Barrier To Diffusion Of Specific Fluid (e.g., Silicone Rubber, Selectively Permeable Membrane Which Excludes Water Or Moisture, Etc.) Patents (Class 427/96.6)
  • Patent number: 8962069
    Abstract: A process for making an encapsulation structure comprising the following steps: 1) make at least one portion of material capable of releasing at least one gas when said material is heated, the portion of material communicating with the inside of a hermetically closed cavity of the encapsulation structure, 2) heat all or part of said portion of material such that at least part of the gas is released from said portion of material in the cavity, and in which said portion of material capable of releasing at least one gas when said material is heated comprises elements trapped in said portion of material, said trapped elements being released from said portion of material in gaseous form when said material is heated.
    Type: Grant
    Filed: September 6, 2012
    Date of Patent: February 24, 2015
    Assignee: Commissariat à l'énergie atomique et aux énergies alternatives
    Inventors: Jean-Louis Pornin, Xavier Baillin, Charlotte Gillot, Laurent Vandroux
  • Patent number: 8853100
    Abstract: According to an embodiment of present disclosure, a film formation method is provided. The film formation method includes supplying a first process gas as a source gas for obtaining a reaction product to a substrate while rotating a turntable and revolving the substrate, and supplying a second process gas as a gas for nitriding the first process gas adsorbed to the substrate to the substrate in a position spaced apart along a circumferential direction of the turntable from a position where the first process gas is supplied to the substrate. Further, the film formation method includes providing a separation region along the circumferential direction of the turntable between a first process gas supply position and a second process gas supply position, and irradiating ultraviolet rays on a molecular layer of the reaction product formed on the substrate placed on the turntable to control stresses generated in a thin film.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: October 7, 2014
    Assignee: Tokyo Electron Limited
    Inventors: Masanobu Igeta, Jun Sato, Kazuo Yabe, Hitoshi Kato, Yusaku Izawa
  • Patent number: 8802183
    Abstract: The system of the present invention includes a conductive element, an electronic component, and a partial power source in the form of dissimilar materials. Upon contact with a conducting fluid, a voltage potential is created and the power source is completed, which activates the system. The electronic component controls the conductance between the dissimilar materials to produce a unique current signature. The system can also measure the conditions of the environment surrounding the system.
    Type: Grant
    Filed: July 11, 2011
    Date of Patent: August 12, 2014
    Assignee: Proteus Digital Health, Inc.
    Inventors: Jeremy Frank, Peter Bjeletich, Hooman Hafezi, Robert Azevedo, Robert Duck, Iliya Pesic, Benedict Costello, Eric Snyder
  • Patent number: 8753711
    Abstract: The present techniques provide systems and methods for protecting electronic devices, such as organic light emitting devices (OLEDs) from adverse environmental effects. The edges of the devices may also be protected by a edge protection coating to reduce the adverse affects of a lateral ingress of adverse environmental conditions. In some embodiments, inorganic materials, or a combination of inorganic and organic materials, are deposited over the device to form a edge protection coating which extends approximately 3 millimeter or less beyond the edges of the device. In other embodiments, the device may be encapsulated with an organic region, and with an inorganic region, or the device may be encapsulated with inorganic materials, which may form the edge protection coating and may be combined with ultra high barrier technology. The coatings formed over the device may extend beyond the edges of the device to ensure lateral protection.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: June 17, 2014
    Assignee: General Electric Company
    Inventors: Ahmet Gun Erlat, George Theodore Dalakos, Brian Joseph Scherer
  • Patent number: 8728568
    Abstract: The presently disclosed subject matter is directed to method for forming an encapsulant and coating electronic components such as those utilized in AMR technology with the encapsulant. The encapsulant comprises a wax, a tackifier, a polymer, a plasticizer, a thixotropic agent, and an antioxidant and is designed to protect electronic components from harsh environments such as those where high levels of humidity or corrosive liquids may be present. For example, the encapsulant exhibits minimal percent weight gain due to moisture vapor when subjected to temperatures ranging from about ?40° C. to about 70° C. and relative humidities ranging from 0% to 85% over a period of 200 days.
