Physical Dimension Specified Patents (Class 428/332)
  • Publication number: 20150118485
    Abstract: A gas turbine engine component includes a substrate formed of a high temperature resistant material and a corrosion resistant layer. The corrosion resistant layer is inert to the molten salt impurities and includes a refractory metal vanadate of formula MxVyOz, wherein M is selected from the group consisting of alkaline earth metals, group IV and V transition metals, rare-earth metals and their combinations, and wherein z=x+2.5y, or z=1.5x+2.5y, or z=2x+2.5y.
    Type: Application
    Filed: October 22, 2014
    Publication date: April 30, 2015
    Inventors: Limin WANG, Lawrence Bernard KOOL, Christopher Edward THOMPSON, Dalong ZHONG, Dalong ZHOU, Liming ZHANG
  • Publication number: 20150118484
    Abstract: The present invention provides an environment-friendly natural-like artificial stone containing fly ash. A formulation and a method of producing the artificial stone is compared with the existing artificial stone. The artificial stone produced by the present invention has characteristics of higher long-term strength and density, excellent weather resistance and corrosion resistance, and also of thermal insulation and sound insulation, in some degree. It has very strong durability and color stability under a variety of adverse weather conditions, without efflorescence and coming off, and with hardly any color change.
    Type: Application
    Filed: December 26, 2011
    Publication date: April 30, 2015
    Applicant: SHANGHAI APE STONE CO., LTD
    Inventors: Guomai Chen, Malhua Chen, Yi Xia, Jiye You, Rendao Zhou, Liang Zeng
  • Patent number: 9017823
    Abstract: A machine component may include a body made of an iron alloy. The body may include a surface, and a coating fused to the surface. The coating may be an alloy including phosphorous, carbon, and iron. The coating may have solidus temperature of less than or equal to about 1000° C., and a hardness greater than or equal to about 50 HRC.
    Type: Grant
    Filed: December 19, 2011
    Date of Patent: April 28, 2015
    Assignee: Caterpillar Inc.
    Inventors: Tianjun Liu, Marvin Grendel McKimpson
  • Patent number: 9017824
    Abstract: Disclosed is an aluminum-diamond composite having both high thermal conductivity and thermal expansion coefficient close to those of semiconductor elements, which is improved in platability in the surface and surface roughness so that the composite becomes suitable for use as a heat sink of a semiconductor element of the like. Specifically disclosed is a plate-like aluminum-diamond composite containing diamond particles and a metal mainly composed of aluminum. The aluminum-diamond composite is composed of a composite part and surface layers formed on both sides of the composite part, and the surface layers are composed of a material containing a metal mainly composed of aluminum. The diamond particle content is 40-70% by volume of the entire aluminum-diamond composite.
    Type: Grant
    Filed: July 8, 2009
    Date of Patent: April 28, 2015
    Assignee: Denki Kagaku Kogyo Kabushiki Kaisha
    Inventors: Hideki Hirotsuru, Hideo Tsukamoto
  • Patent number: 9017633
    Abstract: Single crystal diamond material produced using chemical vapour deposition (CVD), and particularly diamond material having properties suitable for use in optical applications such as lasers, is disclosed. In particular, a CVD single crystal diamond material having preferred characteristics of longest linear internal dimension, birefringence and absorption coefficient, when measured at room temperature, is disclosed. Uses of the diamond material, including in a Raman laser, and methods of producing the diamond are also disclosed.
    Type: Grant
    Filed: January 14, 2011
    Date of Patent: April 28, 2015
    Assignee: Element Six Technologies Limited
    Inventors: Ian Friel, Sarah Louise Geoghegan, Daniel James Twitchen, Joseph Michael Dodson
  • Publication number: 20150111029
    Abstract: Construction element for walls and wall lining comprising at least one layer of lining material (11) and one layer of lightened natural lime (12) attached to the lining material (11) by drying to form a single body.
    Type: Application
    Filed: May 23, 2013
    Publication date: April 23, 2015
    Inventors: Egidio DE LUCA, Enza DINOIA
  • Patent number: 9005744
    Abstract: A conductive micro-wire structure includes a substrate. A plurality of spaced-apart electrically connected micro-wires is formed on or in the substrate forming the conductive micro-wire structure. The conductive micro-wire structure has a transparency of less than 75% and greater than 0%.
