Fibers Are Aligned Substantially Parallel Patents (Class 428/293.7)
-
Patent number: 11301010Abstract: A display system includes a first enclosure dimensioned to seal within its interior against ingress of dust and water an electronic display device comprising a screen, the first enclosure having a pane for enabling viewing of the screen from the exterior of the first enclosure; and at least one heat transfer structure extending through a wall of the enclosure between the interior and the exterior, each of the at least one heat transfer structure including a heat pipe having a proximal end within the interior of the first enclosure and a distal end at the exterior of the first enclosure. A heat transfer system for transferring heat away from an enclosure is also provided.Type: GrantFiled: August 1, 2018Date of Patent: April 12, 2022Inventors: Myung Moon, Jin Yang
-
Patent number: 10458061Abstract: Provided are: a composite material capable of exhibiting the original functions of a base material thereof and also capable of exhibiting functions derived from CNTs, such as electrical conductivity, heat conductivity, and mechanical strength; and a molded article therefrom. A composite material comprising a base material and a structure formed on the surface of the base material, the structure including a plurality of carbon nanotubes, wherein the plurality of carbon nanotubes form a network structure, in which the carbon nanotubes are directly connected with one another and also directly adhere to the surface of the base material.Type: GrantFiled: April 23, 2014Date of Patent: October 29, 2019Assignee: NITTA CORPORATIONInventors: Maki Onizuka, Takuji Komukai
-
Publication number: 20150064439Abstract: Provided is the following sample fixing member for a nano indenter. The member can stably fix a sample, the plastic deformation of the member is alleviated, and the member enables accurate nano indenter measurement. A sample fixing member for a nano indenter of the present invention includes a fibrous columnar structure including a plurality of fibrous columnar objects each having a length of 200 ?m or more.Type: ApplicationFiled: January 29, 2013Publication date: March 5, 2015Applicant: NITTO DENKO CORPORATIONInventor: Youhei Maeno
-
Patent number: 8946111Abstract: Permeable composite fibrous catalytic sheets comprised of at least three distinct solid phases. A first solid phase is a 3-dimensional porous network of a non-conductive porous ceramic material. A second solid phase is an electrically conductive phase comprised of randomly oriented electrically conductive fibers. A third phase is comprised of catalytic particles dispersed on said 3-dimensional porous network, said conductive fibers, or both. A fourth phase can be present, which fourth phase is comprised one or more conductive species or one or more non conductive species embedded in said first solid phase.Type: GrantFiled: November 18, 2012Date of Patent: February 3, 2015Inventor: Juzer Jangbarwala
-
Patent number: 8692137Abstract: A noise dampening tape and gasket material for reducing or preventing unwanted electromagnetic interference from escaping or entering an enclosure. The noise dampening gasket includes an inner core section, a carbon material layer surrounding the inner core section, an insulating layer surrounding the carbon material layer, and a metal shield layer surrounding the insulating layer. The noise dampening tape includes a metal shield layer, an insulating layer adjacent to and in contact with the metal shield layer, a carbon material layer adjacent to and in contact with the insulating layer, and an adhesive layer disposed on a surface of the carbon material layer. A second adhesive layer can be disposed on a surface of the metal shield layer.Type: GrantFiled: June 29, 2011Date of Patent: April 8, 2014Assignee: Tangitek, LLCInventors: Robert L. Doneker, Kent G. R. Thompson
-
Patent number: 8663778Abstract: A three-dimensional preform, composite components formed with the preform, and processes for producing the preform and composite materials. The three-dimensional preform includes first and second sets of tows containing filaments. Each tow of the first set has a predetermined polygonal cross-sectional shape and is embedded within a temporary matrix. The preform is fabricated from the first and second sets of tows, in which the second set of tows are transverse to the first set of tows, adjacent tows of the second set are spaced apart to define interstitial regions therebetween, and the polygonal cross-sectional shapes of the first set of tows are substantially congruent to the cross-sectional shapes of the interstitial regions so as to substantially fill the interstitial regions.Type: GrantFiled: October 15, 2010Date of Patent: March 4, 2014Assignee: General Electric CompanyInventors: Timothy Daniel Kostar, Douglas Melton Carper, Suresh Subramanian, James Dale Steible
-