    Type: Grant
    Filed: January 16, 2012
    Date of Patent: May 20, 2014
    Assignee: Itron, Inc.
    Inventors: Satish D. Bhakta, Tom Chastek
  • Patent number: 8703861
    Abstract: A tire dressing composition is provided that includes at least one silicone fluid having a viscosity of between 40 and 500,000 centiStokes at room temperature. A fluorinated acrylate polymer is provided in the composition to limit the amount of streaking in a coating formed from the composition upon application to a tire surface. The coating is formed through the evaporation of a solvent in the composition containing the at least one silicone fluid and the fluorinated acrylate polymer. A process is provided for dressing a tire having a previous silicone coating thereon, the process including applying the tire dressing composition and allowing the solvent to evaporate from the composition to form a tire dressing coating. The coating producing an initial gloss of greater than 110 units. A gloss of greater than 110 units is maintained for at least two weeks subsequent to the application under normal vehicle operation conditions.
    Type: Grant
    Filed: August 15, 2012
    Date of Patent: April 22, 2014
    Assignee: Illinois Tool Works, Inc.
    Inventor: Tsao-Chin Clarence Huang
  • Patent number: 8221828
    Abstract: A method of forming a film is provided. Nanoparticles are deposited on a surface of a substrate using a liquid deposition process. The nanoparticles are linked to each other and to the surface using linker molecules. A coating having a surface energy of less than 70 dyne/cm is deposited over the film to form a coated film. The coated film has an RMS surface roughness of 25 nm to 500 nm, a film coverage of 25% to 60%, a surface energy of less than 70 dyne/cm; and a durability of 10 to 5000 microNewtons. Depending on the particular environment in which the film is to be used, a durability of 10 to 500 microNewtons may be preferred. A film thickness 3 to 100 times the RMS surface roughness of the film is preferred.
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: July 17, 2012
    Inventors: Jeff Chinn, W. Robert Ashurst, Adam Anderson
  • Patent number: 8071160
    Abstract: A method of forming a film is provided. Nanoparticles are deposited on a surface of a substrate using a liquid deposition process. The nanoparticles are linked to each other and to the surface using linker molecules. A coating having a surface energy of less than 70 dyne/cm is deposited over the film to form a coated film. The coated film has an RMS surface roughness of 25 nm to 500 nm, a film coverage of 25% to 60%, a surface energy of less than 70 dyne/cm; and a durability of 10 to 5000 microNewtons. Depending on the particular environment in which the film is to be used, a durability of 10 to 500 microNewtons may be preferred. A film thickness 3 to 100 times the RMS surface roughness of the film is preferred.
    Type: Grant
    Filed: May 6, 2008
    Date of Patent: December 6, 2011
    Assignee: Integrated Surface Technologies
    Inventors: Jeffrey D. Chinn, Robert W. Ashurst, Adam N. Anderson
  • Patent number: 8034419
    Abstract: Disclosed is a method relating to graded-composition barrier coatings comprising first and second materials in first and second zones. The compositions of one or both zones vary substantially continuously across a thickness of the zone in order to achieve improved properties such as barrier, flexibility, adhesion, optics, thickness, and tact time. The graded-composition barrier coatings find utility in preventing exposure of devices such as organic electro-luminescent devices (OLEDs) to reactive species found in the environment.
