Carbon Or Carbonaceous Fiber Patents (Class 428/299.1)
  • Patent number: 8361610
    Abstract: Disclosed herein are processes for making a consolidated or densified composite article comprising polymer, particularly fluoropolymer, and oriented carbon fiber, which provides suitability for use in chemical-mechanical applications.
    Type: Grant
    Filed: June 22, 2010
    Date of Patent: January 29, 2013
    Assignee: E I du Pont de Nemours and Company
    Inventors: J. David Booze, Clifford K. Deakyne, Mark R. Schmeckpeper, Hiroyuki Suzuki, James E. Weishampel
  • Patent number: 8361609
    Abstract: A composite structure comprising: a first stack comprising a plurality of plies of composite material and at least one ply of self-healing material, the ply of self-healing material comprising a plurality of containers each containing a curable healing liquid; and a second stack comprising a plurality of plies of composite material, the stacks being joined together at a bond line. By placing a ply of self-healing material in one of the stacks (preferably relatively close to the bond line) the ply of self-healing material can resist the propagation of cracks between the first stack and the second stack. Preferably the global strength of the first stack is greater than the global strength of the second stack.
    Type: Grant
    Filed: April 2, 2009
    Date of Patent: January 29, 2013
    Assignee: Airbus Operations Limited
    Inventor: Enzo Cosentino
  • Publication number: 20120315459
    Abstract: A carbon nanotube sheet of the present invention includes carbon nanotubes and a polymeric material, wherein the carbon nanotubes are present in an isolated state, the axis directions of the carbon nanotubes are aligned m a thickness direction of the carbon nanotube sheet, and the space between the carbon nanotubes is filled with the polymeric material.
    Type: Application
    Filed: February 15, 2011
    Publication date: December 13, 2012
    Inventors: Bunshi Fugetsu, Takeru Yajima, Toshiyuki Abe, Toru Sakai
  • Patent number: 8318295
    Abstract: A carbon nanotube composite structure includes a matrix and a carbon nanotube structure. The matrix has a surface. The carbon nanotube structure is incorporated in the matrix. A distance between the carbon nanotube structure and the surface is less than 10 micrometers. The carbon nanotube structure includes a plurality of carbon nanotubes joined with each other by van der Waals attractive force.
    Type: Grant
    Filed: April 26, 2011
    Date of Patent: November 27, 2012
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Jia-Ping Wang, Rui Xie, Kai-Li Jiang, Shou-Shan Fan
  • Publication number: 20120282453
    Abstract: In a method for fabricating a carbon nanotube (CNT) composite, an array of CNTs is provided. A CNT ribbon is pulled from the array and wound on a rotating mandrel. A polymer solution is applied to the ribbon to form a CNT composite laminate. The CNTs in the ribbon may be substantially aligned in a single direction. The ribbon may be attached to the mandrel such that the ribbon may be wound on the mandrel as the mandrel rotates. A CNT composite is provided that may include a polymer integrated with long, substantially straight CNTs that are highly aligned in a single direction. An apparatus for fabricating a CNT composite is provided that may include a rotatable mandrel and a spray gun. The spray gun may be configured for spraying a polymer solution on the CNT ribbon as the CNT ribbon is taken up on the rotating mandrel.
    Type: Application
    Filed: May 4, 2012
    Publication date: November 8, 2012
    Applicant: NORTH CAROLINA STATE UNIVERSITY
    Inventors: XIN WANG, YUNTIAN T. ZHU, PHILIP D. BRADFORD, WEI LIU
  • Patent number: 8273454
    Abstract: A yarn includes reinforcing fiber filaments and a resin that is infiltrated into the yarn and can be repeatedly melted and solidified by cooling to room temperature, wherein the filaments of the yarn are at least partially bound to one another by the resin, wherein the yarn contains 2.5 to 25 wt.% of infiltrated resin relative to its total weight, and wherein the infiltrated resin includes a mixture of at least two epoxy resins E1 and E2, E1 having an epoxy value in the range of 2,000 to 2,300 mmol/kg of resin and E2 having an epoxy value in the range of 500 to 650 mmol/kg of resin, and the weight ratio E1:E2 of the epoxy resins E1 and E2 in the mixture is chosen so that the infiltrated resin mixture has an epoxy value between 550 and 2,100 mmol/kg of resin. A preform comprising the yarn, a method for producing the preform and its use in producing a composite are also described.