Patent number: 8518841Abstract: To produce a nonwoven fabric comprising a conjugated fiber comprising a plurality of resins which are different in thermal shrinkage and form a phase separation structure. In the nonwoven fabric, the conjugated fibers are arranged in a direction approximately parallel to a surface direction of the nonwoven fabric and crimped. In addition, the conjugated fibers have an average curvature radius of fiber crimp of 20 to 200 ?m and the crimps are distributed approximately uniformly in a thickness direction of the nonwoven fabric. The nonwoven fabric is substantially free from an adhesive agent. In the nonwoven fabric, each fiber is substantially not melt-bonded to another. The conjugated fiber may comprise a polyalkylene arylate-series resin and a modified polyalkylene arylate-series resin and have a side-by-side or eccentric sheath-core form.Type: GrantFiled: July 27, 2007Date of Patent: August 27, 2013Assignee: Kuraray Co., Ltd.Inventors: Tomoaki Kimura, Yasuro Araida, Toru Ochiai, Sumito Kiyooka
-
Publication number: 20130171441Abstract: Composite materials are provided that include nanostructures bound together by a binder material in a manner that provides the composite material with high strain capability and toughness. The nanostructures and binder material form a matrix material in which long fiber reinforcements may be embedded to form a structural composite material. The nanostructures may have relatively low aspect ratios, preventing entanglement during processing. The nanostructures can be arranged in an interconnected network to form a high free-volume skeletal structure within the matrix material that allows the nanostructures to flex and return to their original shapes. As applied to ceramic matrix composite (CMC) materials, this tough, flexible matrix material allows for full bonding of the matrix material with the fiber reinforcements so that CMC materials can realize the full potential of the reinforcing fibers and possess superior inter-laminar strength.Type: ApplicationFiled: January 3, 2012Publication date: July 4, 2013Applicant: Lockheed Martin CorporationInventors: Daniel H. Hecht, William R. Garver
-
Patent number: 8383231Abstract: A sandwich panel includes a middle material (2) and a surface material (3) that are laminated with a hollow columnar core (1). The middle material (2) is composed of a set of unidirectional fiber bodies (4, 5) each of whose fibers are aligned in one direction, and bonding layers formed by woven fiber bodies (6, 7). The woven fiber body (7) includes a warp yarn and a woof yarn that is orthogonal to the warp yarn, and the yarns are woven, and the woven fiber body (7) is formed so that any one of the warp yarn and the woof yarn is substantially parallel to the edge of the sandwich panel, and the other of the warp yarn and the woof yarn is substantially orthogonal to the edge of the sandwich panel.Type: GrantFiled: December 6, 2006Date of Patent: February 26, 2013Assignees: Jamco Corporation, Arisawa Mfg. Co., Ltd.Inventors: Hiroshi Horigome, Masaaki Hirai, Hiroshi Tanaka
-
Patent number: 8314044Abstract: Permeable composite fibrous catalytic sheets comprised of at least three distinct solid phases. A first solid phase is an electrically conductive phase comprised of randomly oriented electrically conductive carbon fibers. A second solid phase is a 3-dimensional porous network of a non-conductive porous ceramic material. A third phase is comprised of catalytic particles dispersed on said 3-dimensional porous network.Type: GrantFiled: August 17, 2007Date of Patent: November 20, 2012Inventor: Juzer Jangbarwala
-
Patent number: 8236718Abstract: The application discloses and claims an oxidation resistant, continuous-fiber-reinforced ceramic composition, durable at temperatures above 1000° C., and capable of taking on any arbitrary near net shape formed without machining and tooling. The composition of the invention comprises a fine grained ceramic matrix which in turn comprises a mixture of a ZrB2 phase and a SiC phase with the matrix being reinforced with SiC or C or an oxide fiber, resulting in a fine grained ZrB2—SiC matrix with domain sizes ?0.5 ?m. The ZrB2 phase of the invention is capable of forming small microcrystalline domains ?0.5 ?m upon heat treatment. The composition the invention also comprises a fiber reinforced composite with a high degree of filling and densification of its preform resulting in a composition containing a low level of porosity and high fiber volume fraction.Type: GrantFiled: June 23, 2009Date of Patent: August 7, 2012Inventors: Larry J. Kepley, George M. Jacobsen
-
Patent number: 8114799Abstract: A ceramic matrix composite with a ceramic matrix and a gradient layering of coating on ceramic fibers. The coating typically improves the performance of the composite in one direction while degrading it in another direction. For a SiC-SiC ceramic matrix composite, a BN coating is layered in a gradient fashion or in a step-wise fashion in different regions of the article comprising the ceramic. The BN coating thickness is applied over the ceramic fibers to produce varying desired physical properties by varying the coating thickness within differing regions of the composite, thereby tailoring the strength of the composite in the different regions. The coating may be applied as a single layer as a multi-layer coating to enhance the performance of the coating as the ceramic matrix is formed or infiltrated from precursor materials into a preform of the ceramic fibers.Type: GrantFiled: August 25, 2009Date of Patent: February 14, 2012Assignee: General Electric CompanyInventors: Suresh Subramanian, James Steibel, Douglas Carper, Toby Darkins, Jr.
