Superconductor Patents (Class 427/62)
-
Patent number: 12041857Abstract: A method of fabricating semiconductor-superconductor nanowires, comprising: forming a first mask amorphous mask having first openings over trenches in a substrate; forming a monocrystalline conducting material in the first openings by selective area growth, thus forming gates for the nanowires in the trenches pf the substrate; forming a second mask over the substrate and gates, the second mask also being amorphous and having a pattern of second openings; forming an insulating crystalline buffer in the second openings; forming a crystalline semiconductor material on the buffer in the second openings by selective area growth in order to form the cores of the nanowires, wherein the gates intersect with the cores in the plane of the substrate; and forming the coating of superconductor material over at least part of each of the cores.Type: GrantFiled: March 30, 2020Date of Patent: July 16, 2024Assignee: Microsoft Technology Licensing, LLCInventors: Roy Leonardus Maria Op Het Veld, Jason Petros Heinrich Jung, Petrus Johannes Van Veldhoven
-
Patent number: 11464102Abstract: A system and method for treating a cavity comprises preparing a superconducting radio frequency (SRF) cavity for removal of a dielectric layer from on an inner surface of the SRF cavity, subjecting the SRF cavity to a heat treatment in order to remove the dielectric layer from the inner surface of the SRF cavity, and preventing the development of a new dielectric layer on the inner surface of the SRF cavity by preventing an interaction between the inner surface of the SRF cavity and atmospheric gasses.Type: GrantFiled: October 5, 2019Date of Patent: October 4, 2022Assignee: FERMI RESEARCH ALLIANCE, LLCInventors: Alexander Romanenko, Sam Posen, Anna Grassellino
-
Patent number: 11441954Abstract: A device, system and method for measuring the temperature at the center of a normal hotspot and the heat escape time in superconducting filament or nanowire toward the substrate. The device includes structured layers; a superconducting filament is implemented as an active layer where an electrical current pulse or single photon radiation generates a hot spot; a sensitive semiconductor layer of germanium serves as a temperature sensor (thermometer); and a thin layer of insulating silicon oxide is intercalated between the superconducting layer and the germanium having a thickness in the range of 2-10 nm and width 5-100 ?m. This device provides a direct measurement of the temperature at the center of a hot spot and determination of the heat escape time toward a substrate; and can be used to determine the sensitivity of a superconducting single photon detector device to a next upcoming photon.Type: GrantFiled: January 30, 2019Date of Patent: September 13, 2022Assignee: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALSInventor: Khalil Harrabi
-
Patent number: 11410797Abstract: An MOCVD system fabricates high quality superconductor tapes with variable thicknesses. The MOCVD system can include a gas flow chamber between two parallel channels in a housing. A substrate tape is heated and then passed through the MOCVD housing such that the gas flow is perpendicular to the tape's surface. Precursors are injected into the gas flow for deposition on the substrate tape. In this way, superconductor tapes can be fabricated with variable thicknesses, uniform precursor deposition, and high critical current densities.Type: GrantFiled: December 26, 2019Date of Patent: August 9, 2022Assignee: University of Houston SystemInventors: Goran Majkic, Venkat Selvamanickam
-
Patent number: 11158782Abstract: Techniques regarding encapsulating one or more superconducting devices of a quantum processor are provided. For example, one or more embodiments described herein can regard a method that can comprise depositing a metal fluoride layer onto a superconducting resonator and a silicon substrate that can be comprised within a quantum processor. The superconducting resonator can be positioned on the silicon substrate. Also, the metal fluoride layer can coat the superconducting resonator.Type: GrantFiled: November 12, 2019Date of Patent: October 26, 2021Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Richard Alan Haight, Vivekananda P. Adiga, Martin O. Sandberg, Hanhee Paik
-
Patent number: 10633402Abstract: A novel method and system for using certain tin compounds as dopant sources for ion implantation are provided. A suitable tin-containing dopant source material is selected based on certain attributes. Some of these attributes include stability at room temperature; sufficient vapor pressure to be delivered from its source supply to an ion chamber and, the ability to produce a suitable beam current for ion implantation to achieve the required implant Sn dosage.Type: GrantFiled: January 16, 2019Date of Patent: April 28, 2020Assignee: Praxair Technology, Inc.Inventors: Aaron Reinicker, Ashwini K. Sinha, Qiong Guo
-
Patent number: 10177297Abstract: The present disclosure relates to semiconductor based Josephson junctions and their applications within the field of quantum computing, in particular a tuneable Josephson junction device has been used to construct a gateable transmon qubit. One embodiment relates to a Josephson junction comprising an elongated hybrid nanostructure comprising superconductor and semiconductor materials and a weak link, wherein the weak link is formed by a semiconductor segment of the elongated hybrid nanostructure wherein the superconductor material has been removed to provide a semiconductor weak link.Type: GrantFiled: March 4, 2015Date of Patent: January 8, 2019Assignee: University of CopenhagenInventors: Charles M. Marcus, Peter Krogstrup, Thomas Sand Jespersen, Jesper Nygård, Karl Petersson, Thorvald Larsen, Ferdinand Kuemmeth