    Type: Grant
    Filed: March 29, 2005
    Date of Patent: September 25, 2012
    Assignee: Toho Tenax Europe GmbH
    Inventors: Markus Schneider, Bernd Wohlmann
  • Patent number: 8247055
    Abstract: A protective device includes a base film, a first carbon nanotube film, and a first protecting film. The first protecting film includes a release layer. The first carbon nanotube film is located between the base film and the first protecting film and in contact with the release layer. The carbon nanotube film is capable of being released from the release layer. The present disclosure also relates to a roll of protective device, and a method for making the protective device.
    Type: Grant
    Filed: December 10, 2009
    Date of Patent: August 21, 2012
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Kai-Li Jiang, Liang Liu, Shou-Shan Fan
  • Patent number: 8231965
    Abstract: A carbon nanotubes (CNTs)-containing resin composite comprised of a synthetic resin-impregnated aligned CNTs aggregate to have a specific surface area of at least 600 m2/g. Its production method comprises a step of laying down an aligned CNTs aggregate having grown perpendicularly from a substrate, a step of impregnating the laid-down aligned CNTs aggregate with a resin, and a step of shaping the resin-impregnated aligned CNTs aggregate into a sheet. Accordingly, there are provided a CNTs-containing resin composite having a high CNT content and a high degree of alignment and having a desired shape capable of fully taking the advantages of anisotropy intrinsic to CNTs, and a production method capable of producing it with ease.
    Type: Grant
    Filed: April 24, 2008
    Date of Patent: July 31, 2012
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Kenji Hata, Hidekazu Nishino
  • Patent number: 8221840
    Abstract: A method to prepare a carbon fiber bundle which can develop satisfactory interfacial adhesion to polyolefin-based resins, especially polypropylene resins, is provided. The carbon fiber bundle comprises a plurality of single fibers sized with a sizing agent comprising: a polymer having a main chain formed of carbon-carbon bonds, containing an acid group in at least part of side chains or at least a part of main chain ends, and having an acid value of 23 to 120 mg KOH/g as measured in accordance with ASTM D1386; or a polymer having a main chain formed of carbon-carbon bonds and containing at least either of an epoxy group and an ester group in at least a part of side chains or at least a part of main chain ends.
    Type: Grant
    Filed: July 9, 2009
    Date of Patent: July 17, 2012
    Assignee: Mitsubishi Rayon Co., Ltd.
    Inventors: Naoki Sugiura, Akihiko Fukushima, Shinobu Fujie
  • Patent number: 8201371
    Abstract: A composite beam chord is between first and second reinforcement plates. The beam chord includes a first ply of reinforcing fibers with a fiber orientation of +? degrees with respect to a longitudinal axis of the beam chord and a second ply of reinforcing fibers with a fiber orientation of ?? degrees with respect to the longitudinal axis. The angle ? is between 2 and 12 degrees for suppression or delay of ply splitting.
    Type: Grant
    Filed: May 10, 2010
    Date of Patent: June 19, 2012
    Assignee: The Boeing Company
    Inventor: Max U. Kismarton
  • Patent number: 8192825
    Abstract: A low-melt plastic fastener. According to one embodiment, the low-melt plastic fastener is shaped to include a flexible filament having a first cross-bar at a first end, and a second cross-bar at a second end. The filament, the first cross-bar, and the second cross-bar may be formed from the same material and may be molded as a unitary structure. Preferably, the fastener is molded as part of a length of continuously connected ladder stock. The plastic fastener is preferably made from a formulation consisting of about 60-99%, by weight, of a low-melt polyurethane and 1-40%, by weight, of a styrene acrylonitrile. The formulation is selected so that the filament melts when heated for about 10 minutes at 130-180° C.