-
Publication number: 20120034400Abstract: A carbon fiber-reinforced carbon composite material and a method for manufacturing the same are provided. The carbon fiber-reinforced carbon composite material includes carbon fibers, and a carbonaceous matrix. The carbon fiber-reinforced carbon composite material is integrally formed. The carbon fibers are a substantially linear fiber existing in a bare-fiber state within the carbonaceous matrix and having an average fiber length of less than about 1.0 mm. The carbon fiber-reinforced carbon composite material has a bulk density of about 1.2 g/cm3 or more.Type: ApplicationFiled: August 4, 2011Publication date: February 9, 2012Applicant: IBIDEN CO., LTD.Inventors: Hideki KATO, Haruhide Shikano, Tomoyuki Ando
-
Patent number: 8101272Abstract: A refractory ceramic composite for an armor shell, comprising a ceramic core that is formable to replicate a portion of a three dimensional surface, e.g., of an aircraft, to provide ballistic protection. A method of making a shell of refractory ceramic armor capable of conforming to the geometry is provided. The shell is formed by forming a mold to replicate the surface area; arranging a ceramic core on the mold; and removing the mold to leave said ceramic core, and heat treating the ceramic core to a desired hardness. The ceramic core is in the shape of the surface area.Type: GrantFiled: September 17, 2007Date of Patent: January 24, 2012Assignee: United Technologies CorporationInventor: Wayde R. Schmidt
-
Patent number: 8025954Abstract: A sandwich panel that has excellent practicality as an inner wall material used in aircraft, for example, whereby the abovementioned requirements of flexural strength, peel strength, and in-plane shear strength can be satisfied while having reduced weight.Type: GrantFiled: December 6, 2006Date of Patent: September 27, 2011Assignees: Jamco Corporation, Arisawa Mfg. Co., Ltd.Inventors: Hiroshi Horigome, Masaaki Hirai, Hiroshi Tanaka
-
Patent number: 7794825Abstract: Prefabricated, lightweight, modular, concrete structures, such as columns and a variety of end caps, have a strong, chip resistant surface exhibiting ornamental designs that include projections and impressions. The high strength of the surface layer is due to reinforcement of the concrete with alkali resistant short length (0.125-0.25 inch) glass fibers that allow replication of fine surface details in the column surface. The surface layer is supported by a second glass fiber reinforced concrete layer that incorporates long length (0.5-1.5 inch) alkali resistant glass fibers. In combination, the first and second layers are about 0.25 to 0.5 inches thick, and the lightweight column is readily handled by forklift trucks or economically transported on flat bed trucks without surface chipping or breakage. The modular concrete structures include concrete columns, end caps and arches, as well as other geometrically decorative assemblies.Type: GrantFiled: April 25, 2006Date of Patent: September 14, 2010Inventor: Jeffrey M Kudrick
-
Publication number: 20100203351Abstract: Composite materials exhibiting very high strength properties and other characteristics are disclosed. The materials comprise one or more nanomaterials dispersed within one or more matrix materials. The nanomaterials can be in a variety of forms, such as for example, carbon nanotubes and/or nanofibers. The matrix material can be glass, fused silicas, or metal. Also disclosed are various processes and operations to readily disperse and uniformly align the nanotubes and/or nanofibers in the flowing matrix material, during production of the composite materials.Type: ApplicationFiled: June 7, 2007Publication date: August 12, 2010Inventor: Taysir H. Nayfeh
-
Publication number: 20100143691Abstract: A composite material being excellent in heat conductivity is provided. In order to realize this, a fibrous carbon material made of fine tube form structures constituted with single-layer or multiple-layer graphene is present to form a plurality of layers within a substrate made from a spark plasma sintered body of a metal powder, a mixed powder of a metal and ceramics, or a ceramic powder. The fibrous carbon material constituting each layer is made of a mixture obtained by mixing a small amount of a small diameter fiber 2 having an average diameter of 100 nm or less with a large diameter fiber 1 having an average diameter of 500 nm to 100 ?m.Type: ApplicationFiled: March 6, 2008Publication date: June 10, 2010Applicants: SUMITOMO PRECISION PRODUCTS CO., LTD., Osaka Prefectural GovernmentInventors: Kazuaki Katagiri, Akiyuki Shimizu, Terumitsu Imanishi, Toyohiro Sato, Nobuhito Nakama, Atsushi Kakitsuji, Katsuhiko Sasaki
-