-
Patent number: 9960374Abstract: The present invention provides a stripping method of a flexible substrate, comprising: providing a porous metal substrate; forming a buffer layer on the porous metal substrate; forming a flexible substrate on the buffer layer; putting the flexible substrate in the electrolytic tank so that the part of the porous metal substrate is immersed in the electrolyte, and the porous metal substrate is employed to be a cathode electrified to electrolyze water in the electrolyte, and the porous metal substrate will releases the hydrogen, and the flexible substrate and the buffer layer are stripped from the porous metal substrate with the acting force of the hydrogen to obtain the flexible substrate with the buffer layer at the bottom. The method is high efficient and without damaging to promote the production yield of the flexible substrate.Type: GrantFiled: May 13, 2016Date of Patent: May 1, 2018Assignee: WUHAN CHINA STAR OPTOELECTRONICS TECHNOLOGY CO., LTD.Inventor: Hong Fang
-
Patent number: 9812233Abstract: A superconducting oxide thin film includes a superconducting layer formed on a supporting material. The superconducting layer includes an RE-based superconductor as a main component, and the RE-based superconductor includes a CuO chain that has a Cu vacancy portion.Type: GrantFiled: October 29, 2013Date of Patent: November 7, 2017Assignee: FURUKAWA ELECTRIC CO., LTD.Inventors: Hirokazu Sasaki, Hajime Kasahara, Kengo Nakao, Masakazu Matsui
-
Patent number: 9741919Abstract: A nano-scale superconducting quantum interference device and a manufacturing method thereof, comprising the following steps of: S1: providing a substrate and growing a first superconducting material layer thereon; S2: forming a photo-resist layer and performing patterning; S3: etching the first superconducting material layer in a predetermined region; S4: covering a layer of insulation material on a top and a side of a structure obtained in step S3; S5: growing a second superconducting material layer; S6: removing the structure above the plane where the upper surface of the first superconducting material layer locates, to obtain a plane superconducting structure, in the middle of which at least one insulating interlayer is inserted; S7: forming at least one nanowire vertical to the insulating interlayer, to obtain the nano-scale superconducting quantum interference device. The width of the superconducting ring and the length of the nano junction are determined by the insulating interlayer.Type: GrantFiled: April 8, 2014Date of Patent: August 22, 2017Assignee: SHANGHAI INSTITUTE OF MICROSYSTEM AND INFORMATION TECHNOLOGY, CHINESE ACADEMY OF SCIENCEInventors: Lei Chen, Zhen Wang
-
Patent number: 9601750Abstract: A surface-treated electrode active material, a method of surface treating an electrode active material, an electrode, and a lithium secondary battery. The surface-treated electrode active material includes a surface metal oxide layer having higher degree of reduction of a metal than that of a bulk metal oxide layer. The method includes: forming a mixture by adding an untreated electrode active material comprising a metal oxide, and at least one of a basic material and a reducing material to a solvent; and stirring the mixture.Type: GrantFiled: August 10, 2012Date of Patent: March 21, 2017Assignee: SAMSUNG ELECTRONICS CO., LTD.Inventors: Yoon-sok Kang, Jun-young Mun, Jin-hwan Park, Min-sik Park, Seung-mo Oh, Tae-ho Yoon
-
Patent number: 9362476Abstract: A method of forming a superconductive device of a single layer of (BETS)2GaCl4 molecules on a substrate surface which displays a superconducting gap that increases exponentially with the length of the molecular chain is provided.Type: GrantFiled: August 24, 2012Date of Patent: June 7, 2016Assignee: Ohio UniversityInventors: Saw Wai Hla, Abdelrahim Hassanien, Kendal Clark
-
Patent number: 9059371Abstract: The present invention concerns the enhancement of critical current densities in cuprate superconductors. Such enhancement of critical current densities include using wave function symmetry and restricting movement of Abrikosov (A) vortices, Josephson (J) vortices, or Abrikosov-Josephson (A-J) vortices by using the half integer vortices associated with d-wave symmetry present in the grain boundary.Type: GrantFiled: June 8, 2011Date of Patent: June 16, 2015Assignee: Solar-Tectic LLCInventors: Karin Chaudhari, Ashok Chaudhari, Pia Chaudhari
-
Patent number: 9023764Abstract: According to one embodiment, an oxide superconductor includes an oriented superconductor layer and an oxide layer. The oriented superconductor layer contains fluorine at 2.0×1016-5.0×1019 atoms/cc and carbon at 1.0×1018-5.0×1020 atoms/cc. The superconductor layer contains in 90% or more a portion oriented along c-axis with an in-plane orientation degree (??) of 10 degrees or less, and contains a LnBa2Cu3O7-x superconductor material (Ln being yttrium or a lanthanoid except cerium, praseodymium, promethium, and lutetium). The oxide layer is provided in contact with a lower surface of the superconductor layer and oriented with an in-plane orientation degree (??) of 10 degrees or less with respect to one crystal axis of the superconductor layer. Area of a portion of the lower surface of the superconductor layer in contact with the oxide layer is 0.3 or less of area of a region directly below the superconductor layer.Type: GrantFiled: February 14, 2013Date of Patent: May 5, 2015Assignee: Kabushiki Kaisha ToshibaInventors: Takeshi Araki, Mariko Hayashi, Ko Yamada, Hiroyuki Fuke