    Type: Grant
    Filed: October 14, 2008
    Date of Patent: June 5, 2012
    Assignee: Avery Dennison Corporation
    Inventors: Thomas Shilale, Charles J. Burout, III
  • Patent number: 8172982
    Abstract: Conductive nonwoven webs are disclosed. The nonwoven webs contain pulp fibers combined with conductive fibers. In one embodiment, the webs are made in a wetlaid tissue or paper making process. The pulp fibers contained in the webs may comprise softwood fibers, while the conductive fibers may comprise carbon fibers. Base webs can be produced having a resistance of less than about 100 Ohms/square in one embodiment. Once produced, the conductive material can be cut into slits that are then wound on spools. From the spools, the conductive slits can be fed into a process for making any suitable product.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: May 8, 2012
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Thomas Michael Ales, Davis-Dang H. Nhan, Duane Joseph Shukoski, Michael John Rekoske
  • Publication number: 20120107599
    Abstract: A fine carbon fiber having linearity, each fiber filament of the carbon fiber having a bending angle of 30° or less with respect to the longitudinal direction of the fiber filament, and including a hollow space extending along its axis, and having an outer diameter of 1 to 1,000 nm, an aspect ratio of 5 to 1,000, and a BET specific surface area of 2 to 2,000 m2/g, wherein the average interlayer distance (d002) of the carbon fiber at a (002) plane is 0.345 nm or less as measured by means of X-ray diffractometry, and the ratio of the peak height (Id) of the band at 1,341 to 1,349 cm?1 in a Raman scattering spectrum of the carbon fiber to that of the peak height (Ig) of the band at 1,570 to 1,578 cm?1 in the spectrum (Id/Ig) is 0.1 to 2. The fiber exhibits excellent dispersibility in a matrix.
    Type: Application
    Filed: December 6, 2011
    Publication date: May 3, 2012
    Applicant: SHOWA DENKO K.K.
    Inventors: Koichiro YONETAKE, Tatsuhiro TAKAHASHI, Ryuji YAMAMOTO, Toshio MORITA
  • Patent number: 8163376
    Abstract: Provided are a shape memory polymer composition, which comprises a bifunctional isocyanate and/or a trifunctional isocyanate, and a polyol having an average molecular weight of from 100 to 550, with a molar ratio in terms of functional groups of isocyanate:polyol=0.9 to 1.1:1.0; FRP having the shape memory polymer and a fibrous material; and a production process of the FRP comprising impregnating the fibrous material with, as a matrix resin, the shape memory polymer composition and curing. According to the present invention, the shape memory polymer composition has an extended pot life and FRP has excellent inflatability.
    Type: Grant
    Filed: March 15, 2004
    Date of Patent: April 24, 2012
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Noriya Hayashi, Shunichi Hayashi, Norio Miwa, Toshikatsu Nohara
  • Publication number: 20120094106
    Abstract: A layered product which is a molded object including a thermoset resin layer, a thermoplastic resin layer, and reinforcing fibers comprising many continuous filaments, wherein the thermoset resin layer has been united with the thermoplastic resin layer at the interface between these layers, the resin of the thermoset resin layer and the resin of the thermoplastic resin layer each having an irregular surface shape at the interface, and a group of filaments among the reinforcing fibers are in contact with at least the resin of the thermoset resin layer and the other group of filaments among the reinforcing fibers are in contact with at least the resin of the thermoplastic resin layer, and that side of the thermoplastic resin layer which is opposite to the interface being a surface of the molded object.
    Type: Application
    Filed: December 12, 2011
    Publication date: April 19, 2012
    Inventors: Masato HONMA, Souichi ISHIBASHI, Yoshiki TAKEBE, Haruo OBARA, Takeshi NISHIZAWA, Kosuke SHIHO, Seiichio ETO, Takashi HASEGAWA, Hideaki TANISUGI
  • Patent number: 8158245
    Abstract: Thermoplastic composites having a core composite layer including a fibrous substrate and one or more high performance polymer, and a surface layer polymer applied to at least one surface of the core composite layer, which forms a polymer blend with the high performance polymer thereby imparting improved toughness and processing times, and methods for making and using same, are provided herein.
    Type: Grant
    Filed: September 21, 2010
    Date of Patent: April 17, 2012
    Assignee: Cytec Technology Corp.
    Inventors: James Francis Pratte, Scott A. Rogers, Dominique Ponsolle
  • Patent number: 8109734
    Abstract: An article such as a fan blade of a turbofan engine comprises a core made up of components at least some of which comprise packs of rods embedded in a resin matrix material. The rods extend in the span-wise direction of the blade to resist centrifugal forces imposed on the blade during operation. The core is encased in a skin formed from preforms which may comprise fabric reinforcements.
    Type: Grant
    Filed: February 24, 2009
    Date of Patent: February 7, 2012
    Assignee: Rolls-Royce PLC
    Inventor: Robert C Backhouse
  • Patent number: 8101272
    Abstract: A refractory ceramic composite for an armor shell, comprising a ceramic core that is formable to replicate a portion of a three dimensional surface, e.g., of an aircraft, to provide ballistic protection. A method of making a shell of refractory ceramic armor capable of conforming to the geometry is provided. The shell is formed by forming a mold to replicate the surface area; arranging a ceramic core on the mold; and removing the mold to leave said ceramic core, and heat treating the ceramic core to a desired hardness. The ceramic core is in the shape of the surface area.