Patent number: 7704594Abstract: Fibrous monolith processing techniques to fabricate multifunctional structures capable of performing more than one discrete function such as structures capable of bearing structural loads and mechanical stresses in service and also capable of performing at least one additional non-structural function.Type: GrantFiled: August 11, 2004Date of Patent: April 27, 2010Assignee: Advanced Ceramics Research, Inc.Inventors: Anthony C. Mulligan, John Halloran, Dragan Popovich, Mark J. Rigali, Manish P. Sutaria, K. Ranji Vaidyanathan, Michael L. Fulcher, Kenneth L. Knittel
-
Publication number: 20100092723Abstract: Disclosed are a nano-composite composition and a method of making such a composite that is composed of a matrix material and dispersed reinforcement nano-scaled graphene plates (NGPs) that are substantially aligned along at least one specified direction or axis. The method comprises: (a) providing a mixture of nano-scaled graphene plates (NGPs) and a matrix material in a fluent state; (b) extruding the mixture to form a filament wherein NGPs are aligned along a filament axis; (c) aligning a plurality of segments of the filament in a first direction, or moving the filament back and forth along a first direction and its opposite direction, to form a NGP-matrix filament preform; and (d) consolidating the preform to form the nanocomposite material. Also disclosed is a method of making a nano-composite fiber.Type: ApplicationFiled: December 16, 2009Publication date: April 15, 2010Inventors: Jiusheng Guo, Lulu Song, Aruna Zhamu, Bor Z. Jang
-
Patent number: 7514135Abstract: A method for forming a pultruded part includes collating reinforcing fibers by providing a first layer of reinforcing rovings extending in the longitudinal pultrusion direction, applying onto the first layer an intermediate layer of reinforcing fibers at least some of which include at least portions thereof which extend in the transverse direction and covering the intermediate layer with a second layer of rovings extending in the longitudinal direction. Alternatively the transverse fiber layer is formed on the inside surface of a hollow part. To the collated fibers is applied a urethane resin so as to permeate through the layers and the materials are passed through a die to form a thermo-set cross-linked poly-urethane. The transverse layer or layers are relatively thin having a weight less than or equal to 0.5 ounces per square foot and more preferably as low as 0.25 ounces or 0.1 ounces.Type: GrantFiled: January 29, 2004Date of Patent: April 7, 2009Assignee: Omniglass Ltd.Inventors: Laurence W. Davies, Mark Robert Bamford, Rodney Herbert Isfeld
-
Patent number: 7507466Abstract: The present invention is ceramic matrix composite gas turbine engine component comprising a plurality of cured ceramic matrix composite plies, each ply comprising ceramic fiber tows, each ceramic fiber tow comprising a plurality of ceramic fibers, the tows in each ply lying adjacent to one another such that each ply has a unidirectional orientation. The component further comprises a layer of a coating on the ceramic fibers. The component further comprises a ceramic matrix material lying in interstitial regions between the fibers and tows of each ply and the interstitial region between the plurality of plies, wherein at least a portion of the component is no greater than about 0.021 inch thick. The present invention is also a method for making such a ceramic matrix composite component.Type: GrantFiled: February 22, 2006Date of Patent: March 24, 2009Assignee: General Electric CompanyInventors: James D. Steibel, Stephen M. Whiteker, Douglas M. Carper, Suresh Subramanian
-
Patent number: 7498077Abstract: A lightweight, high strength structure is described where a core material has a first and second metal matrix composite layer on surfaces of the core material. A sandwich type structure may be formed. The core material may be a solid material, a foam, a honeycomb structure, or may be a channeled material. The metal matrix composite layers may include fiber reinforced metal matrix composites.Type: GrantFiled: December 1, 2004Date of Patent: March 3, 2009Assignee: Touchstone Research Laboratory, Ltd.Inventors: Brian E. Joseph, Douglas J. Merriman, Robert Nolte, Matthew M. Rowe
-
Publication number: 20080286546Abstract: A method for manufacturing a carbon composite is provided. The method includes providing a carbon-containing resin material having an appropriate concentration of catalyst particles. Thereafter, the resin material may be extruded through an aperture while being exposed to a high temperature range to permit polymerization of the extruded resin material. A subsequent exposure of the extruded resin material to another elevated temperature range causes carbon in the resin material to couple to the catalyst particles to promote carbon nanotube growth and transformation of the resin material to a reinforced composite material. Reinforced composite materials are also provided.Type: ApplicationFiled: March 8, 2007Publication date: November 20, 2008Inventors: David S. Lashmore, Peter L. Antoinette
-