-
Publication number: 20150105261Abstract: An oxide superconducting thin film wherein nanoparticles functioning as flux pins are dispersed in the film is provided. The oxide superconducting thin film wherein the nanoparticles in the oxide superconducting thin film have a dispersing density of 1020 particles/m3 to 1024 particles/m3 is provided. The oxide superconducting thin film wherein the nanoparticles have a particle diameter of 5 nm to 100 nm is provided. A method of manufacturing an oxide superconducting thin film wherein a predetermined amount of a solution obtained by dissolving nanoparticles functioning as flux pins in a solvent is added to a solution obtained by dissolving an organometallic compound in a solvent to prepare a source material solution for an oxide superconducting thin film, and the source material solution is used to manufacture the oxide superconducting thin film through a coating-pyrolysis process is provided.Type: ApplicationFiled: May 31, 2012Publication date: April 16, 2015Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.Inventors: Tatsuoki Nagaishi, Genki Honda, Iwao Yamaguchi, Takaaki Manabe, Takeshi Hikata, Hiroaki Matsui, Wakichi Kondo, Hirofumi Yamasaki, Toshiya Kumagai
-
Publication number: 20150099641Abstract: The present invention provides a method for manufacturing an electrode of a lithium battery electrode, comprising: (a) providing a substrate; (b) coating a paste on a portion of the substrate; (c) plating a metal film onto the paste or the substrate; (d) disposing a welding point at an end of the substrate; wherein the advantages of the present invention are to conduct current in three-dimensional direction and reduce the problem of electric conductivity because of thermal effect. In addition, the present invention can further avoid the problem of the electrode oxidation.Type: ApplicationFiled: April 10, 2014Publication date: April 9, 2015Inventor: Christine Jill LEE
-
Patent number: 8993064Abstract: Provided are a substrate for a superconducting compound and a method for manufacturing the substrate which can realize the excellent adhesive strength simultaneously with high orientation of copper. An absorbed material on a surface of a copper foil to which rolling is applied at a draft of 90% or more is removed by applying sputter etching to the surface of the copper foil, sputter etching is applied to a nonmagnetic metal sheet, the copper foil and the metal sheet are bonded to each other by applying a pressure to the copper foil and the metal sheet using reduction rolls, crystals of the copper in the copper foil are oriented by heating a laminated body formed by such bonding, copper is diffused into the metal sheet by heating with a copper diffusion distance of 10 nm or more, and a protective layer is laminated to a surface of the copper foil of the laminated body.Type: GrantFiled: November 12, 2010Date of Patent: March 31, 2015Assignees: Toyo Kohan Co., Ltd., Sumitomo Electric Industries, Ltd.Inventors: Hironao Okayama, Kouji Nanbu, Akira Kaneko, Hajime Ota, Kotaro Ohki, Takashi Yamaguchi, Kazuhiko Hayashi, Kazuya Ohmatsu
-
Patent number: 8980797Abstract: A method for manufacturing a base material 2 for a superconductive conductor which includes: a conductive bed layer forming process of forming a non-oriented bed layer 24 having conductivity on a substrate 10; and a biaxially oriented layer forming process of forming a biaxially oriented layer 26 on the bed layer 24.Type: GrantFiled: August 24, 2012Date of Patent: March 17, 2015Assignee: Furukawa Electric Co., Ltd.Inventors: Yoshikazu Okuno, Hiroyuki Fukushima, Yuko Hayase, Eiji Kojima
-
Publication number: 20150072863Abstract: Known processes for the production of nanoparticles of compounds of the transition metals Zr, Ti, Ta, rare earths (RE), Mn, and Fe via microemulsions lead to products that contain impurities from the reactants, particularly water, which make the further use of said nanoparticles difficult, for instance in high-temperature super conductors (HTSC). It is proposed that the nanoparticles be produced via anhydrous microemulsions having an outer phase composed of a nonpolar solvent and inner phase composed of a polar anhydrous solvent. The nanoparticles thus obtained exhibit good monodispersity and can be used in the production of REBa2Cu3O7 super conductors by incorporation into the precursor coating solution.Type: ApplicationFiled: March 20, 2013Publication date: March 12, 2015Applicant: BASF SEInventors: Thomas Freudenberg, Bernhard Holzapfel, Oliver Brunkahl, Michael Baecker
-
Publication number: 20150065351Abstract: In one embodiment a superconductor tape includes a substrate comprising a plurality of layers, an oriented superconductor layer disposed on the substrate, and an alloy coating disposed upon the superconductor layer, the alloy coating comprising one or more metallic layers in which at least one metallic layer comprises a metal alloy.Type: ApplicationFiled: August 29, 2013Publication date: March 5, 2015Applicant: Varian Semiconductor Equipment Associates, Inc.Inventors: Connie P. Wang, Paul Sullivan, Paul Murphy, Kasegn D. Tekletsadik, Bharatwaj Ramakrishnan
-
