Fiber Is Precoated Patents (Class 428/298.7)
  • Patent number: 11208541
    Abstract: A prepreg, which includes a carbon fiber reinforced material, has excellent Mode I interlaminar toughness, Mode II interlaminar toughness, and tensile strength. The prepreg includes the following constituents [A] to [C] and satisfies the following conditions (I) and (II): [A]: a carbon fiber; [B]: an epoxy resin; and [C]: a hardener for [B], and (I) a surface oxygen concentration O/C of [A] measured by X-ray photoelectron spectroscopy is 0.10 or more; and (II) a cured product obtained by curing [B] and [C] includes a resin region having molecular anisotropy exhibiting interference fringes in polarizing microscope observation in a crossed Nicol state.
    Type: Grant
    Filed: May 28, 2018
    Date of Patent: December 28, 2021
    Assignee: TORAY INDUSTRIES, INC.
    Inventors: Koji Furukawa, Atsuhito Arai, Atsuki Sugimoto, Masahiro Mino, Mayumi Mihara
  • Patent number: 10752346
    Abstract: A rotor assembly has a composite driveshaft extending between a transmission and a yoke for providing torque from the transmission to the yoke to cause rotation of the yoke and a plurality of rotor blade assemblies attached thereto. The rotor hub also has a composite static mast coupled to the yoke and a frame. The static mast being configured to carry the lift and thrust forces from the yoke to the frame.
    Type: Grant
    Filed: October 18, 2017
    Date of Patent: August 25, 2020
    Assignee: Textron Innovations Inc.
    Inventors: Andrew Paul Haldeman, Dalton T. Hampton, Frank Bradley Stamps, John Lloyd, Gilberto Morales
  • Patent number: 10399727
    Abstract: This disclosure provides generally container base designs for use in packaging carbonated beverages and new containers that incorporate the base design. It has been found that improved physical and mechanical properties such as good stress crack performance can be achieving while improved light weighting and potential cost savings. The particular base and container designs are generally applicable to carbonated soft drink (CSD) containers, and can be used with containers of any size and with any type of base form such as petaloid or champagne base forms.
    Type: Grant
    Filed: July 31, 2015
    Date of Patent: September 3, 2019
    Assignee: The Coca-Cola Company
    Inventors: Sterling Lane Steward, Venkat Govindarajan, Martin Geithmann
  • Patent number: 10287433
    Abstract: A heat-shrinkable polyester-based film is provided, which is heat-shrinkable in the longitudinal direction and which is freed from various problems, particularly curling-up or peeling in a bonded area. The heat-shrinkable polyester-based film is characterized by an A1/A2 (absorbance) ratio in the longitudinal direction, which is the main shrinking direction of the film, of 0.55 to 1, with an A1/A2 ratio in the width direction perpendicular to the main shrinking direction of 0.5 to 0.9, wherein A1 is the absorbance of the film at 1340 cm?1 and A2 is the absorbance of the film at 1410 cm?1 as determined by polarized ATR-FTIR spectroscopy, and a hot-water shrinkage of 35 to 60% in the longitudinal direction of the film and ?3 to 12% in the width direction of the film, wherein the hot-water shrinkage is determined by dipping the film in hot water at 90° C. for 10 seconds.
    Type: Grant
    Filed: May 20, 2014
    Date of Patent: May 14, 2019
    Assignee: TOYOBO CO., LTD.
    Inventors: Masayuki Haruta, Masafumi Inoue
  • Patent number: 9441182
    Abstract: A piston coating is described that comprises a phenolic resin, at least one solid lubricant selected from among the group including graphite, MoS2, WS2, BN, and PTFE, as well as carbon fibers. Said coating has an advantageous wear resistance and an advantageous coefficient of friction.
    Type: Grant
    Filed: April 27, 2010
    Date of Patent: September 13, 2016
    Assignee: Federal-Mogul Nurnberg GmbH
    Inventors: Christian Jung, Jurgen Reitenspies
  • Patent number: 9017805
    Abstract: The present disclosure relates to a polyimide-graphene composite material and a method for preparing same. More particularly, it relates to a polyimide-graphene composite material prepared by adding modified graphene and a basic catalyst during polymerization of a polyimide precursor so as to improve mechanical strength and electrical conductivity and enable imidization at low temperature and a method for preparing same.