Patent number: 7445834Abstract: Disclosed are structural materials including polymeric reinforcment fibers that can provide added strength and fracture toughness to the matrix. The polymeric reinforcement fibers are polypropylene-based monofilament fibers or tape fibers exhibiting extremely favorable mechanical characteristics for structural reinforcement including modulus greater than 12 MPa and elongation less than about 10%. The disclosed reinforced composite materials can exhibit desired average residual strength values with less total fiber loading necessary to attain the ARS values as compared to previously known polymer reinforced materials. Very high strength and fracture toughness can be attained in the disclosed composite materials.Type: GrantFiled: June 10, 2005Date of Patent: November 4, 2008Inventor: Brian G. Morin
-
Publication number: 20080124512Abstract: A ceramic matrix composite (CMC) component for gas turbine engines, the component having fine features such as thin edges with thicknesses of less than about 0.030 inches and small radii of less that about 0.030 inches formed using the combination of prepreg plies layed up with non-ply ceramic inserts. The CMC components of the present invention replace small ply inserts cut to size to fit into areas of contour change or thickness change, and replace the small ply inserts with a fabricated single piece discontinuously reinforced composite insert, resulting in fewer defects, such as wrinkles, and better dimensional control.Type: ApplicationFiled: November 28, 2006Publication date: May 29, 2008Applicant: GENERAL ELECTRIC COMPANYInventors: James Dale Steibel, Douglas Melton Carper, Suresh Subramanian, Stephen Mark Whiteker
-
Patent number: 7371471Abstract: An electromagnetic noise suppressing thin film has a structure including an inorganic insulating matrix made of oxie, nitride, fluoride, or a mixture thereof and columnar-structured particles made of a pure metal of Fe, Co, or Ni or an alloy containing at least 20 weight % of Fe, Co, or Ni and buried in an inorganic insulating matrix.Type: GrantFiled: March 8, 2005Date of Patent: May 13, 2008Assignee: NEC TOKIN CorporationInventors: Shigeyoshi Yoshida, Hiroshi Ono, Yutaka Shimada, Tetsuo Itoh
-
Patent number: 7364794Abstract: An oxidation resistant carbon fiber reinforced carbon composite material comprises a matrix and 20 volume % or more of carbon fibers, and is characterized in that: the matrix contains ceramic powder that includes boron carbide powder having an average particle diameter of 5 ?m or less; and an amount of the ceramic powder is 32 volume % or more based on volume of the carbon fibers.Type: GrantFiled: February 14, 2003Date of Patent: April 29, 2008Assignee: Toyo Tanso Co., Ltd.Inventors: Yumi Ohnishi, Toshiaki Sogabe
-
Patent number: 7311964Abstract: A method of reinforcing a structural support, includes applying a reinforcement system comprising an AR-glass fibrous layer embedded in an inorganic matrix to the structural support. The AR-glass fibrous layer has a sizing applied thereon, and a resinous coating applied is applied over the sizing. The inorganic matrix is adherent to the resinous coating and the resinous coating is adherent to the sizing.Type: GrantFiled: July 30, 2002Date of Patent: December 25, 2007Assignee: Saint-Gobain Technical Fabrics Canada, Ltd.Inventors: Corina-Maria Aldea, David Geraint Roberts
-
Patent number: 7229683Abstract: In one aspect, the invention provides a method of making a thermal interface material comprising the steps of: (a) providing a polymeric hot melt pressure sensitive adhesive having a number average molecular weight of greater than 25,000; (b) melt-blending the polymer with at least 25 weight percent of a thermally conductive filler to form a mixture; and (c) forming the mixture of hot melt pressure sensitive adhesive and thermally conductive filler as a film. In another aspect, the invention may further comprise the steps of: providing a fire retardant and/or microfiber forming material; and/or irradiating the film with gamma or electron beam (E-beam) radiation or a combination of both to form a thermal interface material.Type: GrantFiled: May 30, 2003Date of Patent: June 12, 2007Assignee: 3M Innovative Properties CompanyInventors: Patrick J. Fischer, James J. Kobe, Cameron T. Murray
-
Patent number: 7223465Abstract: The present invention is a ceramic matrix composite turbine engine component, wherein the component has a region of expected higher interlaminate stress during normal engine operation. The component includes both coated fiber tows and uncoated fiber tows arranged together into a preselected form, wherein the uncoated fiber tows are located at predetermined regions of expected high interlaminate stress. The invention further includes method of manufacturing a CMC such as a composite turbine engine component, wherein the component has a region of expected higher interlaminate stress during engine operation.Type: GrantFiled: December 29, 2004Date of Patent: May 29, 2007Assignee: General Electric CompanyInventors: Suresh Subramanian, James Dale Steibel, Douglas Melton Carper
