Electromagnetic Or Particulate Radiation Utilized (e.g., Ir, Uv, X-ray, Gamma Ray, Actinic, Microwave, Radio Wave, Atomic Particle; I.e., Alpha Ray, Beta Ray, Electron, Etc.) Patents (Class 427/595)
  • Patent number: 12226952
    Abstract: A system and method for providing centrifuge-based additive object manufacturing includes a rotating drum containing a photopolymer material that solidifies when irradiated by a light source, the photopolymer material spreads evenly over an item being manufactured when the rotating drum is in motion, a light source module emitting a light capable of solidifying the photopolymer material, a set of platform actuator elements coupled to a plurality of perforated platforms for controlling a position of the plurality of perforated platforms within the rotating drum while in operation, and a photopolymer material delivery system for adding a controlled amount of the photopolymer material into the rotating drum. The light source module moves inside the rotating drum and selectively emits its light solidifying the part of the layer above the plurality of perforated platforms in the areas crossing the object currently being manufactured.
    Type: Grant
    Filed: September 9, 2022
    Date of Patent: February 18, 2025
    Inventor: Anton Zavoyskikh
  • Patent number: 12208387
    Abstract: A device for selectively capturing mycobacteria comprises a substrate and a capture polymer layer of poly-diallyldimethyl ammonium chloride, wherein the capture polymer layer is covalently linked onto the substrate via a UV-initiated polymerization reaction of a solution comprising diallyldimethyl ammonium chloride and a photoinitiator in water purged of dissolved oxygen, and wherein the UV exposure time is 30 seconds to 4 minutes at a power density of about 20 to about 25 mW/cm2. A kit can comprise the device. A microfluidic chip comprises at least a portion of at least one channel sidewall coated with a capture polymer layer of poly-diallyldimethyl ammonium chloride. A method for manufacturing the device includes plasma treating a substrate, providing a solution comprising diallyldimethyl ammonium chloride and a photoinitiator in water purged of dissolved oxygen, and coating the plasma-treated substrate via a UV-initiated polymerization reaction.
    Type: Grant
    Filed: January 22, 2022
    Date of Patent: January 28, 2025
    Assignee: Drizzle Health LLC
    Inventors: Digvijay Singh, Bonolo Mathekga, Yukari Manabe, Soumyadipta Acharya, Hai Quan Mao
  • Patent number: 12186979
    Abstract: A layer-by layer method for additive manufacturing that includes: photocuring a first volume of resin to form a layer of a build at an upper surface of a separation membrane laminated over a build window; injecting a fluid into an interstitial region between the separation membrane and the build window; retracting the build from the build window; evacuating the fluid from the interstitial region; and photocuring a second volume of liquid resin to form a subsequent layer of the build between an upper surface of a separation membrane and the previous layer of the build.
    Type: Grant
    Filed: April 11, 2023
    Date of Patent: January 7, 2025
    Assignee: Stratasys, Inc.
    Inventors: Christopher Prucha, Joel Ong
  • Patent number: 12129396
    Abstract: The present invention relates to polysilazane compositions, in particular to a composition, the use of said composition for coating a substrate, and a substrate comprising a coating made from said composition.
    Type: Grant
    Filed: July 7, 2022
    Date of Patent: October 29, 2024
    Assignee: NANIZE AS
    Inventors: Kingsley Odinaka Iwu, Nguyen Hong Quang, Vivek Kumar Singh, Anisa Yaseen
  • Patent number: 12125676
    Abstract: A plasma processing apparatus includes: a chamber; first and second matching circuits; a first RF generator generating a first RF pulsed signal including a plurality of first pulse cycles in which each cycle includes first, second, and third periods, and the first RF pulsed signal has first, second, and third power levels in first, second, and third periods, respectively; a second RF generator generating a second RF pulsed signal including a plurality of second pulse cycles in which each cycle includes fourth and fifth periods, and the second RF pulsed signal has fourth and fifth power levels in fourth and fifth periods, respectively; and a third RF generator generating a third RF pulsed signal including a plurality of third pulse cycles in which each cycle includes sixth and seventh periods, and the third RF pulsed signal has sixth and seventh power levels in sixth and seventh periods, respectively.
    Type: Grant
    Filed: July 21, 2023
    Date of Patent: October 22, 2024
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Takahiro Takeuchi, Ken Kobayashi
  • Patent number: 12118427
    Abstract: An article having an invisible infrared pattern is disclosed. The article includes at least one infrared pattern printed onto a surface. The infrared pattern includes regions of high absorption and high reflection for a plurality of wavelengths of infrared radiation ranging between 700 and 2000 nm. A coating is overlaid over the infrared pattern. The coating is made of a material and has a thickness that is penetrable by infrared radiation and that has an average opacity of at least 20 for light in the visible range.