    Type: Grant
    Filed: September 17, 2007
    Date of Patent: January 24, 2012
    Assignee: United Technologies Corporation
    Inventor: Wayde R. Schmidt
  • Patent number: 8097335
    Abstract: Prepregs, laminates, printed wiring board structures and processes for constructing materials and printed wiring boards that enable the construction of printed wiring boards with improved thermal properties. In one embodiment, the prepregs include substrates impregnated with electrically and thermally conductive resins. In other embodiments, the prepregs have substrate materials that include carbon. In other embodiments, the prepregs include substrates impregnated with thermally conductive resins. In other embodiments, the printed wiring board structures include electrically and thermally conductive laminates that can act as ground and/or power planes.
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: January 17, 2012
    Assignee: Stablcor Technology, Inc.
    Inventors: Kalu K. Vasoya, Bharat M. Mangrolia, William E. Davis, Richard A. Bohner
  • Patent number: 8092897
    Abstract: A layered product which is a molded object comprising a thermoset resin layer, a thermoplastic resin layer, and reinforcing fibers comprising many continuous filaments, wherein the thermoset resin layer has been united with the thermoplastic resin layer at the interface between these layers, the resin of the thermoset resin layer and the resin of the thermoplastic resin layer each having an irregular surface shape at the interface, and a group of filaments among the reinforcing fibers are in contact with at least the resin of the thermoset resin layer and the other group of filaments among the reinforcing fibers are in contact with at least the resin of the thermoplastic resin layer, that side of the thermoplastic resin layer which is opposite to the interface being a surface of the molded object.
    Type: Grant
    Filed: December 25, 2003
    Date of Patent: January 10, 2012
    Assignee: TORAY Industries, Inc.
    Inventors: Masato Honma, Souichi Ishibashi, Yoshiki Takebe, Haruo Obara, Takeshi Nishizawa, Kosuke Shiho, Seiichiro Eto, Takashi Hasegawa, Hideaki Tanisugi
  • Patent number: 8084121
    Abstract: The fine carbon fiber obtained by pulverizing vapor grown fine carbon fiber, each fiber including a hollow space extending along its axis, and having an outer diameter of 1 to 1,000 nm, an aspect ratio of 5 to 1,000, and a BET specific surface area of 2 to 2,000 m2/g, wherein the average interlayer distance (d002) is 0.345 nm or less, and the ratio of the peak height (Id) of the band (e.g. 1,341 to 1,349 cm?1) in a Raman scattering spectrum to that of the peak height (Ig) of the band (e.g. 1,570 to 1,578 cm?1) (Id/Ig) is 0.1 to 2, a bending angle of 30° or less with respect to the axis; a composite material comprising the fine carbon fiber and a resin serving as a matrix, wherein the fine carbon fiber is oriented in one direction through, application of an external force; and a production method and use thereof.
    Type: Grant
    Filed: May 7, 2004
    Date of Patent: December 27, 2011
    Assignee: Showa Denko K.K.
    Inventors: Koichiro Yonetake, Tatsuhiro Takahashi, Ryuji Yamamoto, Toshio Morita
  • Patent number: 8058194
    Abstract: Conductive nonwoven webs are disclosed. The nonwoven webs contain pulp fibers combined with conductive fibers. In one embodiment, the webs are made in a wetlaid tissue making process.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: November 15, 2011
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Davis-Dang H. Nhan, Duane Joseph Shukoski, Michael J. Rekoske
  • Patent number: 8034443
    Abstract: Plastic composite material made up of a polymer matrix with a concentration of a nanofiber material and with a concentration of graphite-based particles. The matrix additionally contains at least one inorganic filler in the form of silicate-based particles or in the form of glass particles.
    Type: Grant
    Filed: September 24, 2008
    Date of Patent: October 11, 2011
    Assignee: C-Polymers GmbH
    Inventor: Andreas Eder
  • Patent number: 8021745
    Abstract: Disclosed herein are processes for making a consolidated or densified composite article comprising polymer, particularly fluoropolymer, and oriented carbon fiber, which provides suitability for use in chemical-mechanical applications.