-
Patent number: 7195814Abstract: Described are microfiber-entangled products and methods of producing microfiber-entangled products from microfiber materials or microfiber-forming materials, the microfiber entangled products having various useful product constructions that incorporate microfiber materials and other materials that can be combined by folding, weaving, lapping, twisting, tying, braiding, or otherwise.Type: GrantFiled: May 15, 2001Date of Patent: March 27, 2007Assignee: 3M Innovative Properties CompanyInventors: Troy K. Ista, Mario A. Perez, Stephen M. Sanocki, Michael D. Swan
-
Patent number: 7192643Abstract: The present invention relates to the field of toughening and reinforcing brittle matrix materials, and more specifically to the structural fibers made from an oriented film, which enhance the toughness of matrix materials such as concrete, cement, and other cementitious products.Type: GrantFiled: September 10, 2001Date of Patent: March 20, 2007Assignee: 3M Innovative Properties CompanyInventors: Mario A. Perez, James F. Sanders, Robert S. Kody, Troy K. Ista, Clifford N. MacDonald
-
Patent number: 7112547Abstract: Production processes of an inorganic fiber-bonded ceramic component comprising inorganic fibers mainly comprising Si, M, C and O, an inorganic substance mainly comprising Si and O and boundary layers comprising carbon as a main component; and an inorganic fiber-bonded ceramic component comprising inorganic fibers which are composed mainly of a sintered structure of SiC and contain specific metal atoms and boundary layers composed mainly of carbon, wherein a preliminary shaped material is set in a carbon die, covered with a carbon powder and then hot-pressed to load a pseudo-isotropic pressure on the preliminary shaped material; and a highly heat-resistant inorganic fiber-bonded ceramic component almost free from the occurrence of peelings of surface fibers or delamination, wherein fibers are aligned in a surface shape.Type: GrantFiled: August 6, 2003Date of Patent: September 26, 2006Assignee: UBE Industries, Ltd.Inventors: Shinji Kajii, Kenji Matsunaga, Toshihiko Hogami, Mitsuhiko Sato
-
Patent number: 7063940Abstract: A curl-resistant planar media comprises a plurality of fibers embedded in the media and configured such that the media has a stiffness in a first direction that exceeds the stiffness in a second direction that is perpendicular to the first direction.Type: GrantFiled: March 7, 2005Date of Patent: June 20, 2006Assignee: Silverbrook Research Pty LtdInventor: Kia Silverbrook
-
Patent number: 7052763Abstract: An apparatus such as a connector or circuit includes a substrate having a plurality of conductive members and a plurality of non-conductive members. The conductive members include a plurality of conductive fibers in association with a polymer material. The conductive members and the non-conductive members are disposed in the substrate member and are selectively situated with respect to each other forming a modular matrix configuration of contacts suitable for an array or association with other circuitry.Type: GrantFiled: August 5, 2003Date of Patent: May 30, 2006Assignee: Xerox CorporationInventors: Joseph A. Swift, Stanley J. Wallace
-
Patent number: 7001657Abstract: Closed reinforcement fiber package includes a material disintegratable in concrete, such as fiber concrete. Reinforcing fibers are present in a loose form in the package. The reinforcing fibers may be provided in a substantially mutually parallel position in the package. The reinforcement fiber package may be provided in a chain packing or package including a number of such closed reinforcement fiber packages. The reinforcing fibers may be made of steel.Type: GrantFiled: October 20, 2003Date of Patent: February 21, 2006Assignee: NV Bekaert SAInventor: Ronny Dewinter
-
Patent number: 6958480Abstract: Mesoporous silica is shown to be a sample holder for laser desorption/ionization of mass spectrometry. Supported mesoporous silica was prepared by coating an ethanolic silicate solution having a removable surfactant onto a substrate to produce a self-assembled, ordered, nanocomposite silica thin film. The surfactant was chosen to provide a desired pore size between about 1 nanometer diameter and 50 nanometers diameter. Removal of the surfactant resulted in a mesoporous silica thin film on the substrate. Samples having a molecular weight below 1000, such as C60 and tryptophan, were adsorbed onto and into the mesoporous silica thin film sample holder and analyzed using laser desorption/ionization mass spectrometry.Type: GrantFiled: June 25, 2004Date of Patent: October 25, 2005Assignee: The Regents of the University of CaliforniaInventors: Srinivas Iyer, Andrew M. Dattelbaum
-