    Type: Grant
    Filed: December 1, 2008
    Date of Patent: October 11, 2011
    Assignee: General Electric Company
    Inventors: Ahmet Gun Erlat, Anil Duggal, Min Yan, Sheila Tandon, Brian Joseph Scherer
  • Patent number: 8034403
    Abstract: A method of forming a primary coat, which consists of a V- or Ti-containing film, formed on the surface of a subject on which holes or the like have been formed, according to the CVD technique, while using, for instance, a tetravalent amide-type vanadium-containing organometal compound as a raw gas and using, for instance, tertiary butyl hydrazine as a reducing gas, and a copper-containing film is then formed on the primary coat, according to the CVD technique, to thus fill the holes or the like with the copper-containing film and to thus form copper distributing wire, which is excellent in the hole-filling properties and excellent in the adhesion to a primary coat, this process can be applied to the field of copper distributing wires used in the semiconductor industries.
    Type: Grant
    Filed: September 12, 2005
    Date of Patent: October 11, 2011
    Assignee: Ulvac, Inc.
    Inventors: Mikio Watanabe, Hideaki Zama
  • Patent number: 7754105
    Abstract: It is an object to provide a water-soluble preflux containing a low-volatile solubilizing agent excellent in performance to dissolve an imidazole compound in water and capable of bringing out an excellent film-forming property of the imidazole compound and also to provide a treating method for the surface of a metal conductive part which comprises bringing the surface into contact with the above water-soluble preflux.
    Type: Grant
    Filed: May 23, 2006
    Date of Patent: July 13, 2010
    Assignee: Shikoku Chemicals Corporation
    Inventors: Hirohiko Hirao, Yoshimasa Kikukawa, Takayuki Murai
  • Patent number: 7749606
    Abstract: An article with an organic-inorganic composite film that contains silica as its main component and does not separate from the substrate after the Taber abrasion test prescribed in Japanese Industrial Standards (JIS) R 3212. This composite film is formed of a coating solution containing a hydrophilic organic polymer by a sol-gel process. In this solution, for example, the amount of silicon alkoxide exceeds 3 mass % in terms of a SiO2 concentration. When the coating solution contains a phosphorus source, the molality of protons is 0.0001 to 0.2 mol/kg while the number of moles of water is at least four times the total number of moles of silicon atoms contained in the silicon alkoxide. This sol-gel process allows a film with excellent mechanical strength to be obtained even when the substrate is not heated up to a temperature exceeding 400° C. and the film thickness exceeds 250 nm.
    Type: Grant
    Filed: March 31, 2005
    Date of Patent: July 6, 2010
    Assignee: Nippon Sheet Glass Company, Limited
    Inventors: Kazuyuki Inoguchi, Teruyuki Sasaki, Kazutaka Kamitani
  • Publication number: 20090283305
    Abstract: A tin-silver coating for use with circuit boards, which can include a conductive circuit with an exposed surface disposed on a substrate. The tin-silver coating covers the exposed surface of the conductive circuit. The conductive circuit can include electrical traces, contact pads and vias, each of which may include or be formed of copper. In one embodiment, the tin-silver coating can include a tin weight percentage between 85 and 99.5%, while the silver weight percentage can be between 0.5 and 15%. In one embodiment the tin-silver coating can be between 35 and 60 millionths of an inch. A barrier plate may also be included between the conductive circuit and the tin-silver coating.
    Type: Application
    Filed: May 14, 2009
    Publication date: November 19, 2009
    Applicant: Interplex Industries, Inc.
    Inventors: Joseph J. Lynch, Richard Schneider
  • Publication number: 20090279269
    Abstract: A waterproof method for an electronic device and a waterproof electronic device are provided. The electronic device comprises a printed circuit board, which comprises a board, a plurality of electrical elements and a button device. The waterproof method comprises the following steps: applying a first non-solid adhesive to cover the button device directly, curing the first non-solid adhesive to form a first waterproof layer, applying a second non-solid adhesive to at least cover the electrical elements directly and curing the second non-solid adhesive to form a second waterproof layer. In the end, assembling the printed circuit board, sealed with the waterproof layers, into a case to form the waterproof electronic device.
    Type: Application
    Filed: April 7, 2009
    Publication date: November 12, 2009
    Applicant: QBAS CO., LTD.