    Type: Grant
    Filed: June 22, 2010
    Date of Patent: September 20, 2011
    Assignee: E. I. Du Pont De Nemours and Company
    Inventor: J. David Booze
  • Patent number: 7989057
    Abstract: A composite material comprises a layer of fibres conjoined to a matrix, where one of the matrix and fibres comprises a first component which exhibits auxetic behaviour for loading along a first direction, and the other of the matrix and fibres comprises a second component which exhibits non-auxetic behaviour for loading along the first direction.
    Type: Grant
    Filed: May 24, 2007
    Date of Patent: August 2, 2011
    Assignee: Auxetic Technologies Limited
    Inventors: Andrew Alderson, Kim Lesley Alderson, Graham David Hudson, David Edward Skertchly
  • Patent number: 7973295
    Abstract: The present method relates to a method for making a transparent carbon nanotube film. The method includes the following steps: (a) making a carbon nanotube film, and (b) irradiating the carbon nanotube film by a laser device with a power density thereof being greater than 0.1×104 W/m2, thus acquiring the transparent carbon nanotube film.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: July 5, 2011
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Kai-Li Jiang, Liang Liu, Shou-Shan Fan
  • Publication number: 20110159269
    Abstract: A window film includes a polymer film, at least one carbon nanotube film, and a protective layer. The at least one carbon nanotube film is embedded in the polymer film. The protective layer is located on a surface of the polymer film. The at least one carbon nanotube film is located between the protective layer and the polymer film.
    Type: Application
    Filed: August 13, 2010
    Publication date: June 30, 2011
    Applicant: Beijing FUNATE Innovation Technology Co., LTD.
    Inventors: LI QIAN, LIANG LIU, CHEN FENG
  • Publication number: 20110117356
    Abstract: A pultruded composite component includes a matrix material comprising a thermosetting polyurethane resin, and fibers provided within the resin matrix. All of the fibers within the resin matrix are oriented in substantially a single direction and the matrix material has an elongation-to-failure that exceeds that of the fibers.
    Type: Application
    Filed: January 24, 2011
    Publication date: May 19, 2011
    Inventors: Randall Jay Brown, Semen Kharchenko, Harry D. Coffee, Icheng Huang
  • Publication number: 20110094217
    Abstract: An electrostrictive composite includes a flexible polymer matrix and a carbon nanotube film structure. The carbon nanotube film structure is located on a surface of the flexible polymer matrix, and at least partly embedded into the flexible polymer matrix through the first surface. The carbon nanotube film structure includes a plurality of carbon nanotubes combined by van der Waals attractive force therebetween.
    Type: Application
    Filed: June 8, 2010
    Publication date: April 28, 2011
    Applicants: TSINGHUA UNIVERSITY, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: LU-ZHUO CHEN, CHANG-HONG LIU, JIA-PING WANG, SHOU-SHAN FAN
  • Patent number: 7927692
    Abstract: The present invention provides a carbon fiber composite material comprising an elastomer and a carbon nanofiber dispersed in the elastomer, wherein the elastomer has an unsaturated bond or a group, having affinity to the carbon nanofiber. Also disclosed is a process for producing the carbon fiber composite material.
    Type: Grant
    Filed: July 14, 2010
    Date of Patent: April 19, 2011
    Assignee: Nissin Kogyo Co., Ltd.
    Inventors: Toru Noguchi, Shigeru Fukazawa, Shuichi Shimizu
  • Patent number: 7897241
    Abstract: A composite spacer operable to be mounted on a first component is disclosed herein, wherein compression loads associated with attaching the first component to some other structure are born by the composite spacer to limit compressive deformation of the first component. The composite spacer includes a first body formed of resin and defining an aperture extending along an axis. The composite spacer also includes a plurality of first fibers positioned in the first body about the aperture. Each of the first fibers extends substantially parallel to the axis and increases a compressive strength of the first body relative to the axial direction.
    Type: Grant
    Filed: February 26, 2009
    Date of Patent: March 1, 2011
    Assignee: Rolls-Royce Corporation
    Inventor: Edward Claude Rice
  • Patent number: 7897249
    Abstract: A composite material structure includes a first fiber layer, a second fiber layer, a resin layer between the first fiber layer and the second fiber layer and a plurality of chopped fibers provided in the resin layer.