Patent number: 6911251Abstract: An optically nonisotropic composite material. The composite material includes two materials, a transparent bulk optical material and radiation absorbing or reflecting fibers embedded within the bulk material. The fibers are substantially parallel to one another and tend to channel the radiation along the direction of the fibers. The bulk material may be a scintillator, in which case the fibers will tend to channel scintillating radiation along the direction of the fibers. The composite material may be used in a high spatial resolution x-ray device, such as a CT scanner. The composite material may also be used in an electromagnetic radiation detection device. Advantageously, the fibers tend to channel radiation along the fibers towards photodetector cells of the radiation detection device thereby increasing spatial resolution.Type: GrantFiled: March 15, 2002Date of Patent: June 28, 2005Assignee: General Electric CompanyInventor: Steven Jude Duclos
-
Patent number: 6815037Abstract: This invention provides a carrier member made of a UV resistant fiber-reinforced composite material where a UV resistant coating material is applied on the surface of the fiber-reinforced composite material and a process for producing thereof. A preferable fiber-reinforced composite material is a fiber-reinforced plastic or carbon fiber-reinforced carbon composite material. A UV resistant coating material is one or more selected from the group consisting of ceramics, cermets, metals and alloys. The carrier member is produced by coating the surface of the fiber-reinforced composite material with a UV resistant coating material by spraying. This carrier member is advantageous in that it can exhibit properties inherent to a fiber-reinforced composite material such as a light weight, higher rigidity and higher heat resistance and that it little contaminates a precision instrument material when being used in cleansing with UV.Type: GrantFiled: September 19, 2001Date of Patent: November 9, 2004Assignee: Nippon Mitsubishi Oil CorporationInventors: Akio Ooshima, Takashi Kobayashi, Kenichi Aoyagi, Daisuke Uchida
-
Patent number: 6770584Abstract: A hybrid insulation material comprises of porous ceramic substrate material impregnated with nanoporous material and method of making the same is the topic of this invention. The porous substrate material has bulk density ranging from 6 to 20 lb/ft3 and is composed of about 60 to 80 wt % silica (SiO2) 20 to 40 wt % alumina (Al2O3) fibers, and with about 0.1 to 1.0 wt % boron-containing constituent as the sintering agent. The nanoporous material has density ranging from 1.0 to 10 lb/ft3 and is either fully or partially impregnated into the substrate to block the pores, resulting in substantial reduction in conduction via radiation and convention. The nanoporous material used to impregnate the fiber substrate is preferably formed from a precursor of alkoxysilane, alcohol, water, and an acid or base catalyst for silica aerogels, and from a precursor of aluminum alkoxide, alcohol, water, and an acid or base catalyst for alumina aerogels.Type: GrantFiled: August 16, 2002Date of Patent: August 3, 2004Assignee: The Boeing CompanyInventors: Andrea O. Barney, Vann Heng, Kris Shigeko Oka, Maryann Santos, Alfred A. Zinn, Michael Droege
-
Publication number: 20040132369Abstract: A filament bundle reinforcement fabric is produced in a tubular structure with a minimum optimized amount of adhesive which is consistently and uniformly applied at a pitch to the machine direction or to the direction of the filament bundles in their formed state.Type: ApplicationFiled: January 7, 2003Publication date: July 8, 2004Inventors: Andrew A. Head, Thomas C. Story
-
Patent number: 6746747Abstract: A method for forming a pultruded part includes collating reinforcing fibers by providing a first layer of reinforcing rovings extending in the longitudinal pultrusion direction, applying onto the first layer an intermediate layer of reinforcing fibers at least some of which include at least portions thereof which extend in the transverse direction and covering the intermediate layer with a second layer of rovings extending in the longitudinal direction. To the collated fibers is applied a resin so as to permeate through the layers and the materials are passed through a die to set the resin. The first and second layers are arranged to form first and second opposed surfaces of the part with the intermediate layer therebetween.Type: GrantFiled: June 13, 2002Date of Patent: June 8, 2004Assignee: Omniglass Ltd.Inventors: Laurence W. Davies, Mark Robert Bamford, Rodfney Herbert Isfeld
-