Patent number: 8965469Abstract: Disclosed are an oxide superconductor tape and a method of manufacturing the oxide superconductor tape capable of improving the length and characteristics of superconductor tape and obtaining stabilized characteristics across the entire length thereof. A Y-class superconductor tape (10), as an oxide superconductor tape, comprises a tape (13) further comprising a tape-shaped non-oriented metallic substrate (11), and a first buffer layer (sheet layer) (12) that is formed by IBAD upon the tape-shaped non-oriented metallic substrate (11); and a second buffer layer (gap layer) (14), further comprising a lateral face portion (14a) that is extended to the lateral faces of the first buffer layer (sheet layer) (12) upon the tape (13) by RTR RF-magnetron sputtering.Type: GrantFiled: February 10, 2011Date of Patent: February 24, 2015Assignee: SWCC Show Cable Systems Co., Ltd.Inventors: Tatsuhisa Nakanishi, Yuji Aoki, Tsutomu Koizumi, Atsushi Kaneko, Takayo Hasegawa
-
Publication number: 20150051080Abstract: The films of this invention are high temperature superconducting (HTS) thin films specifically optimized for microwave and RF applications. In particular, this invention focuses on compositions with a significant deviation from the 1:2:3 stoichiometry in order to create the films optimized for microwave/RF applications. The RF/microwave HTS applications require the HTS thin films to have superior microwave properties, specifically low surface resistance, Rs, and highly linear surface reactance, Xs, i.e. high JIMD. As such, the invention is characterized in terms of its physical composition, surface morphology, superconducting properties, and performance characteristics of microwave circuits made from these films.Type: ApplicationFiled: April 17, 2014Publication date: February 19, 2015Inventors: BRIAN MOECKLY, VIKTOR GLIANTSEV, SHING-JEN PENG, BALAM WILLEMSEN
-
Publication number: 20150045231Abstract: There is described herein a superconducting segment and method of making same comprising one or several layers with very high electrical resistivity, acting as a current flow diverter when the current transfers from the superconductor to the stabilizer. The purpose of this current flow diverter is: i) to increase the contact resistance between the superconductor and the stabilizer, by reducing the contact area, and ii) to force the current to flow along a specific path, so as to increase momentarily the current density in a specific portion of the stabilizer. The consequence of i) and ii) is that heat generated at the extremities of the normal zone is increased and spread over a longer length along the superconducting segment, which increases the NZPV and thus, the uniformity of the quench.Type: ApplicationFiled: February 1, 2013Publication date: February 12, 2015Inventors: Christian Lacroix, Frederic Sirois, Michael Robert Wertheimer
-
Patent number: 8954125Abstract: Low-loss superconducting devices and methods for fabricating low loss superconducting devices. For example, superconducting devices, such as superconducting resonator devices, are formed with a (200)-oriented texture titanium nitride (TiN) layer to provide high Q, low loss resonator structures particularly suitable for application to radio-frequency (RF) and/or microwave superconducting resonators, such as coplanar waveguide superconducting resonators. In one aspect, a method of forming a superconducting device includes forming a silicon nitride (SiN) seed layer on a substrate, and forming a (200)-oriented texture titanium nitride (TiN) layer on the SiN seed layer.Type: GrantFiled: July 28, 2011Date of Patent: February 10, 2015Assignees: International Business Machines Corporation, The United States of America, as represented by the Secretary of Commerce, The National Institute of StandardsInventors: Antonio D. Corcoles Gonzalez, Jiansong Gao, Dustin A. Hite, George A. Keefe, David P. Pappas, Mary E. Rothwell, Matthias Steffen, Chang C. Tsuei, Michael R. Vissers, David S. Wisbey
-
Publication number: 20150038334Abstract: A tape-shaped superconducting film-forming substrate is disclosed, which includes a film-forming face for forming a laminate including a superconducting layer thereon, a rear face that is a face at a side opposite to the film-forming face, a pair of end faces connected to the film-forming face and the rear face, and a pair of side faces connected to the film-forming face, the rear face, and the pair of end faces, in which each of the pair of side faces includes a spreading face that spreads toward an outer side in an in-plane direction of the film-forming face from an edge part of the film-forming face toward the rear face side. A superconducting wire and a superconducting wire manufacturing method are also disclosed.Type: ApplicationFiled: February 6, 2013Publication date: February 5, 2015Inventors: Yoshinori Nagasu, Masaru Higuchi, Hisaki Sakamoto
-
Patent number: 8927461Abstract: Provided is a substrate for superconductive film formation, which includes a metal substrate, and an oxide layer formed directly on the metal substrate, containing chromium oxide as a major component and having a thickness of 10-300 nm and an arithmetic average roughness Ra of not more than 50 nm. A method of manufacturing a substrate for superconductive film formation, which includes forming an oxide layer directly on a metal substrate, the oxide layer containing chromium oxide as a major component and having a thickness of 10-300 nm and an arithmetic average roughness Ra of not more than 50 nm.Type: GrantFiled: May 20, 2011Date of Patent: January 6, 2015Assignees: International Superconductivity Technology Center, Furukawa Electric Co., Ltd., Japan Fine Ceramics CenterInventors: Seiki Miyata, Hiroyuki Fukushima, Reiji Kuriki, Akira Ibi, Masateru Yoshizumi, Akio Kinoshita, Yutaka Yamada, Yuh Shiohara, Ryuji Yoshida, Takeharu Kato, Tsukasa Hirayama