    Type: Grant
    Filed: January 26, 2021
    Date of Patent: October 15, 2024
    Assignee: NEC Corporation Of America
    Inventor: Tsvi Lev
  • Patent number: 12092908
    Abstract: The invention relates to an optical article comprising a substrate having at least one main face successively coated with a layer comprising chromium, silicon and oxygen, a monolayer sub-layer having a thickness higher than or equal to 100 nm, a multilayer interferential coating comprising a stack of at least one high refractive index layer having a refractive index higher than 1.55 and at least one low refractive index layer having a refractive index of 1.55 or less, wherein the ratio (I) is higher than or equal to 1.5, and the optical article has a Bayer value determined in accordance with the ASTM F735-81 standard higher than or equal to 7.
    Type: Grant
    Filed: October 17, 2019
    Date of Patent: September 17, 2024
    Assignee: Essilor International
    Inventors: Benoit Emprin, Nicolas Maitre, Sébastien Chiarotto
  • Patent number: 12018163
    Abstract: The invention relates to a 2K coating formulation that is printed without a mask using a valve jet printer.
    Type: Grant
    Filed: November 10, 2020
    Date of Patent: June 25, 2024
    Assignee: Covestro Intellectual Property GmbH & Co. KG
    Inventors: Dirk Achten, Joerg Tillack, Fabian Schuster, Ann-Christin Bijlard-Jung
  • Patent number: 12022598
    Abstract: A detection and charge neutralization device comprises a vacuum chamber, an electrical optical system, and a charge neutralization member. The electrical optical system and the charge neutralization member are disposed inside the vacuum chamber. The electrical optical system, outputs a charged particle beam to an observation position of the vacuum chamber. The charge neutralization member provides a focused vacuum ultraviolet light to the observation position to neutralize the accumulating charges.
    Type: Grant
    Filed: June 30, 2022
    Date of Patent: June 25, 2024
    Assignee: TAIWAN ELECTRON MICROSCOPE INSTRUMENT CORPORATION
    Inventors: Hsu-Wei Chen, Hsin-Chi Cheng, Tsu-Wei Huang, Ting-Yu Hsieh
  • Patent number: 11960950
    Abstract: In accordance with one aspect, the present disclosure is directed to methods, systems and machine readable media including computer programs to track information for an article of manufacture. An illustrative method includes providing a blank tag for the article of manufacture, and forming a marked tag from the blank tag by forming at least one character on the blank tag using a light source, such as a laser. The at least one character can be encoded with information relating to the article of manufacture.
    Type: Grant
    Filed: July 7, 2022
    Date of Patent: April 16, 2024
    Assignee: BELL LUMBER & POLE COMPANY
    Inventors: Brett Franks, Joshua Schindeldecker
  • Patent number: 11901172
    Abstract: A method for the surface treatment of a substrate surface of a substrate includes arranging the substrate surface in a process chamber, bombarding the substrate surface with an ion beam, generated by an ion beam source and aimed at the substrate surface, to remove impurities from the substrate surface, whereby the ion beam has a first component, and introducing a second component into the process chamber to bind the removed impurities. A device for the surface treatment of a substrate surface of a substrate includes a process chamber for receiving the substrate, an ion beam source for generating an ion beam that has a first component and is aimed at the substrate surface to remove impurities from the substrate surface, and means to introduce a second component into the process chamber to bind the removed impurities.
    Type: Grant
    Filed: November 5, 2020
    Date of Patent: February 13, 2024
    Assignee: EV Group E. Thallner GmbH
    Inventor: Nasser Razek
  • Patent number: 11774857
    Abstract: An immersion lithography apparatus controller configured to control a positioner to move a support table to follow an exposure route and to control a liquid confinement structure, the controller configured to: predict whether liquid will be lost from an immersion space during at least one motion of the route in which an edge of the object passes under an edge of the immersion space, and if liquid loss from the immersion space is predicted, modify the fluid flow such that a first fluid flow rate into or out of an opening at a leading edge of the liquid confinement structure is different to a second fluid flow rate into or out of an opening at a trailing edge of the liquid confinement structure during the motion of predicted liquid loss or a motion of the route subsequent to the motion of predicted liquid loss.
    Type: Grant
    Filed: June 13, 2022
    Date of Patent: October 3, 2023
    Assignee: ASML NETHERLANDS B.V.
    Inventors: Erik Henricus Egidius Catharina Eummelen, Frank Debougnoux, Koen Cuypers, Han Henricus Aldegonda Lempens, Theodorus Wilhelmus Polet, Jorge Alberto Vieyra Salas, John Maria Bombeeck, Johannes Cornelis Paulus Melman, Giovanni Luca Gattobigio
  • Patent number: 11760936
    Abstract: An object of the present invention is to provide a flame-retardant woody material having low hygroscopicity and excellent flame-retardant performance, and a flame retardant for woody materials therefor. The present invention relates to a flame retardant for woody materials comprising an organic phosphorus compound represented by the following formula (1) and a nitrogen compound represented by the following formula (2); and also relates to a flame-retardant woody material comprising a woody material fireproofed with the flame retardant for woody materials: wherein in the formula (1), R1 and R2 are the same or different, and each represents a hydrogen atom, hydroxy, or the like; n is an integer of 1 to 4; X1 and X2 are the same or different, and each represents a hydrogen atom, hydroxy, or the like; and wherein in the formula (2), R3, R4, R5, R6, and R7 are the same or different, and each represents a hydrogen atom, methyl, or the like.
