphene sheet such that the at least one pore is surrounded by passivated edges of the graphene sheet. The method further includes chemically reacting the passivated edges with a chemical compound. The method further includes forming a molecular brush at the passivated edges in response to the chemical reaction to define a second diameter that is less than the initial diameter of the at least one pore.
    Type: Grant
    Filed: August 14, 2013
    Date of Patent: September 16, 2014
    Assignee: International Business Machines Corporation
    Inventors: Ali Afzali-Ardakani, Ahmed A. Maarouf, Glenn J. Martyna
  • Publication number: 20140254011
    Abstract: A wire grid polarizer formed as a self-assembled coating on a substrate surface. Metal or other conductive nanowires are coated with a transparent dielectric material having a thickness approximately equal to one-half of the desired WGP wire spacing or pitch. A suspension of coated nanowires in a chromonic liquid crystal is shear-coated onto an aligned substrate and dried. The chromonic liquid crystal, a solution of dye molecules and water, forms an orderly structure and induces the nanowires to align with their longitudinal axes parallel to the shear direction and/or alignment direction. The polarizer has a minimum polarizing wavelength determined by an average lateral spacing of nanowire segments. The polarizer has a transmissivity and a contrast ratio determined by the width of the nanowire segments.
    Type: Application
    Filed: March 10, 2014
    Publication date: September 11, 2014
    Inventors: Wil McCarthy, Wilder Iglesias, Christopher M. Caldwell
  • Patent number: 8828488
    Abstract: To provide a method for producing a thin film consisting of nanosheet monolayer film(s) and use of the thin film obtained thereby. The method for producing a thin film consisting of nanosheet monolayer film(s) by a spin coat method according to the invention comprises a step for preparing an organic solvent sol formed by allowing nanosheets obtained by the exfoliation of an inorganic layered compound to be dispersed in an organic solvent; and a step for dropping the organic solvent sol onto a substrate and rotating the substrate using a spin coater. Preferably, the nanosheet size, the organic solvent sol concentration and the spin coater rotation speed are controlled.
    Type: Grant
    Filed: August 22, 2012
    Date of Patent: September 9, 2014
    Assignee: National Institute For Materials Science
    Inventors: Takayoshi Sasaki, Kazuko Saruwatari, Kazuaki Matsuba, Kousyo Akatsuka, Yasuo Ebina, Minoru Osada
  • Publication number: 20140247226
    Abstract: The present disclosure relates to touch technology, and more particularly to a touch device and a method of fabricating the same. The disclosure provides a touch device comprising a protective cover having a sensing area and a peripheral area surrounding the sensing area; a first decoration layer disposed on the peripheral area; a sensing electrode layer comprising a sensing portion disposed on the sensing area and an extension portion extending from the sensing area to the first decoration layer; a second decoration layer disposed on the first decoration layer; a signal line formed on the second decoration layer and connected to the extension portion of the sensing electrode layer. By the design of the foregoing first and second decoration layers, the broken state or interruption of the sensing electrode layer can be prevented. In addition, the disclosure also provides the fabricating method for the foregoing touch device.
    Type: Application
    Filed: March 1, 2013
    Publication date: September 4, 2014
    Inventors: CHIEN-TAI CHIU, Yu-Xun Su, Weijie Huang, Qingwen Hu
  • Publication number: 20140242299
    Abstract: A method for injecting a corrosion inhibitor injecting an oxidant and an anticorrosive agent-pH adjusting agent complex including an anticorrosive agent and a pH adjusting agent adsorbed on a surface of the anticorrosive agent into high temperature water in contact with a surface of a metal structural material and irradiating the high temperature water with a radioactive ray or an ultraviolet ray, wherein the anticorrosive agent of the anticorrosive agent-pH adjusting agent complex has, on the surface of the anticorrosive agent, an active site where the pH adjusting agent reacts with the oxidant, and the pH adjusting agent present on the surface of the anticorrosive agent of the anticorrosive agent-pH adjusting agent complex and/or in the high temperature water is oxidized with the oxidant by the irradiation with the radioactive ray or the ultraviolet ray to change pH adjusting ability of the pH adjusting agent and shift a pH of the high temperature water to a neutral side, and thereby deposition of the antic
    Type: Application
    Filed: September 13, 2012
    Publication date: August 28, 2014
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Masato Okamura, Tetsuo Oosato, Kazuo Murakami, Seiji Yamamoto, Hiroyuki Arai, Hidehiro Urata, Hajime Hirasawa, Osamu Shibasaki, Koji Negishi
  • Publication number: 20140234555
    Abstract: A method of masking part of a surface of a wall of a gas turbine component including at least one area having cooling holes defined therein, the method including applying a viscous curable masking compound to the part of the surface over an entirety of each of the at least one area, including blocking access to the cooling holes from the surface by applying the masking compound over the cooling holes without completely filling the cooling holes with the masking compound, and forming a respective solid masking element completely covering each of the at least one area and the cooling holes defined therein by curing the masking compound.