-
Patent number: 8926868Abstract: A superconducting article comprises a substrate, a buffer layer overlying the substrate, and a high-temperature superconducting (HTS) layer overlying the buffer layer. The HTS layer includes a plurality of nanorods. A method of forming a superconducting article comprises providing a substrate, depositing a buffer layer overlying the substrate; forming a nanodot array overlying the buffer layer; depositing an array of nanorods nucleated on the nanodot array; and depositing a high-temperature superconducting (HTS) layer around the array of nanorods and overlying the buffer layer.Type: GrantFiled: July 27, 2010Date of Patent: January 6, 2015Assignees: University of Houston System, Superpower, Inc.Inventors: Venkat Selvamanickam, Goran Majkic, Maxim Martchevskii
-
Publication number: 20150005175Abstract: A method for manufacturing a superconducting wire material in which the superconducting current is not saturated even when a superconducting layer is made into a thick film, and a superconducting wire material. In the method a superconducting layer is formed on a metal substrate interposed by an intermediate layer, the method including heating the metal substrate up to the film-formation temperature of a superconducting film for forming the superconducting layer, forming a superconducting film having a film thickness of at least 10 nm and no more than 200 nm on the intermediate layer, and reducing the metal substrate temperature to a level below the film-formation temperature of the superconducting film, and the superconducting film-formation, including the heating, the film-formation, and the cooling, are performed a plurality of times.Type: ApplicationFiled: February 1, 2012Publication date: January 1, 2015Applicants: FURUKAWA ELECTRIC CO., LTD., CHUBU ELECTRIC POWER COMPANY, INCORPORATEDInventors: Ryusuke Nakasaki, Akinobu Nakai, Tomonori Watanabe, Naoji Kashima, Shigeo Nagaya
-
Patent number: 8921276Abstract: The phase transition temperature, at which the crystal lattice of LMO that constitutes an oxide layer as an intermediate layer or as a part of an intermediate layer becomes cubic, is lowered. A substrate for a superconducting wire rod includes an oxide layer (LMO layer (22)) which contains, as a principal material, a crystalline material represented by the compositional formula: Laz(Mn1?xMx)wO3+? (wherein M represents at least one of Cr, Al, Co or Ti, ? represents an oxygen non-stoichiometric amount, 0<w/z<2, and 0<x?1).Type: GrantFiled: November 2, 2011Date of Patent: December 30, 2014Assignee: Furukawa Electric Co., Ltd.Inventors: Masayasu Kasahara, Hiroyuki Fukushima, Yoshikazu Okuno, Yuko Hayase
-
Publication number: 20140378313Abstract: The present invention refers to a method for applying a smoothening layer on a band substrate for subsequent manufacturing a high temperature superconductor tape, wherein the method comprises the steps: (a) applying a liquid containing polysilazane on at least one side of the band substrate; and (b) heating the liquid containing polysilazane to a temperature?450° C. for depositing a layer on the band substrate which comprises silicon oxynitride (SiNxOy, wherein 0?x<0.6 and 1.0<y?2.0), and/or silicon-carbon-oxynitride (SiCxNyOz, 2·y<x?1.0, 0<y<0.2 and 1.0<z?2.0).Type: ApplicationFiled: May 23, 2014Publication date: December 25, 2014Applicant: Theva Dünnschichttechnik GmbHInventor: Werner Prusseit
-
Patent number: 8911653Abstract: An object of one embodiment of the present invention is to provide a more convenient highly reliable light-emitting device which can be used for a variety of applications. Another object of one embodiment of the present invention is to manufacture, without complicating the process, a highly reliable light-emitting device having a shape suitable for its intended purpose. In a manufacturing process of a light-emitting device, a light-emitting panel is manufactured which is at least partly curved by processing the shape to be molded after the manufacture of an electrode layer and/or an element layer, and a protective film covering a surface of the light-emitting panel which is at least partly curved is formed, so that a light-emitting device using the light-emitting panel has a more useful function and higher reliability.Type: GrantFiled: May 18, 2010Date of Patent: December 16, 2014Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Shunpei Yamazaki, Kaoru Hatano
-
Publication number: 20140353476Abstract: A fiber optical superconducting nanowire detector with increased detector efficiency, fabricated directly on the tip of the input optical fiber. The fabrication on the tip of the fiber allows precise alignment of the detector to the fiber core, where the field mode is maximal. This construction maximizes the coupling efficiency to close to unity, without the need for complex alignment procedures, such as the need to align the input fiber with a previously fabricated device. The device includes a high-Q optical cavity, such that any photon entering the device will be reflected to and fro within the cavity numerous times, thereby increasing its chances of absorption by the nanowire structure. This is achieved by using dedicated cavity mirrors with very high reflectivity, with the meander nanowire structure contained within the cavity between the end mirrors, such that photons impinge on the nanowire structure with every traverse of the cavity.Type: ApplicationFiled: December 23, 2012Publication date: December 4, 2014Inventors: Gil Bachar, Oleg Shtempluck, Eyal Buks