    Type: Grant
    Filed: October 7, 2008
    Date of Patent: March 1, 2011
    Assignee: The Boeing Company
    Inventors: Michael Joseph Pepka, Steven George Lemery
  • Publication number: 20110023611
    Abstract: A self-healing composite material comprising a fibre-reinforced polymeric matrix, wherein the polymeric matrix comprises a thermosetting polymer and a thermoplastic polymer.
    Type: Application
    Filed: September 2, 2010
    Publication date: February 3, 2011
    Applicant: THE UNIVERSITY OF SHEFFIELD
    Inventors: Frank Jones, Simon A. Hayes
  • Publication number: 20110020629
    Abstract: The invention relates to a film, in particular for an adhesive tape, characterized in that the film contains at least one homopolymer, copolymer, or terpolymer of the propylene and fibers and is monoaxially stretched in the longitudinal direction, wherein the elongation ratio is preferably at least 1:8 and particularly preferably at least 1:9.5.
    Type: Application
    Filed: January 12, 2009
    Publication date: January 27, 2011
    Applicant: TESA SE
    Inventors: Bernhard Müssig, Iise Rodewald, Uwe Michel
  • Publication number: 20110000746
    Abstract: A hoisting device rope has a width larger than a thickness thereof in a transverse direction of the rope. The rope includes a load-bearing part made of a composite material, said composite material comprising non-metallic reinforcing fibers, which include carbon fiber or glass fiber, in a polymer matrix. An elevator includes a drive sheave, an elevator car and a rope system for moving the elevator car by means of the drive sheave. The rope system includes at least one rope that has a width that is larger than a thickness thereof in a transverse direction of the rope. The rope includes a load-bearing part made of a composite material. The composite material includes reinforcing fibers in a polymer matrix.
    Type: Application
    Filed: July 16, 2010
    Publication date: January 6, 2011
    Applicant: KONE Corporation
    Inventors: Raimo Pelto-Huikko, Petteri Valjus, Juha Honkanen, Kim Sjödahl
  • Patent number: 7799842
    Abstract: A method of preparing a reinforced silicone resin film, the method comprising the steps of impregnating a fiber reinforcement in a hydrosilylation-curable silicone composition comprising a silicone resin and a photoactivated hydrosilylation catalyst; and exposing the impregnated fiber reinforcement to radiation having a wavelength of from 150 to 800 nm at a dosage sufficient to cure the silicone resin; wherein the reinforced silicone resin film comprises from 10 to 99% (w/w) of the cured silicone resin and the film has a thickness of from 15 to 500 ?m; and a reinforced silicone resin film prepared according to the method.
    Type: Grant
    Filed: May 11, 2006
    Date of Patent: September 21, 2010
    Assignee: Dow Corning Corporation
    Inventors: Nicole Anderson, Bizhong Zhu
  • Patent number: 7785701
    Abstract: The present invention provides a carbon fiber composite material comprising an elastomer and a carbon nanofiber dispersed in the elastomer, wherein the elastomer has an unsaturated bond or a group, having affinity to the carbon nanofiber. Also disclosed is a process for producing the carbon fiber composite material.
    Type: Grant
    Filed: April 9, 2004
    Date of Patent: August 31, 2010
    Assignee: Nissin Kogyo Co., Ltd.
    Inventors: Toru Noguchi, Shigeru Fukazawa, Shuichi Shimizu
  • Publication number: 20100203316
    Abstract: A carbon nanotubes (CNTs)-containing resin composite comprised of a synthetic resin-impregnated aligned CNTs aggregate to have a specific surface area of at least 600 m2/g. Its production method comprises a step of laying down an aligned CNTs aggregate having grown perpendicularly from a substrate, a step of impregnating the laid-down aligned CNTs aggregate with a resin, and a step of shaping the resin-impregnated aligned CNTs aggregate into a sheet. Accordingly, there are provided a CNTs-containing resin composite having a high CNT content and a high degree of alignment and having a desired shape capable of fully taking the advantages of anisotropy intrinsic to CNTs, and a production method capable of producing it with ease.
    Type: Application
    Filed: April 24, 2008
    Publication date: August 12, 2010
    Inventors: Kenji Hata, Hidekazu Nishino
  • Patent number: 7754323
    Abstract: According to the present invention, a fiber-reinforced thermoplastic resin molded article in which monofilamentous carbon fibers are contained in a thermoplastic resin in a high content, such fibers having long fiber lengths and being randomly arranged, is provided. Also, a molding material comprising monofilamentous carbon fibers and monofilamentous thermoplastic resin fibers, in which the carbon fibers are contained in a high content, such fibers having long fiber lengths and being randomly arranged, is provided. In addition, a method for producing a fiber-reinforced thermoplastic resin molded article, comprising molding the molding material by compression molding, is provided.