    Type: Grant
    Filed: May 30, 2018
    Date of Patent: September 19, 2023
    Assignee: Daihachi Chemical Industry Co., Ltd.
    Inventor: Mina Ikenosako
  • Patent number: 11731197
    Abstract: In one aspect, the present disclosure pertains to methods of making various noble metal nanoprisms, e.g., gold nanoprisms. In various aspects, the methods can comprise incubating, under dark conditions, a growth solution comprising: (a) a plurality of gold seed structures; (b) a gold precursor, and (c) a photocatalytic intermediary, such that during the incubating step multiply-twinned gold seed structures in the growth solution are preferentially enlarged. The disclosed methods can comprise separating the multiply-twinned gold seed structures from the growth solution based upon the size of the gold seed structures to produce an enriched growth solution. In some aspects, the methods comprise irradiating the enriched growth solution to produce the gold nanoprisms. In some aspects, the disclosed nanoprisms comprise silver.
    Type: Grant
    Filed: March 14, 2022
    Date of Patent: August 22, 2023
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Wei David Wei, Yueming Zhai
  • Patent number: 11703468
    Abstract: Method and system are disclosed for determining sample composition from spectral data acquired by a charged particle microscopy system. Chemical elements in a sample are identified by processing the spectral data with a trained neural network (NN). If the identified chemical elements not matching with a known elemental composition of the sample, the trained NN is retrained with the spectral data and the known elemental composition of the sample. The retrained NN can then be used to identify chemical elements within other samples.
    Type: Grant
    Filed: July 1, 2021
    Date of Patent: July 18, 2023
    Assignee: FEI Company
    Inventors: Oleksii Kaplenko, Jan Klusá{hacek over (c)}ek, Tomá{hacek over (s)} Tůma, Mykola Kaplenko, Ond{hacek over (r)}ej Machek
  • Patent number: 11614318
    Abstract: An atomic beam is irradiated with a first laser beam, a second laser beam, and a third laser beam. The first laser beam and the third laser beam each have a wavelength corresponding to a transition between a ground state and a first excited state. The second laser beam has a wavelength corresponding to a transition between the ground state and a second excited state. First, atoms each having a smaller velocity component than a predetermined velocity in a direction orthogonal to the traveling direction of the atomic beam are changed from the ground state to the first excited state by the first laser beam. Subsequently, a momentum is provided for individual atoms in the ground state by the second laser beam, which removes the atoms from the atomic beam. Finally, atoms in the first excited state are returned from the first excited state to the ground state by the third laser beam.
    Type: Grant
    Filed: October 9, 2019
    Date of Patent: March 28, 2023
    Assignees: JAPAN AVIATION ELECTRONICS INDUSTRY, LIMITED, TOKYO INSTITUTE OF TECHNOLOGY
    Inventors: Mikio Kozuma, Ryotaro Inoue, Toshiyuki Hosoya, Atsushi Tanaka
  • Patent number: 11607724
    Abstract: A three-dimensional (3D) printer includes an ejector and a heating element configured to heat a solid printing material in the ejector, thereby causing the solid printing material to change to a liquid printing material within the ejector. The 3D printer also includes a coil wrapped at least partially around the ejector. The 3D printer also includes a power source configured to supply one or more pulses of power to the coil, which cause one or more drops of the liquid printing material to flow out of the ejector through a nozzle of the ejector. The 3D printer also includes a gas-controlling device configured to control a gas in the 3D printer.
    Type: Grant
    Filed: August 12, 2020
    Date of Patent: March 21, 2023
    Assignee: XEROX CORPORATION
    Inventors: Viktor Sukhotskiy, David A. Mantell, Palghat S. Ramesh, Kareem Tawil, Alexander J. Fioravanti, Dinesh Krishna Kumar Jayabal
  • Patent number: 11584683
    Abstract: A method of fabricating a metal thin film-on-glass structure. A glass substrate, on a top surface of which a layer is formed, is prepared. A local area of the glass substrate is etched from a bottom of the glass substrate to expose the layer downwardly, thereby forming an exposed area of the layer. The layer is a metal thin film. The etching includes first-etching the glass substrate to a depth less than a thickness of the glass substrate using a first etching solution containing hydrofluoric acid and at least one of nitric acid and sulfuric acid, resulting in a first-etched portion of the glass substrate; and second-etching the first-etched portion of the glass substrate using an etching solution containing hydrofluoric acid without nitric acid or sulfuric acid, so that the layer is exposed downwardly, whereby the metal thin film is supported by a remaining portion of the glass substrate.