Patent number: 6716782Abstract: A porous ceramic fiber insulating material and method of making a material having a combination of silica (SiO2) and alumina (Al2O3) fibers, and boron-containing powders is the topic of the new invention. The insulative material is composed of about 60 wt % to about 80 wt % silica fibers, about 20 wt % to about 40 wt % alumina fibers, and about 0.1 wt % to about 1.0 wt % boron-containing powders. A specific boron-containing powder used for this invention is boron carbide powder which provide boron-containing by-products, which aid in fusion and sintering of the silica and alumina fibers. The material is produced by forming an aqueous slurry, blending and chopping the fibers via a shear mixer, orienting the fibers in the in-plane direction, draining water from the fibers, pressing the fibers into a billet, heating the fibers to remove residual water, and firing the billet to fuse the fibers of the material. After sintering, bulk density of the new insulation material ranges from 6 to 20 lb/ft3.Type: GrantFiled: August 16, 2002Date of Patent: April 6, 2004Assignee: The Boeing CompanyInventors: Vann Heng, Karrie Ann Hinkle, Mary Ann Santos
-
Publication number: 20040053030Abstract: A method for producing composite ceramic material is provided wherein a core ceramic structure is produced and simultaneously enveloped with a sleeve of similar material.Type: ApplicationFiled: October 3, 2003Publication date: March 18, 2004Inventors: Kenneth C. Goretta, Dileep Singh, Bryant J. Polzin, Terry Cruse, John J. Picciolo
-
Patent number: 6660355Abstract: An annular body, and method of making same, comprising at least one wear surface portion, the portion comprising a plurality of layers held in a matrix, each layer consisting essentially of fibres which extend generally in one direction and parallel to each other and from the centre of the body to the periphery, whereby the wear of that surface portion is improved. The body can be formed into an aircraft brake disc.Type: GrantFiled: December 22, 2000Date of Patent: December 9, 2003Assignee: Dunlop Aerospace LimitedInventor: David Callum Johnson
-
Patent number: 6624105Abstract: The present invention discloses an oxide ceramic fiber/oxide ceramic composite material comprising primary composite materials each consisting of (a) an assembly of ceramic fibers composed mainly of a metal oxide and (b) a metal oxide ceramic which includes the ceramic fiber assembly (a) therein, the metal oxide of the ceramic (b) being different from the main component metal oxide of the ceramic fiber assembly (a) and the amount of the metal oxide ceramic (b) being 1 to 85% by weight relative to the weight of the ceramic fiber assembly (a), and a metal oxide ceramic which is a matrix for the primary composite materials and which includes the primary composite materials therein, the metal oxide of the ceramic being the same as or different from the main component metal oxide of the ceramic fiber assembly (a); and a process for producing thereof.Type: GrantFiled: April 19, 2001Date of Patent: September 23, 2003Assignee: Mitsui Mining Material Co., Ltd.Inventors: Yutaka Kagawa, Yoshinobu Komatsubara, Hiroshi Nakamura, Katsusuke Iwanaga
-
Patent number: 6620471Abstract: An ultra dense composite strip for flexible pipe having armouring formed of longitudinal carbon fibers provided within a thermoplastic or thermosetting matrix in the form of a flat ribbon with a substantially rectangular cross-section, whereof at least one of the surfaces of the strip is reinforced with a film made integral with said surface, over substantially its whole width and over substantially its whole length.Type: GrantFiled: September 12, 2000Date of Patent: September 16, 2003Assignee: CoflexipInventor: Anh Tuan Do
-
Patent number: 6617013Abstract: A ceramic matrix composite material (10) having a plurality of interlaminar stitches (16) as shown in FIG. 1. The stitches are formed by directing laser energy into the material to melt and recast zones of the material in a direction transverse to the layers of reinforcing fibers(12). The stitches not only improve the interlaminar strength of the material, but they also increase the through-thickness thermal conductivity of the material, thereby reducing thermal-induced stresses. The zones of recast material (18) may define holes (20) extending at least partially through the thickness of the material. The holes may be filled with a filler material (24), thereby mitigating any adverse loss-of-area effect created by the holes.Type: GrantFiled: May 10, 2001Date of Patent: September 9, 2003Assignee: Siemens Westinghouse Power CorporationInventors: Jay A. Morrison, Gary Brian Merrill
-
Publication number: 20030148086Abstract: A transition metal substituted, amorphous mesoporous silica framework with a high degree of structural order and a narrow pore diameter distribution (±0.15 nm FWHM) was synthesized and used for the templated growth of single walled carbon nanotubes (SWNT). The physical properties of the SWNT (diameter, diameter distribution, electronic characteristic) can be controlled by the template pore size and the pore wall chemistry. The SWNT can find applications, for example, in chemical sensors and nanoscale electronic devices, such as transistors and crossbar switches.Type: ApplicationFiled: December 18, 2002Publication date: August 7, 2003Inventors: Lisa Pfefferle, Gary Haller, Dragos Ciuparu