    Type: Grant
    Filed: March 26, 2013
    Date of Patent: April 28, 2015
    Assignee: Korea Institute of Science and Technology
    Inventors: Nam Ho You, Ok-kyung Park, Bon-Cheol Ku, Joong Hee Lee, Munju Goh
  • Patent number: 8999505
    Abstract: The present invention relates to a sizing composition in the form of a physical gel for glass strands which contains 0.1 to 5% by weight of at least one texturing agent chosen from xanthans, guars and succinoglycans, 2 to 8% by weight of at least one film-forming agent, 0.1 to 8% by weight of at least one compound chosen from plasticizing agents, surface-active agents and dispersing agents, 0.1 to 4% by weight of at least one coupling agent, and 0 to 6% by weight of at least one additive. Another subject-matter of the present invention is glass strands coated with the abovementioned sizing composition and the composite materials containing an organic or inorganic material reinforced with the said glass strands.
    Type: Grant
    Filed: September 4, 2008
    Date of Patent: April 7, 2015
    Assignee: Saint-Gobain Adfors
    Inventors: Dominique Serughetti, Jean-Baptiste Denis, Patrick Moireau
  • Publication number: 20150017416
    Abstract: Composite rods and tapes are provided. In one embodiment, a composite rod includes a core, the core including a thermoplastic material and a plurality of continuous fibers embedded in the thermoplastic material. The plurality of continuous fibers have a generally unidirectional orientation within the thermoplastic material. The core further includes one or more sensing elements embedded in the thermoplastic material. The core has a void fraction of about 5% or less. A sensing element may be, for example, fiber optic cable, a radio frequency identification transmitter, a copper fiber, or an aluminum fiber.
    Type: Application
    Filed: July 1, 2014
    Publication date: January 15, 2015
    Inventors: Michael Ruby, David Eastep, Aaron Johnson, Ashish Sen
  • Publication number: 20140370266
    Abstract: The present invention concerns a sizing composition for glass fibres comprising the following components: (a) A silane based coupling agent which is not an aminosilane; (b) A film former; (c) A borate; (d) A lubricant Characterized in that, at least 75 wt. % of the silane coupling agent present in the composition is dialkoxylated. It also concerns a glass fibre sized with the reaction product of said sizing composition, as well as a polymeric composite reinforced with such glass fibres.
    Type: Application
    Filed: June 25, 2012
    Publication date: December 18, 2014
    Inventors: Nadia Masson, Luc Peters, Willy Piret
  • Publication number: 20140356612
    Abstract: A molded article excellent in dynamic characteristics and water degradation resistance can be obtained by using a fiber-reinforced polypropylene resin composition including a carbodiimide-modified polyolefin (a), a polypropylene resin (b) and reinforcing fibers (c), wherein the content of the carbodiimide group contained in a resin component in the fiber-reinforced polypropylene resin composition is 0.0005 to 140 mmol based on 100 g of a matrix resin component, and the reinforcing fibers (c) are sizing-treated with a polyfunctional compound (s); and a molding material using the fiber-reinforced polypropylene resin composition.
    Type: Application
    Filed: January 17, 2013
    Publication date: December 4, 2014
    Applicant: Toray Industries, Inc.
    Inventors: Kentaro Sano, Noriyuki Hirano, Masato Honma, Atsuki Tsuchiya
  • Publication number: 20140329075
    Abstract: Sizing agent-coated carbon fibers includes: a sizing agent including an aliphatic epoxy compound (A) and at least containing an aromatic epoxy compound (B1) as an aromatic compound (B); and carbon fibers coated with the sizing agent, wherein the sizing agent-coated carbon fibers have an (a)/(b) ratio of 0.50 to 0.90 where (a) is a height (cps) of a component at a binding energy (284.6 eV) assigned to CHx, C—C, and C?C and (b) is a height (cps) of a component at a binding energy (286.1 eV) assigned to C—O in a C1s core spectrum of a surface of the sizing agent applied onto the carbon fibers analyzed by X-ray photoelectron spectroscopy using AlK?1,2 as an X-ray source at a photoelectron takeoff angle of 15°.
    Type: Application
    Filed: December 18, 2012
    Publication date: November 6, 2014
    Inventors: Tomoko Ichikawa, Makoto Endo, Hiroshi Taiko, Masanobu Kobayashi, Nobuyuki Arai, Jun Misumi
  • Patent number: 8709586
    Abstract: An acid-modified polyolefin-based resin for glass fiber treatment having: (1) an amount of components extractable with boiling methyl ethyl ketone of 8 mass % or less; (2) a number average molecular weight (Mn), measured by gel permeation chromatography (GPC), of 6,000 to 48,000; and (3) an amount of an acid which has been added, measured by Fourier transform infrared spectroscopy, of 0.1 to 12 mass %.