    Type: Grant
    Filed: March 9, 2018
    Date of Patent: February 21, 2023
    Assignee: Corning Incorporated
    Inventors: Seo-Yeong Cho, Kyung-jin Lee, Yoon-seuk Oh, Jun Ro Yoon
  • Patent number: 11571853
    Abstract: A three-dimensional printer includes a light engine, a support plate, and a resin vessel. The light engine is configured to selectively harden photocurable resin at a build plane in the resin vessel. The support plate is formed from cast metal and is in a fixed vertical relation to the light engine. The support plate includes an upper side with an upstanding ridge. The upstanding ridge has an upper datum surface that has been machined to a controlled height. The support plate also includes a separately formed ring disposed upon the upper datum surface. The separately formed ring defines a crest of the upstanding ridge. The resin vessel includes a transparent sheet that defines a lower bound for resin contained in the resin vessel. The transparent sheet impinges upon the crest to define a vertical location of the build plane in relation to the light engine.
    Type: Grant
    Filed: December 3, 2019
    Date of Patent: February 7, 2023
    Assignee: 3D SYSTEMS, INC.
    Inventor: David Sabo
  • Patent number: 11567284
    Abstract: The method provided by the present disclosure is for performing curing during manufacturing of an optical fibre ribbon. The method of the present disclosure performs a first stage of curing and a second stage of curing 200 on a matrix material of the optical fibre ribbon. The first stage of curing is performed using a ribbon die and one or more ultraviolet light emitting diode (UV LED) units. Further, the second stage of curing is performed using a source of the one or more ultraviolet lamps (UV lamps) in an UV chamber.
    Type: Grant
    Filed: February 26, 2020
    Date of Patent: January 31, 2023
    Inventors: Hemanth Kondapalli, Vikash Shukla, Atulkumar Mishra, Kishore Chandra Sahoo
  • Patent number: 11521883
    Abstract: The present disclosure provides a substrate processing apparatus including at least one input/output chamber. The load lock device includes a base, a guide rail, a platform and an optical measuring module. The guide rail is connected to the base. The platform, carrying a cassette for holding a batch of spaced substrates, is movably disposed on the guide rail. The optical measuring module is configured to acquire an actual moving distance traveled by the platform along the guide rail based on at least one optical signal reflected from the platform.
    Type: Grant
    Filed: March 3, 2021
    Date of Patent: December 6, 2022
    Assignee: NANYA TECHNOLOGY CORPORATION
    Inventor: Chia-Fu Chen
  • Patent number: 11453088
    Abstract: Process for formation of composite coatings and composite coatings formed thereby. A process for formation of a metal-matrix composite coating on a surface of a substrate is provided. The substrate is an aluminum alloy. The metal-matrix composite coating is formed on the substrate through laser deposition using filler materials comprising aluminum, silicon and graphite. The particles forming the metal-matrix composite coating are formed in-situ from the filler materials. A metal-matrix composite coating obtained by the laser deposition process with in-situ formation of particles is also provided.
    Type: Grant
    Filed: September 18, 2019
    Date of Patent: September 27, 2022
    Inventor: Zheng James Chen
  • Patent number: 11390948
    Abstract: A film forming apparatus for performing a predetermine film forming process on a substrate mounted on an upper surface of a rotary table installed within a process vessel while rotating the rotary table and heating the substrate by a heating part, includes: a contact type first temperature measuring part configured to measure a temperature of the heating part; a non-contact type second temperature measuring part configured to measure a temperature of the substrate; and a control part configured to control a power supplied to the heating part based on at least one among a first measurement value measured by the first temperature measuring part and a second measurement value measured by the second temperature measuring part. The control part changes a method for controlling the power when the predetermined film forming process is performed on the substrate and when the substrate is loaded into or unloaded from the process vessel.