-
Publication number: 20140342916Abstract: Provided is a method of forming a superconducting wire. In the method, a buffer layer is formed on a substrate. Then, a superconducting precursor film is formed on the substrate formed with the pinning seed layer. Thereafter, the substrate formed with the superconducting precursor film is heat-treated to form a superconducting film including magnetic flux pinning centers on the substrate. The magnetic flux pinning centers comprise at least one element included in the pinning seed layer, and at least one element included in the superconducting precursor film.Type: ApplicationFiled: January 17, 2013Publication date: November 20, 2014Inventors: Seung Hyun Moon, Jae Hoon Lee, Hun-Ju Lee
-
Publication number: 20140329686Abstract: The invention pertains to creating new extremely low resistance (“ELR”) materials, which may include high temperature superconducting (“HTS”) materials. In some implementations of the invention, an ELR material may be modified by depositing a layer of modifying material unto the ELR material to form a modified ELR material. The modified ELR material has improved operational characteristics over the ELR material alone. Such operational characteristics may include operating at increased temperatures or carrying additional electrical charge or other operational characteristics. In some implementations of the invention, the ELR material is a cuprate-perovskite, such as, but not limited to BSCCO. In some implementations of the invention, the modifying material is a conductive material that bonds easily to oxygen, such as, but not limited to, chromium.Type: ApplicationFiled: March 3, 2014Publication date: November 6, 2014Applicant: Ambature, Inc.Inventors: Douglas J. Gilbert, Timothy S. Cale
-
Publication number: 20140315723Abstract: A method for fabricating a tunnel junction includes depositing a first electrode on a substrate, depositing a wetting layer having a thickness of less than 2 nm on the first electrode, using atomic layer deposition (ALD) to deposit an oxide layer on the wetting layer, and depositing a second electrode on the oxide layer. The wetting layer and the oxide layer form a tunnel barrier, and the second electrode includes a superconductor.Type: ApplicationFiled: April 21, 2014Publication date: October 23, 2014Applicant: The Regents of the University of CaliforniaInventors: Stephanie Moyerman, Brian Keating
-
Publication number: 20140287928Abstract: A method for manufacturing a superconducting wire includes the following steps. A laminate metal having a first metal layer and a Ni layer formed on the first metal layer is prepared. An intermediate layer (20) is formed on the Ni layer of the laminate metal. A superconducting layer (30) is formed on the intermediate layer (20). By subjecting the laminate metal to a heat treatment after at least either of the step of forming a intermediate layer (20) and the step of forming a superconducting layer (30), a nonmagnetic Ni alloy layer (12) is formed from the laminate metal.Type: ApplicationFiled: November 27, 2013Publication date: September 25, 2014Applicants: TOYO KOHAN CO., LTD., Sumitomo Electric Industries, Ltd.Inventor: Hajime Ota
-
Publication number: 20140249034Abstract: A superconducting element for a superconducting fault current limiter, including a substrate 32, an intermediate layer 34 that is formed on the substrate 32, a superconducting layer 36 that is formed on the intermediate layer 34, an electrode 44 that is connected to the superconducting layer 36, and a metal fine particle sintered layer 40 that is interposed between the superconducting layer 36 and the electrode 44 and connects the superconducting layer 36 and the electrode 44.Type: ApplicationFiled: November 22, 2013Publication date: September 4, 2014Applicant: FURUKAWA ELECTRIC CO., LTD.Inventors: Tomohiro NAKAYAMA, Weiming ZHOU, Hajime KASAHARA, Kengo NAKAO, Akifumi NAKAJIMA, Masakazu MATSUI
-
Patent number: 8809236Abstract: A method for manufacturing a high temperature superconductor (=HTS) coated tape (20), with the following steps: preparation of a substrate tape (1), deposition of at least one buffer layer (2), deposition of an HTS film (3), deposition of a metallic protection layer (35) on the HTS film (3) and deposition of a metallic shunt layer (36) is characterized in that, prior to deposition of the metallic shunt layer (36), the partially prepared coated tape (10) undergoes a laser beam cutting in order to provide a desired tape form, wherein the laser beam cutting is applied together with a gas flow and/or a liquid flow (23). The method reduces the loss of critical current and reduces or avoids a deterioration of the critical temperature in a HTS coated tape due to tape cutting.Type: GrantFiled: February 15, 2012Date of Patent: August 19, 2014Assignees: Oswald Elektromotoren GmbH, Bruker HTS GmbHInventors: Johannes Oswald, Bernhard Oswald, Thomas Reis, Alexander Rutt, Alexander Usoskin
-