    Type: Application
    Filed: February 21, 2013
    Publication date: August 21, 2014
    Applicant: PRATT & WHITNEY CANADA CORP.
    Inventor: Phillippe SAINT-JACQUES
  • Patent number: 8808810
    Abstract: Certain example embodiments of this invention relate to the use of graphene as a transparent conductive coating (TCC). A substrate having a surface to be coated is provided. A self-assembled monolayer (SAM) template is disposed on the surface to be coated. A precursor comprising a precursor molecule is provided, with the precursor molecule being a polycyclic aromatic hydrocarbon (PAH) and discotic molecule. The precursor is dissolved to form a solution. The solution is applied to the substrate having the SAM template disposed thereon. The precursor molecule is photochemically attached to the SAM template. The substrate is heated to at least 450 degrees C. to form a graphene-inclusive film. Advantageously, the graphene-inclusive film may be provided directly on the substrate, e.g., without the need for a liftoff process.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: August 19, 2014
    Assignee: Guardian Industries Corp.
    Inventor: Vijayen S. Veerasamy
  • Publication number: 20140228796
    Abstract: A method of applying structural elements to an absorbent article is disclosed. The absorbent article includes a top sheet and a back sheet. The expandable ink is applied to the top sheet, and the expandable ink is activated to obtain three-dimensional structural elements on the top sheet. An absorbent article is disclosed and includes a top sheet provided with structural elements. The structural elements consist of expandable ink that has been applied to the top sheet and has been subsequently activated to form three-dimensional structural elements.
    Type: Application
    Filed: October 5, 2011
    Publication date: August 14, 2014
    Applicant: SCA Hygiene Products AB
    Inventors: Angelica Burvall, Solgun Drevik
  • Publication number: 20140227460
    Abstract: Methods for performing ion beam deposition in a manner that substantially reduces or substantially eliminates the inboard-outboard asymmetry problem are disclosed. The method includes selecting an optimal deposition plume on test substrates and determining whether the optimal deposition plume is directed more toward the top or the bottom of a test substrate. If the optimal deposition plume is directed more toward the top of the test substrate, the production substrate is tilted negatively during production processing. If the optimal deposition plume is directed more toward the bottom of the test substrate, the production substrate is tilted positively during production processing.
    Type: Application
    Filed: February 12, 2013
    Publication date: August 14, 2014
    Inventor: Hariharakeshava Sarpangala Hegde
  • Publication number: 20140227459
    Abstract: A method for treating a carbonaceous material comprising heating a carbonaceous material to form a mixture of the carbonaceous material and a tar; cooling the mixture of the carbonaceous material and the tar; and coating a surface of the carbonaceous material with the tar to form a tar-coated carbonaceous material, and a system related thereto.
    Type: Application
    Filed: February 11, 2013
    Publication date: August 14, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Annavarapu Vijay Bharat Sastri, Richard Anthony DePuy, Sudharsanam Krishnamachari, Vijayalakshmi Shah, Ankur Verma
  • Patent number: 8802185
    Abstract: An object is to provide a deposition method for smoothly obtaining desired pattern shapes of material layers and a method for manufacturing a light-emitting device while throughput is improved when a plurality of different material layers is stacked on a substrate. A material layer is selectively formed in advance in a position overlapped with a light absorption layer over a first substrate by pump feeding. Three kinds of light-emitting layers are deposited on one deposition substrate. This first substrate and a second substrate that is to be a deposition target substrate are arranged to face each other, and the light absorption layer is heated by being irradiated with light, whereby a film is deposited on the second substrate. Three kinds of light-emitting layers can be deposited with positional accuracy by performing only one position alignment before light irradiation.
    Type: Grant
    Filed: May 27, 2009
    Date of Patent: August 12, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Koichiro Tanaka, Hisao Ikeda, Satoshi Seo
  • Publication number: 20140220235
    Abstract: A luminescent nanocomposite comprising functionalized graphene and a luminescent moiety, its fabrication, and uses are described. The luminescent moiety is anchored non-covalently to the functionalized graphene. Luminescence properties of the nanocomposite may be modulated by choosing appropriate luminescent moieties such as native lactoferrin, native lactoferrin protected gold clusters, and so forth. Mechanical properties of the nanocomposite may be modulated by adding a biopolymer such as Chitosan. The nanocomposite may be used as a luminescent ink for encoding information, or a luminescent film for tagging articles of manufacture such as electronic waste components.