    Type: Grant
    Filed: May 30, 2019
    Date of Patent: July 19, 2022
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Masato Yonezawa, Shigehiro Miura, Hiroyuki Akama, Koji Yoshii
  • Patent number: 11067343
    Abstract: A thermal compensation layer includes a metal inverse opal (MIO) layer that includes a plurality of core-shell phase change (PC) particles encapsulated within a metal of the MIO layer. Each of the core-shell PC particles includes a core that includes a PCM having a PC temperature in a range of from 100° C. to 250° C., and a shell that includes a shell material having a melt temperature greater than the PC temperature of the PCM. A power electronics assembly includes a substrate having a thermal compensation layer formed proximate a surface of the substrate, the thermal compensation layer comprising an MIO layer that includes a plurality of core-shell PC particles encapsulated within a metal of the MIO layer. The power electronics assembly further includes an electronic device bonded to the thermal compensation layer at a first surface of the electronic device.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: July 20, 2021
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Shailesh N. Joshi, Ercan Mehmet Dede
  • Patent number: 11027145
    Abstract: A method using a receiving substrate and a target substrate having a photon-transparent support, a photon absorbent interlayer coated on the support, and a tissue-implantable particle on top of the interlayer opposite to the support. A source of photon energy is directed through the transparent support so that the photon energy strikes the interlayer. A portion of the interlayer is energized by absorption of the photon energy. The energized interlayer causes a transfer of the particle across a gap between the target substrate and the receiving substrate and embedding of the particle into the receiving substrate.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: June 8, 2021
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Bradley R. Ringeisen, Peter K. Wu
  • Patent number: 10895784
    Abstract: Soft-imprint alignment processes for patterning liquid crystal polymer layers via contact with a reusable alignment template are described herein. An example soft-imprint alignment process includes contacting a liquid crystal polymer layer with a reusable alignment template that has a desired surface alignment pattern such that the liquid crystal molecules of the liquid crystal polymer are aligned to the surface alignment pattern via chemical, steric, or other intermolecular interaction. The patterned liquid crystal polymer layer may then be polymerized and separated from the reusable alignment template. The process can be repeated many times. The reusable alignment template may include a photo-alignment layer that does not comprise surface relief structures that correspond to the surface alignment pattern and a release layer above this photo-alignment layer. A reusable alignment template and methods of fabricating the same are also disclosed.
    Type: Grant
    Filed: December 13, 2017
    Date of Patent: January 19, 2021
    Assignee: Magic Leap, Inc.
    Inventors: Chulwoo Oh, Chieh Chang, Sharad D. Bhagat, Michael Anthony Klug
  • Patent number: 10767106
    Abstract: Disclosed belongs to the technical field of heavy oil extraction, and specifically relates to a viscosity reduction system for microwave extraction of heavy oil and a preparation method thereof. The viscosity reduction system is a magnetic graphene oxide. The viscosity reduction system added to heavy oil has a significant viscosity reduction effect after microwave treatment. The viscosity reduction system exhibits lipophilicity and can be adsorbed on oil droplets, so that the thermal effect of microwaves assisted by the viscosity reduction system mainly acts on a reservoir, which reduces heat loss during heat transfer. At the same time, the viscosity reduction system is magnetic, which helps directional regulation and separation under the action of a magnetic field.
    Type: Grant
    Filed: March 9, 2020
    Date of Patent: September 8, 2020
    Assignee: CHINA UNIVERSITY OF PETROLEUM
    Inventors: Zhaomin Li, Zhengxiao Xu, Teng Lu, Mingxuan Wu, Xinru Zhao, Aiwen Jing
  • Patent number: 10711351
    Abstract: An article includes an electroless deposited aluminum layer. The aluminum layer is deposited in an electroless plating composition. The composition includes an aluminum ionic liquid, a reducing agent, and an additive selected from the group consisting of a catalyst, an alloying element, and a combination thereof.
    Type: Grant
    Filed: July 31, 2017
    Date of Patent: July 14, 2020
    Assignee: HRL Laboratories, LLC
    Inventors: John H. Martin, Joanna A. Kolodziejska, John J. Vajo, Jason A. Graetz, Christopher S. Roper
  • Patent number: 10689759
    Abstract: A film forming apparatus includes a rotation shaft which is connected to a rotation stage. The rotation stage is accommodated in an inner space of a susceptor, holds a plurality of workpieces, and rotates the workpieces around the central axis. A gas flow along a direction orthogonal to the central axis from an outside of the rotation stage is formed in the susceptor. A wall portion of the susceptor facing a lower surface of the rotation stage includes an intermediate area defined by a first circle larger than a minimum distance between the central axis and the plurality of placing areas and a second circle smaller than a maximum distance between the central axis and the plurality of placing areas. One or more of through holes are formed in the intermediate area.
    Type: Grant
    Filed: November 8, 2018
    Date of Patent: June 23, 2020
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Masayuki Harashima, Hirokatsu Kobayashi
  • Patent number: 10627677
    Abstract: Soft-imprint alignment processes for patterning liquid crystal polymer layers via contact with a reusable alignment template are described herein. An example soft-imprint alignment process includes contacting a liquid crystal polymer layer with a reusable alignment template that has a desired surface alignment pattern such that the liquid crystal molecules of the liquid crystal polymer are aligned to the surface alignment pattern via chemical, steric, or other intermolecular interaction. The patterned liquid crystal polymer layer may then be polymerized and separated from the reusable alignment template. The process can be repeated many times. The reusable alignment template may include a photo-alignment layer that does not comprise surface relief structures that correspond to the surface alignment pattern and a release layer above this photo-alignment layer. A reusable alignment template and methods of fabricating the same are also disclosed.
    Type: Grant
    Filed: December 13, 2017
    Date of Patent: April 21, 2020
    Assignee: Magic Leap, Inc.