    Type: Grant
    Filed: October 20, 2005
    Date of Patent: April 29, 2014
    Assignee: Prime Polymer Co., Ltd.
    Inventors: Koki Yano, Rikuo Onishi
  • Patent number: 8603631
    Abstract: Disclosed are formaldehyde-free, thermally-curable, alkaline, aqueous binder compositions. The disclosed binder compositions may be cured to substantially water-insoluble thermoset polyester resins, including formaldehyde-free, substantially water-insoluble thermoset polyester resins. Uses of the disclosed binder compositions as binders for non-woven fibers and fiber materials are also disclosed.
    Type: Grant
    Filed: October 11, 2005
    Date of Patent: December 10, 2013
    Assignee: Knauf Insulation GmbH
    Inventors: Mary Hession, James Helbing
  • Publication number: 20130157536
    Abstract: An aircraft interior lining component includes a composite material, wherein the composite material includes a matrix, first reinforcing fibres embedded in the matrix and second reinforcing fibres embedded in the matrix. The strength of an interface between a surface of the first reinforcing fibres and the matrix surrounding the surface of the first reinforcing fibres is greater than the strength of an interface between a surface of the second reinforcing fibres and the matrix surrounding the surface of the second reinforcing fibres.
    Type: Application
    Filed: February 8, 2013
    Publication date: June 20, 2013
    Applicant: AIRBUS OPERATIONS GMBH
    Inventor: Airbus Operations GMBH
  • Publication number: 20130122262
    Abstract: A carbon fiber bundle includes carbon fibers and a copolymerized polyolefin attached to the surface of the carbon fibers. The copolymerized polyolefin contains an aromatic vinyl compound and an acid and/or acid anhydride as copolymerization components. The amount of the copolymerized polyolefin attached is 0.01 to 10 parts by mass per 100 parts by mass of the carbon fiber bundle. The carbon fiber bundle may be used or contained in a random mat, a composite material, and various molded articles.
    Type: Application
    Filed: January 9, 2013
    Publication date: May 16, 2013
    Applicant: TEIJIN LIMITED
    Inventor: TEIJIN LIMITED
  • Patent number: 8163122
    Abstract: The apparatus is a laminar shear resistant pre-impregnated resin tape for use in die forming pultrusion processes, with the tape formed by integrating three distinguishable layers, each with integrated parallel reinforcing filaments. The layers are arranged within the tape so that the filaments of adjacent layers are oriented at angles to each other. The tape of the preferred embodiment of the invention is constructed with the filaments of the center layer at 90 degrees to the length of the tape and the filaments of the two outer layers aligned with the length of the tape. The center layer can be more heavily loaded with filaments than conventional tapes, and the outer two layers have less than the amount of filament load of the center layer.
    Type: Grant
    Filed: August 18, 2006
    Date of Patent: April 24, 2012
    Assignee: FLSmidth A/S
    Inventor: Kermit D. Paul
  • Patent number: 8021745
    Abstract: Disclosed herein are processes for making a consolidated or densified composite article comprising polymer, particularly fluoropolymer, and oriented carbon fiber, which provides suitability for use in chemical-mechanical applications.
    Type: Grant
    Filed: June 22, 2010
    Date of Patent: September 20, 2011
    Assignee: E. I. Du Pont De Nemours and Company
    Inventor: J. David Booze
  • Patent number: 7972685
    Abstract: A composition of a fiber reinforced multi-layered laminate that when compression-molded forms a composite having a Class-A surface that is resin rich. The fiber reinforced multi-layered laminate has an outer layer of a cyclic polyester oligomer containing a latent polymerization catalyst; a glass mat; a core layer of a cyclic polyester oligomer containing a latent polymerization catalyst; a second glass mat, and another outer layer of a cyclic polyester oligomer containing a latent polymerization catalyst. When compression molded, the combination of heat and pressure force the core layer through the permeable glass mats and toward the surface. The latent polymerization catalyst initiates polymerization of the cyclic polyester oligomer forming a Class-A surface that is resin rich. The core layer of a cyclic polyester oligomer thoroughly permeates the reinforcing fiber forming a composite having a middle, with a nearly uniform mixture of reinforced glass fiber and thermoplastic in situ polymerized resin.
    Type: Grant
    Filed: May 31, 2005
    Date of Patent: July 5, 2011
    Assignee: Azdel, Inc.