Patent number: 8809237Abstract: A method of forming a superconducting article includes providing a substrate tape, forming a superconducting layer overlying the substrate tape, and depositing a capping layer overlying the superconducting layer. The capping layer includes a noble metal and has a thickness not greater than about 1.0 micron. The method further includes electrodepositing a stabilizer layer overlying the capping layer using a solution that is non-reactive to the superconducting layer. The superconducting layer has an as-formed critical current IC(AF) and a post-stabilized critical current IC(PS). The IC(PS) is at least about 95% of the IC(AF).Type: GrantFiled: February 19, 2008Date of Patent: August 19, 2014Assignee: SuperPower, Inc.Inventors: Raghu N. Bhattacharya, Xun Zhang, Venkat Selvamanickam
-
Patent number: 8796181Abstract: The invention pertains to creating new extremely low resistance (“ELR”) materials, which may include high temperature superconducting (“HTS”) materials. In some implementations of the invention, an ELR material may be modified by depositing a layer of modifying material unto the ELR material to form a modified ELR material. The modified ELR material has improved operational characteristics over the ELR material alone. Such operational characteristics may include operating at increased temperatures or carrying additional electrical charge or other operational characteristics. In some implementations of the invention, the ELR material is a cuprate-perovskite, such as, but not limited to YBCO. In some implementations of the invention, the modifying material is a conductive material that bonds easily to oxygen, such as, but not limited to, chromium.Type: GrantFiled: June 13, 2012Date of Patent: August 5, 2014Assignee: Digital Signal CorporationInventors: Douglas J. Gilbert, Timothy S. Cale
-
Patent number: 8772201Abstract: An oxide superconducting conductor of the invention is configured to include an oxide superconducting layer including a substrate and an oxide superconductor formed on the substrate. The oxide superconductor being expressed by a composition formula of RE1Ba2Cu3Oy where RE represents a rare earth element and an expression of 6.5<y<7.1 is satisfied. A normal conduction phase including Ba and a different phase including an alkaline earth metal having an ionic radius smaller than that of Ba are dispersed in the oxide superconducting layer. The normal conduction phase is an oxide including Ba and one selected from a group consisting of Zr, Sn, Hf, Ce, and Ti.Type: GrantFiled: October 5, 2012Date of Patent: July 8, 2014Assignee: Fujikura Ltd.Inventor: Mitsunori Igarashi
-
Publication number: 20140187428Abstract: An insulated high-temperature wire superconductor includes a wire of a noninsulated high temperature wire superconductor, the width of which is at least 10 times its thickness and in which a high-temperature superconductor is introduced into a matrix or is applied to a substrate. The wire is provided with an electrically non-conducting insulating layer on both sides such that the two insulating layers have an insulating edge width in a range from 2 mm to 200 mm which projects in relation to the wire.Type: ApplicationFiled: July 4, 2012Publication date: July 3, 2014Applicant: KARLSRUHER INSTITUT FUER TECHNOLOGIEInventors: Wilfried Goldacker, Stefan Fink, Andrej Kudymow, Steffen Elschner, Joerg Brand
-
Patent number: 8758579Abstract: A chamber for physical vapor deposition is provided. The chamber includes a housing, a door for opening and closing the housing, and a bearing for receiving a target, wherein the bearing is oriented in a first direction. Further, the chamber is adapted so that the target is at least partially removable from the chamber in the first direction. According to an embodiment, a chamber for physical vapor deposition is provided. The chamber is adapted for receiving at least one target and a substrate. The chamber includes a housing, a door, and at least one bearing for mounting the target, wherein the bearing is attached to the door.Type: GrantFiled: May 17, 2010Date of Patent: June 24, 2014Assignee: Applied Materials, Inc.Inventors: Reiner Hinterschuster, Lothar Lippert
-
Publication number: 20140162884Abstract: Described is a superconductive layered structure and an article including this superconductive layered structure on a substrate structure. The superconductive layered structure comprises a stack including at least one bi-layered assembly formed by first and second layers of similar superconducting material compositions, the second layer being superconductive at predetermined temperature condition, the first layer being a substantially thin layer and having a c lattice parameter selected in accordance with those of the substrate structure and the second layer, such that said first layer is non-superconductive at said predetermined temperature condition thereby allowing the second superconductive layer to be desirably thick to provide high critical current density of the superconductive layer.Type: ApplicationFiled: February 11, 2014Publication date: June 12, 2014Applicant: Ramot at Tel-Aviv University Ltd.Inventors: Guy DEUTSCHER, Mishael AZOULAY, Boaz ALMOG
-
Publication number: 20140148343Abstract: An RE123-based superconducting wire includes a base material, an intermediate layer formed on the base material, and an oxide superconducting layer which is formed on the intermediate layer and includes an oxide superconductor having a composition formula represented by RE1Ba2Cu3O7?? (RE represents one or two or more rare earth elements), in which the oxide superconducting layer includes 0.5 to 10 mol % of a Hf-including compound dispersed in the oxide superconducting layer as an artificial pinning center, a film thickness d of the oxide superconducting layer is d>1 ?m, and a current characteristic of Jcd/Jc1?0.9 (Jc1 represents a critical current density when the thickness of the oxide superconducting layer is 1 ?m, and Jcd represents the critical current density when the thickness of the oxide superconducting layer is d ?m) is satisfied.Type: ApplicationFiled: December 26, 2013Publication date: May 29, 2014Applicants: Fujikura Ltd., International Superconductivity Technology CenterInventors: Hiroshi TOBITA, Masateru YOSHIZUMI, Teruo IZUMI, Yuh SHIOHARA