    Inventors: Chulwoo Oh, Chieh Chang, Sharad D. Bhagat, Michael Anthony Klug
  • Patent number: 10325789
    Abstract: Embodiments described herein relate to apparatus and methods for thermally processing substrates. In one embodiment, a processing system includes a factory interface coupled to a plurality of load lock chambers. The plurality of load lock chambers are coupled to a transfer chamber which houses a robot. A thermal processing chamber is coupled to the transfer chamber and the robot is configured to transfer substrate between the load lock chambers and the thermal processing chamber. A multi-substrate support, which is disposed within the thermal processing chamber, rotates to facilitate efficient substrate thermal processing. A gas curtain apparatus disposed in a port plenum provides environment separation between the processing chamber and the transfer chamber while enabling efficient substrate transfer between the thermal processing chamber and the transfer chamber.
    Type: Grant
    Filed: November 18, 2016
    Date of Patent: June 18, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventor: Jacob Newman
  • Patent number: 10273574
    Abstract: A continuous method for manufacturing graphene films using a metal substrate, wherein a first surface of the metal substrate is heated such that a top layer of the first surface melts to form a molten metal layer, and devices for carrying out the same.
    Type: Grant
    Filed: March 13, 2017
    Date of Patent: April 30, 2019
    Assignee: HONDA MOTOR CO., LTD.
    Inventor: Avetik Harutyunyan
  • Patent number: 10099422
    Abstract: A method of solid free form fabrication (SFF) is disclosed. The method comprises: receiving SFF data collectively pertaining to a three-dimensional shape of the object and comprising a plurality of slice data each defining a layer of the object. The method also comprises, for each of at least a few of the layers, dispensing a building material on a receiving medium, straightening the building material, and selectively ablating the building material according to respective slice data.
    Type: Grant
    Filed: September 14, 2017
    Date of Patent: October 16, 2018
    Assignee: IO TECH GROUP LTD.
    Inventors: Michael Zenou, Ziv Gilan
  • Patent number: 10088704
    Abstract: A display device includes a substrate and a wire grid polarizer disposed on the substrate. The wire grid polarizer includes a first wire grid layer, a first middle layer, and a second wire grid layer. The first wire grid layer includes a plurality of first wire grid lines separated from each other. The first middle layer is disposed on the first wire grid layer. The first middle layer includes a first portion having a first middle layer thickness and a second portion having a second middle layer thickness thinner than the first middle layer thickness. The second middle layer thickness is thinner than a thickness of each first wire grid line. The second wire grid layer is disposed on the first middle layer and includes a plurality of second wire grid lines separated from each other. The second wire grid lines overlap the second portion of the first middle layer.
    Type: Grant
    Filed: February 21, 2017
    Date of Patent: October 2, 2018
    Assignee: Samsung Display Co., Ltd.
    Inventors: Hyun Eok Shin, Dong Min Lee, Chang Oh Jeong
  • Patent number: 10040119
    Abstract: A printer that produces objects from liquid conductive material is disclosed. In one embodiment, the print head has a chamber for containing liquid conductive material surrounded by an electromagnetic coil. A DC pulse is applied to the electromagnetic coil, resulting in a radially-inward force on the liquid conductive material. The force on the liquid conductive material in the chamber results in a drop being expelled from an orifice. In response to a series of pulses, a series of drops fall onto a platform in a programmed pattern, resulting in the formation of an object.
    Type: Grant
    Filed: March 13, 2017
    Date of Patent: August 7, 2018
    Inventors: Scott Vader, Zachary Vader
  • Patent number: 9825199
    Abstract: A laser processing system can be utilized to produce high-performance interdigitated back contact (IBC) solar cells. The laser processing system can be utilized to ablate, transfer material, and/or laser-dope or laser fire contacts. Laser ablation can be utilized to remove and pattern openings in a passivated or emitter layer. Laser transferring may then be utilized to transfer dopant and/or contact materials to the patterned openings, thereby forming an interdigitated finger pattern. The laser processing system may also be utilized to plate a conductive material on top of the transferred dopant or contact materials.
    Type: Grant
    Filed: December 28, 2016
    Date of Patent: November 21, 2017
    Assignee: NATCORE TECHNOLOGY, INC.
    Inventor: David E. Carlson
  • Patent number: 9646825
    Abstract: The invention relates to a method for fabricating a composite structure comprising a layer to be separated by irradiation, the method comprising the formation of a stack containing: a support substrate formed from a material that is at least partially transparent at a determined wavelength; a layer to be separated; and a separation layer interposed between the support substrate and the layer to be separated, the separation layer being adapted to be separated by exfoliation under the action of radiation having a wavelength corresponding to the determined wavelength. Furthermore, the method comprises, during the step for forming the composite structure, a treatment step modifying the optical properties in reflection at an interface between the support substrate and the separation layer or on an upper face of the support substrate.