    Inventor: Venkat K. Raghavendran
  • Patent number: 7951464
    Abstract: A composite material may be provided with unique alignment characteristics. The composite material may include a matrix material and a plurality of fibers disposed in the matrix material, wherein the plurality of fibers is magnetically aligned in a uniform spacing within the matrix material.
    Type: Grant
    Filed: September 2, 2009
    Date of Patent: May 31, 2011
    Assignee: General Electric Company
    Inventor: Herbert Chidsey Roberts
  • Publication number: 20110023611
    Abstract: A self-healing composite material comprising a fibre-reinforced polymeric matrix, wherein the polymeric matrix comprises a thermosetting polymer and a thermoplastic polymer.
    Type: Application
    Filed: September 2, 2010
    Publication date: February 3, 2011
    Applicant: THE UNIVERSITY OF SHEFFIELD
    Inventors: Frank Jones, Simon A. Hayes
  • Patent number: 7871944
    Abstract: A process for applying an interface coating includes the step of applying an interface coating material upon at least one surface of a fiber-based substrate. The interface coating material may be composed of a sizing agent, a ceramic powder and optionally at least one of the following agents: a dispersing agent, a deflocculating agent or a surface wetting agent.
    Type: Grant
    Filed: August 8, 2006
    Date of Patent: January 18, 2011
    Assignee: United Technologies Corporation
    Inventors: Stuart A. Sanders, Imelda P. Smyth
  • Patent number: 7867566
    Abstract: A method for fabricating a reinforced matrix composite comprising the step of providing a composite preform having a fibrous structure and applying matrix material onto the preform in locations along the preform. A barrier material is applied to at least a portion of the coated preform to direct the flow of matrix material into the preform. The composite preform is heated to a temperature sufficient to render the matrix material viscous and insufficient to cure the matrix material. The pressure to the interior of the composite preform is reduced, while the pressure to the barrier material is increased. The temperature is maintained to flow the matrix material into the composite preform and to force gases from the fibrous structure. The composite preform is then cured and cooled to form a reinforced matrix composite having a low void content and a substantially uniform matrix distribution.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: January 11, 2011
    Assignee: General Electric Company
    Inventors: Lee Alan Blanton, Gregory Joseph Meibers, Robert Paul Fairbanks, Stephen Mark Whiteker, Richard Thomas Price, Matthew Bernard Buczek, Warren Rosal Ronk
  • Patent number: 7842382
    Abstract: Disclosed are formaldehyde-free, thermally-curable, alkaline, aqueous binder compositions, curable to formaldehyde-free, water-insoluble thermoset polyester resins, and uses thereof as binders for non-woven fibers and fiber materials.
    Type: Grant
    Filed: October 13, 2004
    Date of Patent: November 30, 2010
    Assignee: Knauf Insulation GmbH
    Inventor: Clarence H. Helbing
  • Patent number: 7611598
    Abstract: An aqueous glass fiber sizing composition that includes a polymeric film forming component, at least one silane coupling agent, and one or more lubricants is provided. The polymeric film forming component of the sizing composition includes a silanated polyvinyl acetate, an epoxidized polyvinyl acetate, and a modified epoxy emulsion. In preferred embodiments, the film formers are present in the sizing composition in ratios of 70:25:5, 50:25:25, or 63:18:18 of silanated polyvinyl acetate, epoxidized polyvinyl acetate, and modified epoxy emulsion respectively. Fibers sized with the sizing composition in a sheet molding compound process have improved wet-out characteristics.
    Type: Grant
    Filed: December 14, 2006
    Date of Patent: November 3, 2009
    Assignee: OCV Intellectual Capital, LLC
    Inventors: Steven E. Baker, Jeffrey L. Antle, Donald R. Holman
  • Patent number: 7366472
    Abstract: The invention relates to a method of rendering telecommunication devices ineffective, by creating a substantially radio frequency radiation-free environment by providing an interference generating pattern (IGP) adjacent to the environment in a position between the environment and a source of radio frequency radiation signals so as to substantially reduce, or interfere with such signals thus preventing typical operation of the wireless telecommunications devices. The IGP is generally one that is non-conductive and is or includes a diffraction grating. The IGP is positioned adjacent the environment between the environment and a source of radio frequency radiation signals. Preferably, the IGP is provided as a support member configured in the shape of a diffraction grating, and includes a paint or coating of a non-conductive material having a high dielectric constant thereon.