    Inventor: Jason SHIUE
  • Publication number: 20090280237
    Abstract: The present invention relates to coating compositions for flat assemblies, hybrids, SMD assemblies, comprising at least one binder or binder mixtures which are curable at 60° C.-120° C., preferably at 70° C.-110° C., more particularly at 80° C.-90° C., and also to a process for preparing them and to their use for flat assemblies in electronics, hybrids, SMD assemblies and assembled printed circuit boards.
    Type: Application
    Filed: August 23, 2006
    Publication date: November 12, 2009
    Inventors: Sascha Tödter-König, Gerold Schmidt, Klaus-Wilhelm Lienert
  • Publication number: 20080175983
    Abstract: A low cost method of applying a water-resistant coating to the exterior of a computer digital data storage device is provided. The storage device is compatible with industry standard 2.5 inch or 3.5 inch drive sizes and is either dipped into a reservoir of liquid elastomeric, rubberized epoxy compound or by applying a thermoset polyurethane polymer to the exterior surface of the storage device by reaction injection molding. Both methods produce a coating which has high thermal conductivity and high electrical resistance so that the storage device will operate properly. The resultant form of the water resistant coated digital data storage device is compatible with industry standard 2.5 inch and 3.5 inch computer hard drive bays. Both methods lend themselves to high speed automatic application, thereby greatly reducing the applied cost of the coating.
    Type: Application
    Filed: January 16, 2008
    Publication date: July 24, 2008
    Inventor: Robby Jay Moore
  • Publication number: 20080085390
    Abstract: In one aspect the present invention relates to a method of making an encapsulated electrically energized device, the method comprising: providing a first layer and a second layer each independently comprising a copolyester, providing the electrically energized between the first and second layer, thermocompressively fusing the first layer and the second layer to encapsulate the electrically energized device by applying pressure at a temperature sufficient to form the article, wherein the temperature at an interface between the first and second layers is equal to or greater than Tg of the first layer and the second layer, and wherein the polyester layers have a flow during encapsulation less than the flow that induces fractures in the electrically energized device.
    Type: Application
    Filed: July 13, 2007
    Publication date: April 10, 2008
    Inventors: Ryan Thomas Neill, Gary Wayne Hartley, Michael Eugene Donelson, Theodore Robert Trautman, John Walker Gilmer, James Collins Maine, Bryan Steven Bishop, Robert Erik Young
  • Patent number: 7303944
    Abstract: Microelectronic packages formed by using novel fluxing agents are disclosed. In one aspect, a microelectronic package may include a microelectronic device, a substrate, and an interconnect structure including a solder material coupling the microelectronic device with the substrate. Underfill material may be included around the interconnect structure between the microelectronic device and the substrate. The underfill material may include an organic rosin acid moiety derived from an anhydride adduct of a rosin compound that was used as a fluxing agent. Methods of making such microelectronic packages using anhydride adducts of rosin compounds are also disclosed.
    Type: Grant
    Filed: January 12, 2006
    Date of Patent: December 4, 2007
    Assignee: Intel Corporation
    Inventors: Tian-An Chen, Daoqiang Lu
  • Patent number: 7026376
    Abstract: An underfill material, such as a no flow underfill material, containing an anhydride adduct of a rosin compound is disclosed. In one aspect, the anhydride adduct of a rosin compound contains an organic rosin acid moiety and a substitute moiety for a hydroxyl group of a carboxylic acid attached at an acyl group of the organic rosin acid moiety. In another aspect, the anhydride adduct of the rosin compound contains a plurality of linked organic rosin acid moieties. Methods of using the underfill materials and packages formed by curing the underfill materials are also disclosed.
    Type: Grant
    Filed: June 30, 2003
    Date of Patent: April 11, 2006
    Assignee: Intel Corporation
    Inventors: Tian-An Chen, Daoqiang Lu