    Type: Grant
    Filed: July 18, 2012
    Date of Patent: May 9, 2017
    Assignee: SOITEC
    Inventors: Christophe Figuet, Christophe Gourdel
  • Patent number: 9238220
    Abstract: A method for forming a titanium oxide film that can be formed on a surface of a base material without a heating step. In Step 0, a surface of a molded product (base material) composed of a cyclic olefin-based resin is irradiated with ultraviolet light in an air atmosphere. In Step 1, the base material is immersed in a mixed liquid of an aqueous solution of titanium chloride and a nitrite ion-containing aqueous solution. A titanium oxide film grows by repeating oxidation of a titanium ion. In Step 2, the base material is pulled out from the mixed liquid, and then washed to stop the reaction. The film thickness can be controlled by controlling this immersion time. In Step 3, the base material after washing is dried at room temperature.
    Type: Grant
    Filed: November 15, 2013
    Date of Patent: January 19, 2016
    Assignee: Ushio Denki Kabushiki Kaisha
    Inventors: Kinichi Morita, Toshikazu Kawaguchi, Katsuaki Shimazu, Tadao Kimijima
  • Patent number: 9195112
    Abstract: An electro-optic modulator for the modulation of optical radiation of a predetermined wavelength, the electro-optic modulator having at least one optical resonator in which a standing optical wave can be formed for the predetermined wavelength. In the resonator, at least two doped semiconductor sections—as seen in the longitudinal direction of the resonator —are arranged at a distance from one another, and the at least two doped semiconductor sections respectively lie locally at an intensity minimum of the standing optical wave.
    Type: Grant
    Filed: March 2, 2012
    Date of Patent: November 24, 2015
    Assignees: TECHNISCHE UNIVERSITÄT BERLIN, IHP GMBH—INNOVATIONS FOR HIGH PERFORMANCE MICROELECTRONICS
    Inventors: Stefan Meister, Aws Al-Saadi, Hans Joachim Eichler, Bulent Franke, Lars Zimmermann, Bernd Tillack
  • Patent number: 9156999
    Abstract: The present disclosure is drawn toward compositions, systems, and methods for printing of three-dimensional objects. In one embodiment, a liquid inkjettable material for 3-dimensional printing can comprise from 0.1 wt % to 10 wt % of a pigment, from 10 wt % to 90 wt % of a UV-curable polymer, and from 0.1 wt % to 70 wt % of a polymeric filler. Additionally, the liquid inkjettable material can be jettable from piezo electric inkjet printer nozzles and has acceptable decap performance measured by jetting a normal 50 picoliter ink drop within 10 electric firing pulses after the piezo electric inkjet printer nozzles have been fired and have been subsequently rested for 24 hours.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: October 13, 2015
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Hou T. Ng, Doris Chun
  • Patent number: 9120676
    Abstract: Technologies described herein are generally related to graphene production. In some examples, a system is described that may include a first container, a second container, and/or a chamber. The first container may include a first solution with a reducing agent, while the second container may include a second solution with graphene oxide. The chamber may be in operative relationship with the first and the second containers, and configured effective to receive the first and second solutions and provide reaction conditions that facilitate contact of the first and second solutions at an interfacial region sufficient to produce graphene at the interfacial region.
    Type: Grant
    Filed: March 6, 2012
    Date of Patent: September 1, 2015
    Assignee: Empire Technology Development LLC
    Inventor: Seth Adrian Miller
  • Patent number: 9090635
    Abstract: Disclosed herein are a copper organic metal, a method for preparing a copper organic metal and a copper paste. The copper organic metal is constituted to combine a copper atom, [R—CO2] and amine based ligand (L), thereby making it possible to be subjected to a low temperature sintering process and having an improved conductivity at the time of forming a conductive pattern as compared to the related art.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: July 28, 2015
    Assignee: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Kwi Jong Lee, Ji Han Kwon, Dong Hoon Kim
  • Patent number: 9087877
    Abstract: A method for forming an integrated circuit includes forming a low-k dielectric layer over a semiconductor substrate, etching the low-k dielectric layer to form an opening, forming a dielectric barrier layer covering at least sidewalls of the opening, performing a treatment to improve a wetting ability of the dielectric barrier layer, and filling the opening with a conductive material, wherein the conductive material is in contact with the dielectric barrier layer.
    Type: Grant
    Filed: October 24, 2006
    Date of Patent: July 21, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Chi Ko, Ting-Yu Shen, Keng-Chu Lin, Chia-Cheng Chou, Tien-I Bao, Shwang-Ming Jeng, Chen-Hua Yu
  • Patent number: 9034089
    Abstract: The disclosed invention relates to the use of molybdenum (VI) peroxo complex containing an amino acid, such as MoO(O2)2(GLY)(H2O), in marking applications, as well as to ink formulations comprising such complexes.