    Type: Grant
    Filed: February 19, 2007
    Date of Patent: July 13, 2010
    Assignee: Toray industries, Inc.
    Inventors: Shoji Murai, Masato Honma
  • Patent number: 7740929
    Abstract: A strand lumber or board product based on eucalypt species and an iso-cyanate binder such as PMDI.
    Type: Grant
    Filed: December 14, 2004
    Date of Patent: June 22, 2010
    Assignee: Lignor Limited
    Inventors: Peter Edward Burton, Graham Thomas Coulthard
  • Patent number: 7721495
    Abstract: Composite structural members and methods for forming the same are disclosed. In one disclosed embodiment, a composite structural member includes a central structural portion comprised of a reinforced, polymer-based material and having a length, a first side and an opposing second side extending along the length. A first reinforcement member fixedly coupled to the first side and a second reinforcement member fixedly coupled to the second side.
    Type: Grant
    Filed: March 31, 2005
    Date of Patent: May 25, 2010
    Assignee: The Boeing Company
    Inventor: Max U. Kismarton
  • Publication number: 20100092723
    Abstract: Disclosed are a nano-composite composition and a method of making such a composite that is composed of a matrix material and dispersed reinforcement nano-scaled graphene plates (NGPs) that are substantially aligned along at least one specified direction or axis. The method comprises: (a) providing a mixture of nano-scaled graphene plates (NGPs) and a matrix material in a fluent state; (b) extruding the mixture to form a filament wherein NGPs are aligned along a filament axis; (c) aligning a plurality of segments of the filament in a first direction, or moving the filament back and forth along a first direction and its opposite direction, to form a NGP-matrix filament preform; and (d) consolidating the preform to form the nanocomposite material. Also disclosed is a method of making a nano-composite fiber.
    Type: Application
    Filed: December 16, 2009
    Publication date: April 15, 2010
    Inventors: Jiusheng Guo, Lulu Song, Aruna Zhamu, Bor Z. Jang
  • Patent number: 7651767
    Abstract: To provide a carbon fiber reinforcement having excellent thermal conductivity and mechanical properties which is manufactured by mixing together two different types of pitch-based carbon short fibers having a ratio of the degree of filament diameter distribution to average fiber diameter of 0.05 to 0.2 and a fiber length of 20 to 6,000 ?m which differ from each other in average fiber diameter or by mixing one of them with a pitch-based carbon fiber web to improve dispersibility into a matrix resin or increase the dispersion ratio of the pitch-based carbon short fibers.
    Type: Grant
    Filed: April 13, 2006
    Date of Patent: January 26, 2010
    Assignee: Teijin Limited
    Inventors: Masumi Hirata, Hiroshi Hara, Tetsuo Ban
  • Patent number: 7648759
    Abstract: A carbon fiber composite material compact contains less of expensive carbon fibers, and the compact can therefore be used for general purposes which do not require highly superior physical properties. The carbon fiber composite material compact is produced by staking a first carbon fiber layer, a core layer, a second carbon fiber layer so as to form a laminate, and then compacting the laminate while impregnating an impregnable resin therein.
    Type: Grant
    Filed: August 25, 2006
    Date of Patent: January 19, 2010
    Assignee: Honda Motor Co., Ltd.
    Inventors: Satoshi Hirawaki, Kazumi Ogawa
  • Patent number: 7645497
    Abstract: The present invention is directed to an electronically conductive article comprising at least one conductive carbon nanotube layer in contact with at least one conductive layer comprising electronically conductive polymer.
    Type: Grant
    Filed: June 2, 2005
    Date of Patent: January 12, 2010
    Assignee: Eastman Kodak Company
    Inventors: Todd M. Spath, Glen C. Irvin, Jr., Debasis Majumdar, Ronald S. Cok, Charles C. Anderson
  • Patent number: 7622184
    Abstract: A stack of 50 layers of a first pitch-base carbon fiber sheet is formed, two sets of stack each having two second pitch-base carbon fiber sheets stacked therein are fabricated. At this time, the second carbon fiber sheets have a thermal expansion coefficient larger than that of the first carbon fiber sheet. Next, the stack of the first carbon fiber sheet is then held between two sets of stack of the second carbon fiber sheets. The stack of the first and second carbon fiber sheets are then impregnated with an epoxy-base resin composition and the resin is solidified. As a result a prepreg composed of the first and second carbon fiber sheets and the resin component composed of the epoxy-base resin composition is obtained. Thereafter, interconnections and the like are then formed on the prepreg, to thereby complete a multilevel interconnection board.