    Type: Application
    Filed: August 7, 2012
    Publication date: August 7, 2014
    Applicant: INDIAN INSTITUTE OF TECHNOLOGY MADRAS
    Inventors: Pradeep Thalappil, Sreeprasad Theruvakkattil Sreenivasan, Shihabudheen Mundampra Maliyekkal
  • Publication number: 20140190834
    Abstract: A plated component and a plating process are disclosed. The plating process includes applying a material to a region of a component, the material being selected from the group consisting of nickel, cobalt, chromium, iron, aluminum, or a combination thereof. The region includes a single crystal microstructure, includes a directionally solidified microstructure, is substantially devoid of equiaxed microstructure, or a combination thereof. The applying includes electroplating, electroless plating, or the electroplating and the electroless plating. The plated component includes an electroplated region, an intermediate layer on the electroplated region, and an overlay coating on the intermediate layer.
    Type: Application
    Filed: January 7, 2013
    Publication date: July 10, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Eklavya CALLA, Krishnamurthy ANAND, Chakrakody SHASTRY
  • Publication number: 20140186619
    Abstract: A coated article includes a substrate and an anti-fingerprint film formed on the substrate. The anti-fingerprint film is a mixture layer of tin and polyformaldehyde, a mixture layer of indium and polyformaldehyde, or a polyformaldehyde layer. The anti-fingerprint film has an excellent abrasion resistance. A method for making the coated article is also described.
    Type: Application
    Filed: April 19, 2013
    Publication date: July 3, 2014
    Applicants: FIH (HONG KONG) LIMITED, SHENZHEN FUTAIHONG PRECISION INDUSTRY CO., LTD.
    Inventors: CHUN-JIE ZHANG, XU LIU
  • Publication number: 20140185284
    Abstract: Disclosed herein are transparent color displays with nanoparticles made with nonlinear materials and/or designed to exhibit optical resonances. These nanoparticles are embedded in or hosted on a transparent substrate, such as a flexible piece of clear plastic or acrylic. Illuminating the nanoparticles with invisible light (e.g., infrared or ultraviolet light) causes them to emit visible light. For example, a rare-earth doped nanoparticle may emit visible light when illuminated simultaneoulsy with a first infrared beam at a first wavelength ?1 and a second infrared beam at a second wavelength ?2. And a frequency-doubling nanoparticle may emit visible light when illuminated with a single infrared beam at the nanoparticle's resonant frequency. Selectively addressing these nanoparticles with appropiately selected pump beams yields visible light emitted from the nanoparticles hosted by the transparent substrate in a desired pattern.
    Type: Application
    Filed: December 30, 2013
    Publication date: July 3, 2014
    Inventors: CHIA WEI HSU, WENJUN QIU, BO ZHEN, OFER SHAPIRA, MARIN SOLJACIC
  • Publication number: 20140184963
    Abstract: A display device includes a first substrate, a first alignment layer disposed on the first substrate, a second substrate, a second alignment layer disposed on the second substrate, and a liquid crystal layer disposed between the first and second alignment layers and having liquid crystal molecules. At least one of the first and second alignment layers includes an initial alignment layer and a pretilting layer including a self-assembled monolayer disposed on the initial alignment layer.
    Type: Application
    Filed: April 18, 2013
    Publication date: July 3, 2014
    Applicant: Samsung Display Co., Ltd.
    Inventors: Hyosik Kim, Su Jeong Kim, Hokil Oh, Hoon Kim, Kichul Shin, Jae-Hoon Jung
  • Patent number: 8765507
    Abstract: A method for manufacturing a Group III nitride semiconductor of the present invention includes a sputtering step of forming a single-crystalline Group III nitride semiconductor on a substrate by a reactive sputtering method in a chamber in which a substrate and a Ga element-containing target are disposed, wherein said sputtering step includes respective substeps of: a first sputtering step of performing a film formation of the Group III nitride semiconductor while setting the temperature of the substrate to a temperature T1; and a second sputtering step of continuing the film formation of the Group III nitride semiconductor while lowering the temperature of the substrate to a temperature T2 which is lower than the temperature T1.
    Type: Grant
    Filed: November 21, 2008
    Date of Patent: July 1, 2014
    Assignee: Toyoda Gosei Co., Ltd.
    Inventors: Yasunori Yokoyama, Hisayuki Miki
  • Publication number: 20140178713
    Abstract: A magnetic read sensor having reduced hard bias free layer spacing and improved insulation robustness between the hard bias layers and the shield and sensor. The read sensor has a novel bi-layer insulation layer that can be made very thin while also providing good electrical insulation to prevent sense current shunting. The bi-layer insulation layer can be made by a process that provides improved sensor performance.
    Type: Application
    Filed: December 21, 2012
    Publication date: June 26, 2014
    Applicant: HGST Netherlands B.V.
    Inventors: Quang Le, Simon H. Liao, Guangli Liu