    Type: Grant
    Filed: August 12, 2011
    Date of Patent: May 19, 2015
    Assignee: Tetra Laval Holdings & Finance S.A.
    Inventors: Anthony Jarvis, Martin Walker, Adam O'Rourke, Richard Cook
  • Publication number: 20150132596
    Abstract: Provided are a heat-absorbing material having high heat resistance and high wavelength selectivity, and a process for producing the same. The heat-absorbing material includes: a heat-resistant metal having the substantially same periodic structure in the light incidence plane as the wavelength of sunlight having a specific wavelength in the wavelength regions of visible light and near-infrared rays; and a cermet formed on the light incidence plane of the heat-resistant metal. Thus, there can be achieved desirable absorption and radiation characteristics being such that absorption is performed in the visible light region meanwhile reflection is performed in the infrared region. Furthermore, the cermet does not need complicated film-formation control, and therefore, the high heat resistance can be maintained.
    Type: Application
    Filed: May 1, 2013
    Publication date: May 14, 2015
    Inventors: Takatoshi Yamada, Akio Takada, Hiroo Yugami, Fumitada Iguchi, Makoto Shimizu
  • Publication number: 20150099809
    Abstract: Many fragrances that provide a scent of freshness tend to be highly volatile and are therefore not very economical when used in typical applications such as washing or cleaning processes, so they have to be used in relatively large quantities to be able to produce adequate effects. The disclosed photolabile pro-fragrances provide a much longer-lasting sense of fragrance, in particular with a scent of freshness, when used in typical applications, thus allowing said fragrances to be used efficiently.
    Type: Application
    Filed: December 15, 2014
    Publication date: April 9, 2015
    Inventors: Thomas Gerke, Christian Kropf, Ursula Huchel, Axel Griesbeck, Agnieszka Landes
  • Patent number: 8980797
    Abstract: A method for manufacturing a base material 2 for a superconductive conductor which includes: a conductive bed layer forming process of forming a non-oriented bed layer 24 having conductivity on a substrate 10; and a biaxially oriented layer forming process of forming a biaxially oriented layer 26 on the bed layer 24.
    Type: Grant
    Filed: August 24, 2012
    Date of Patent: March 17, 2015
    Assignee: Furukawa Electric Co., Ltd.
    Inventors: Yoshikazu Okuno, Hiroyuki Fukushima, Yuko Hayase, Eiji Kojima
  • Publication number: 20150064364
    Abstract: A method of forming a metalloid-containing material comprises the step of preparing a hydrometalloid compound in a low volume on-demand reactor. The method further comprises the step of feeding the hydrometalloid compound prepared in the microreactor to a deposition apparatus. Additionally, the method comprises the step of forming the metalloid-containing material from the hydrometalloid compound via the deposition apparatus. A deposition system for forming the metalloid-containing material comprises at least one low volume on-demand reactor coupled to and in fluid communication with a deposition apparatus.
    Type: Application
    Filed: February 14, 2013
    Publication date: March 5, 2015
    Inventors: Binh Nguyen, Michael Telgenhoff
  • Publication number: 20150050494
    Abstract: A multi-walled titanium-based nanotube array containing metal or non-metal dopants is formed, in which the dopants are in the form of ions, compounds, clusters and particles located on at least one of a surface, inter-wall space and core of the nanotube. The structure can include multiple dopants, in the form of metal or non-metal ions, compounds, clusters or particles. The dopants can be located on one or more of on the surface of the nanotube, the inter-wall space (interlayer) of the nanotube and the core of the nanotube. The nanotubes may be formed by providing a titanium precursor, converting the titanium precursor into titanium-based layered materials to form titanium-based nanosheets, and transforming the titanium-based nanosheets to multi-walled titanium-based nanotubes.
    Type: Application
    Filed: March 19, 2013
    Publication date: February 19, 2015
    Applicant: The Hong Kong University of Science and Technology
    Inventors: King Lun Yeung, Shammi Akter Ferdousi, Wei Han
  • Patent number: 8956563
    Abstract: A molding method includes drawing cross-section elements of a three-dimensional object as a molding target on a drawing surface of a drawing stand with a liquid whose curing is precipitated by receiving activation energy as cross-section patterns; applying the activation energy to the liquid configuring the cross-section patterns in a state in which the cross-section patterns is pinched between the drawing stand and a molding stand; and detaching the cross-section patterns after being applied with the activation energy from the drawing stand and transferring the cross-section patterns to the molding stand side, wherein the drawing surface has a liquid repellent area that is an area representing liquid repellency for the liquid and a lyophilic area that is independently formed in an island shape within the liquid repellent area and is an area representing lyophillicity stronger than that of the liquid repellent area for the liquid.
    Type: Grant
    Filed: February 24, 2014
    Date of Patent: February 17, 2015
    Assignee: Seiko Epson Corporation
    Inventors: Eiji Okamoto, Toshimitsu Hirai, Kohei Ishida