    Type: Grant
    Filed: January 26, 2006
    Date of Patent: November 24, 2009
    Assignee: Fujitsu Limited
    Inventors: Keishiro Okamoto, Mamoru Kurashina, Tomoyuki Abe
  • Publication number: 20090286064
    Abstract: The present invention relates to sliding parts, precision parts and timepieces and electronic equipment using those parts. Sliding parts are composed by a resin in which the degree of orientation of a fibrous filler is higher at the portion serving as the sliding surface than inside the sliding part, and the fibrous filler is oriented along the sliding surface on the sliding surface. Alternatively, precision parts are composed by a resin to which has been added carbon fibers for which a carbon compound is thermally decomposed to carbon in the vapor phase and simultaneously grown directly into fibers simultaneous to this thermal decomposition. Moreover, timepieces and electronic equipment are composed by these sliding parts or these precision parts.
    Type: Application
    Filed: July 30, 2009
    Publication date: November 19, 2009
    Applicants: KITAGAWA INDUSTRIES CO., LTD., SEIKO INSTRUMENTS INC.
    Inventors: Morinobu ENDO, Tetsuo UCHIYAMA, Akio YAMAGUCHI, Teruaki YUOKA, Hiroshi AOYAMA, Kazutoshi TAKEDA, Yoshifumi MAEHARA, Masato Takenaka, Koichiro Jujo, Shigeo Suzuki, Takeshi Tokoro
  • Publication number: 20090246446
    Abstract: An article such as a fan blade of a turbofan engine comprises a core made up of components at least some of which comprise packs of rods embedded in a resin matrix material. The rods extend in the span-wise direction of the blade to resist centrifugal forces imposed on the blade during operation. The core is encased in a skin-formed from preforms which may comprise fabric reinforcements.
    Type: Application
    Filed: February 24, 2009
    Publication date: October 1, 2009
    Applicant: ROLLS-ROYCE PLC
    Inventor: Robert C. Backhouse
  • Patent number: 7592388
    Abstract: The present invention relates to a high melt flow thermoplastic resin filled with long fibers, such as long glass fibers, stainless steel fibers, carbon fibers, aramid fibers, or other like fibers, and having high melt flow properties. The high melt flow properties of the thermoplastic resin contribute to its ease of production, allowing for the production of long fiber-reinforced thermoplastic compositions having good dispersion and wet-out in the pellet and molded article, and characterized by low levels of loose fiber in the pellet and/or compound. Although any concentration of fibers may be present in the fiber-reinforced thermoplastic composition, the high melt flow thermoplastic resins are especially suitable for high concentrate long glass fiber-reinforced thermoplastic compositions.
    Type: Grant
    Filed: March 3, 2006
    Date of Patent: September 22, 2009
    Assignee: RTP Company
    Inventors: Robert J. Wick, Karl M. Hoppe, Greg S. Cagle
  • Patent number: 7591973
    Abstract: A method for producing a fiber-reinforced composite material plate by heating and pressurizing a prepreg for a molding time of 15 minutes or less, at a molding temperature of at least 120° C. and a molding pressure of at least 10 kg/cm2. The prepreg is prepared from a reinforcing fiber and an epoxy resin composition. The epoxy resin composition features: an epoxy resin; an amine compound having at least one sulfur atom in the molecule thereof and/or a reaction product of the epoxy resin and the amine compound having at least one sulfur atom in the molecule thereof; a urea compound; and a dicyandiamide. The contents of the sulfur atom and the urea compound in the epoxy resin composition are respectively 0.2 to 7% by mass and 1 to 15% by mass.
    Type: Grant
    Filed: November 28, 2003
    Date of Patent: September 22, 2009
    Assignee: Mitsubishi Rayon Co., Ltd.
    Inventors: Tsuneo Takano, Akitada Yanase, Tadashi Sakai, Kiharu Numata, Akihiro Ito, Masato Taguchi, Junichi Muramatsu, Kazuya Goto, Kazuki Koga