-
Patent number: 8735326Abstract: Methods of forming superconducting devices are disclosed. In one embodiment, the method can comprise depositing a protective barrier layer over a superconducting material layer, curing the protective barrier layer, depositing a photoresist material layer over the protective barrier layer and irradiating and developing the photoresist material layer to form an opening pattern in the photoresist material layer. The method can further comprise etching the protective barrier layer to form openings in the protective barrier layer based on the opening pattern, etching the superconductor material layer based on the openings in the protective barrier layer to form openings in the superconductor material layer that define a first set of superconductor material raised portins and stripping the photoresist material layer and the protective barrier layer.Type: GrantFiled: May 19, 2010Date of Patent: May 27, 2014Assignee: Northrop Grumman Systems CorporationInventors: Erica Folk, Patrick B. Shea, Andrew C. Loyd
-
Patent number: 8716189Abstract: A method of producing a superconductive material involves the step (1) of applying a solution of an organic compound of metals, oxides of the metals forming a superconductive material, onto a support body to be subsequently dried, a provisional baking step (2) of causing organic components of the organic compound of the metals to undergo thermal decomposition, and a main baking process step (3) of causing transformation of the oxides of the metals into the superconductive material, thereby producing an epitaxially-grown superconductive coating material, wherein at the time of irradiation of a surface of the support body coated with the solution of the organic compound of the metals for forming the superconductive material, and/or of a surface of the support body, opposite to the surface coated with the solution of the organic compound of the metals, with the laser light, during a period between the steps (1) and (2).Type: GrantFiled: February 5, 2008Date of Patent: May 6, 2014Assignees: National Institute of Advanced Industrial Science and Technology, The Japan Steel Works, Ltd.Inventors: Mitsugu Sohma, Tetsuo Tsuchiya, Toshiya Kumagai, Kenichi Tsukada, Kunihiko Koyanagi, Takashi Ebisawa, Hidehiko Ohtu
-
Publication number: 20140080714Abstract: An oxide superconducting thin film includes a substrate having a single crystal structure, the main face of the substrate and a crystal face of the single crystal structure having an angle therebetween; an intermediate layer formed on the main face of the substrate and having an axis oriented in a direction perpendicular to the crystal face; and a superconducting layer formed on the intermediate layer and containing, as a main component, an oxide superconductor having a c-axis oriented in a direction perpendicular to the surface of the intermediate layer. A superconducting fault current limiter and a method of manufacturing an oxide superconducting thin film are also provided.Type: ApplicationFiled: May 30, 2012Publication date: March 20, 2014Applicants: National Institute of Advance Industrial Science and Technology, FURUKAWA ELECTRIC CO., LTD.Inventors: Kengo Nakao, Hajime Kasahara, Masakazu Matsui, Norio Matsui, Naoto Edo, Toshiya Kumagai, Takaaki Manabe, Mitsugu Sohma
-
Publication number: 20140066311Abstract: Provided is a method for manufacturing an oxide superconductor, including preparing a coating solution containing alcohols including methanol as a solvent, the coating solution dissolving fluorocarboxylic acid salts including trifluoroacetates, the trifluoroacetates including a metal, barium and copper, the metal being selected from yttrium and lanthanoid metals (provided that cerium, praseodymium, promethium, and ruthenium are excluded); adding a substance of formula: CF2H—(CF2)n—COOH or HOCO—(CF2)m—COOH (wherein n and m represent positive integers) as a crack preventing chemical to the coating solution; forming a gel film on a substrate using the coating solution having the crack preventing chemical added thereto; forming a calcined film by calcining the gel film at an oxygen partial pressure of 3% or less in a process that is maintained at 200° C. or higher for a total time of 7 hours or less; and forming an oxide superconductor film by firing and oxygen anneal of the calcined film.Type: ApplicationFiled: August 12, 2013Publication date: March 6, 2014Applicant: Kabushiki Kaisha ToshibaInventors: Takeshi ARAKI, Mariko Hayashi, Hiroyuki Fuke
-
Patent number: 8658571Abstract: The invention relates to a method for the wet chemical production of an HTSL on a carrier, wherein an HTSL precursor solution comprising no trifluoroacetate may be utilized if the same is heated to a temperature Ts during the heat treatment of the HTSL precursor, wherein the remaining substances of the HTSL precursor solution form at least a partial melt, which is below the temperature at which RE2BaCuOx is formed, and which is deposited from the liquid phase while forming a peritectic.Type: GrantFiled: March 18, 2010Date of Patent: February 25, 2014Assignee: BASF SEInventors: Isabel van Driessche, Pieter Vermeir, Serge Hoste, Michael Baecker