    Type: Grant
    Filed: May 14, 2004
    Date of Patent: April 29, 2008
    Inventors: Al Messano, Alan Ross
  • Patent number: 7354641
    Abstract: Certain embodiments of the invention are directed to a fiber strand comprising at least one fiber at least partially coated with a starch-free composition formed from the components comprising at least one film forming material, at least one polymeric lubricant, at least one rosin, at least one organo silane coupling agent, at least one dispersion of polymeric particles, wherein the individual particles have a diameter of at least 0.1 microns, at least one emulsifying agent, and at least one additional lubricant that is different from the at least one polymeric lubricant.
    Type: Grant
    Filed: October 12, 2004
    Date of Patent: April 8, 2008
    Assignee: PPG Industries Ohio, Inc.
    Inventors: Robert B. Rau, Ernest L. Lawton
  • Patent number: 7235289
    Abstract: Paper including bodies carrying at least one biochemical marker and of sufficient size to be capable of being taken individually.
    Type: Grant
    Filed: January 18, 2002
    Date of Patent: June 26, 2007
    Assignee: Arjowiggins Security
    Inventors: Sandrine Rancien, Sebastien De Lamberterie
  • Patent number: 7180000
    Abstract: A low cost, high performance, water-swellable, flexible reinforcement member that can be used for both optical and copper communications cable. The water-swellable reinforcement members made according to the preferred process are more rigid than known reinforcement members, but are less rigid than glass pultruded rods. Communications cables utilizing these members are lightweight, water-swellable and exhibit an improved combination of strength and flexibility compared to traditional communications cables. Further, these communication cables may then be installed into underground ducts using more economical and faster installation techniques.
    Type: Grant
    Filed: July 1, 2003
    Date of Patent: February 20, 2007
    Assignee: Neptco JV LLC
    Inventors: Thomas P. Hager, Richard N. Lehman, James R. Priest
  • Patent number: 7169463
    Abstract: An aqueous glass fiber sizing composition that includes a polymeric film forming component, at least one silane coupling agent, and one or more lubricants is provided. The polymeric film forming component of the sizing composition includes a silanated polyvinyl acetate, an epoxidized polyvinyl acetate, and a modified epoxy emulsion. In preferred embodiments, the film formers are present in the sizing composition in ratios of 70:25:5, 50:25:25, or 63:18:18 of silanated polyvinyl acetate, epoxidized polyvinyl acetate, and modified epoxy emulsion respectively. Fibers sized with the sizing composition in a sheet molding compound process have improved wet-out characteristics.
    Type: Grant
    Filed: June 21, 2004
    Date of Patent: January 30, 2007
    Assignee: Owens Corning Fiberglas Technology, Inc.
    Inventors: Steven E. Baker, Jeffrey L. Antle, Donald R. Holman
  • Patent number: 7052763
    Abstract: An apparatus such as a connector or circuit includes a substrate having a plurality of conductive members and a plurality of non-conductive members. The conductive members include a plurality of conductive fibers in association with a polymer material. The conductive members and the non-conductive members are disposed in the substrate member and are selectively situated with respect to each other forming a modular matrix configuration of contacts suitable for an array or association with other circuitry.
    Type: Grant
    Filed: August 5, 2003
    Date of Patent: May 30, 2006
    Assignee: Xerox Corporation
    Inventors: Joseph A. Swift, Stanley J. Wallace
  • Patent number: 6953619
    Abstract: Disclosed are conductive polymeric materials comprising a resin-based structural material loaded with micron conductive fibers and/or micron conductive powders or to provide a conductive thermoplastic composition rather than an insulator. Also disclosed are antennas comprising the conductive thermoplastic compositions and methods for their fabrication.
    Type: Grant
    Filed: January 29, 2004
    Date of Patent: October 11, 2005
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: David M. Dean, Mehrdad Mehdizadeh, Steven F. Fecanin, Stewart Carl Feinberg
  • Patent number: 6835679
    Abstract: A method and apparatus for light curing of composite materials in which the radiation required to initiate the curing is delivered via one or more lossy fiber optics. The fiber optics are made lossy by methods such as bending the fiber, weaving the fiber into a mat to create periodic micro-bends, tailoring the thickness of the fiber cladding to allow evanescent wave transmission, or simply removing the cladding at intervals along the fiber. Distribution of the light through out the composite material results in dramatic power and time reductions over traditional light curing methods. Unlike thermal curing of composite materials, there is no need for an auto-clave and hence no limit on the size of the part that may be created. Additional benefits include the possibility of curing at operational temperature and so avoiding thermal stresses.
    Type: Grant
    Filed: December 26, 2002
    Date of Patent: December 28, 2004
    Assignee: Continuum Dynamics, Inc.
    Inventors: Alan J. Bilanin, Andrew E. Kaufman, Robert McCullough
  • Patent number: 6815037
    Abstract: This invention provides a carrier member made of a UV resistant fiber-reinforced composite material where a UV resistant coating material is applied on the surface of the fiber-reinforced composite material and a process for producing thereof. A preferable fiber-reinforced composite material is a fiber-reinforced plastic or carbon fiber-reinforced carbon composite material. A UV resistant coating material is one or more selected from the group consisting of ceramics, cermets, metals and alloys. The carrier member is produced by coating the surface of the fiber-reinforced composite material with a UV resistant coating material by spraying. This carrier member is advantageous in that it can exhibit properties inherent to a fiber-reinforced composite material such as a light weight, higher rigidity and higher heat resistance and that it little contaminates a precision instrument material when being used in cleansing with UV.
    Type: Grant
    Filed: September 19, 2001
    Date of Patent: November 9, 2004
    Assignee: Nippon Mitsubishi Oil Corporation
    Inventors: Akio Ooshima, Takashi Kobayashi, Kenichi Aoyagi, Daisuke Uchida
  • Patent number: 6643890
    Abstract: A composite doctor blade is provided that is suitable for use in the manufacture of paper, particularly for use in calenders. The composite doctor blade includes multiple layers of composite material in which a substantial proportion of the fibers are aligned in a direction substantially parallel to the long axis of the doctor blade.
    Type: Grant
    Filed: December 1, 2000
    Date of Patent: November 11, 2003
    Assignee: S. D. Warren Services Company
    Inventor: Gordon Eugene Carrier
  • Patent number: 6391436
    Abstract: The invention provides a method of forming a void-free laminate, comprising the steps of: (a) enclosing a partially impregnated prepreg in a vacuum envelope, said partially impregnated prepreg comprising a fiber layer partially impregnated with a resin composition; and (b) heating said partially impregnated prepreg under vacuum to withdraw air present in said partially impregnated prepreg and to cause said resin composition (i) to fully infuse into said fiber layer and (ii) to cure thereby forming said void-free laminate. The present invention further provides novel combinations of modified epoxy resins that may be employed with the methods disclosed. The void-free laminates may be utilized for the manufacture of parts for the aerospace and aircraft industries.
    Type: Grant
    Filed: May 20, 1999
    Date of Patent: May 21, 2002
    Assignee: Cytec Technology Corp.
    Inventors: Guo Feng Xu, Linas Repecka, Steve Mortimer, Steve Peake, Jack Boyd
  • Patent number: 6210786
    Abstract: A fiber-reinforced ceramic matrix composite (FRCMC) structure exhibiting tailored characteristics such as ductility, hardness, and coefficient of friction. Generally, this tailoring involves incorporating fibers into the composite in sufficient quantities to produce a certain degree of ductility, and if desired, incorporating filler material into the composite in sufficient quantities to produce a desired degree of other characteristics such as hardness and coefficient of friction. In both cases, the degree to which these respective characteristics are exhibited varies with the percent by volume of fibers and filler materials incorporated into the structure. Additionally, the degree to which these respective characteristics are exhibited varies with the form of fibers used (i.e., continuous or non-continuous) and with type of filler material employed.
    Type: Grant
    Filed: October 14, 1998
    Date of Patent: April 3, 2001
    Assignee: Northrop Grumman Corporation
    Inventors: Steven Donald Atmur, Thomas Edward Strasser
  • Patent number: 6197149
    Abstract: An insulating varnish comprising a resin component, electrical insulating whiskers, and if necessary, one or more additives such as an ion adsorbent, and/or an organic reagent for preventing injury from copper, produced by adding the additives to the resin component and the whiskers, or filtering the whiskers, or milled by using a beads mill or a three-roll mill, or the like, is excellent for producing a multilayer printed circuit board having high wiring density, high reliability and excellent other electrical properties.
    Type: Grant
    Filed: April 9, 1998
    Date of Patent: March 6, 2001
    Assignee: Hitachi Chemical Company, Ltd.
    Inventors: Kazuhito Kobayashi, Yasushi Kumashiro, Atsushi Takahashi, Koji Morita, Takahiro Tanabe, Kazunori Yamamoto, Akishi Nakaso, Shigeharu Arike, Kazuhisa Otsuka, Naoyuki Urasaki, Daisuke Fujimoto, Nozomu Takano