    Type: Grant
    Filed: January 28, 2013
    Date of Patent: April 14, 2015
    Assignee: Eastman Kodak Company
    Inventors: John Andrew Lebens, David Paul Trauernicht, Yongcai Wang, Ronald Steven Cok
  • Patent number: 8999495
    Abstract: A recording material for electrophotographic printing methods from a base paper coated on both sides with synthetic resin and having a toner-receiving layer arranged on at least one side, containing a water-soluble or water-dispersible binder in the toner-receiving layer, preferably an ethylene-acrylate polymer or an ethylene-acrylate copolymer, a finely particulate inorganic pigment and an antistatic component, such that images using both liquid toners and dry toners can be produced with this recording material, identical in both appearance and haptics to silver halide photographs.
    Type: Grant
    Filed: September 15, 2011
    Date of Patent: April 7, 2015
    Assignee: Schoeller Technocell GmbH & Co. KG
    Inventors: Christoph Kozlowski, Andreas Overberg, Rainer Steinbeck
  • Patent number: 8999463
    Abstract: An anti-dazzling laminate made of an optical laminate including a light transparent base material and an anti-dazzling layer having a concavoconvex shape provided on the material. The laminate simultaneously satisfies formulae: 0?G100?15 (I), 0.1?Hs?5.0 (II), 0.3?Rz?1.8 (III) wherein G100 represents a scintillation value which is a standard deviation of a variation in brightness distribution at a resolution of 100 ppi measured on the surface of the laminate; Hs represents the surface haze value of the laminate; and Rz represents the average roughness of the concavoconvex shape of the anti-dazzling layer.
    Type: Grant
    Filed: March 29, 2006
    Date of Patent: April 7, 2015
    Assignee: Dai Nippon Printing Co., Ltd.
    Inventors: Koichi Mikami, Yukimitsu Iwata, Yoshihiro Nishimura, Takashi Kodama
  • Publication number: 20150093548
    Abstract: A mat is provided for use on a carpeted floor surface, a hard floor surface, or both, and can have a substantially planar upper body surface suitable for interaction with a chair or other support structure. A slip-resistant layer can be bonded to a substantially planar lower body surface of the mat. The slip-resistant layer can be in the form of strips or coextensive with the entire lower body surface. The slip-resistant layer can allow placement in applications requiring simultaneous placement on both carpeted and hard floor surfaces, yet facilitating stable placement on both surfaces.
    Type: Application
    Filed: September 29, 2014
    Publication date: April 2, 2015
    Inventor: Edward S. Robbins, III
  • Patent number: 8992802
    Abstract: An intermediate transfer member that includes a crosslinked poly(ether ether ketone) polymer, an optional conductive component, an optional polymer, and an optional release additive.
    Type: Grant
    Filed: February 21, 2013
    Date of Patent: March 31, 2015
    Assignee: Xerox Corporation
    Inventor: Jin Wu
  • Patent number: 8993132
    Abstract: A cubic boron nitride sintered body tool has, at least at a cutting edge, a cubic boron nitride sintered body composed of a cubic boron nitride particle and a binder phase. The binder phase contains at least Al2O3 and a Zr compound. On any straight line in the sintered body, the mean value of a continuous distance occupied by Al2O3 is 0.1-1.0 ?m, and the standard deviation of the continuous distance occupied by Al2O3 is not more than 0.8. On the straight line, X/Y is 0.1-1 where X represents the number of points of contact between Al2O3 and the Zr compound, and Y represents the sum of the number of points of contact between Al2O3 and cBN and the number of points of contact between Al2O3 and binder phase component(s) other than Al2O3 and the Zr compound.
    Type: Grant
    Filed: July 25, 2011
    Date of Patent: March 31, 2015
    Assignee: Sumitomo Electric Hardmetal Corp.
    Inventors: Katsumi Okamura, Machiko Abe, Satoru Kukino
  • Publication number: 20150083303
    Abstract: Disclosed are aspects of board finishing systems. For example, in various aspects, disclosed are joint compound compositions, wall assemblies, methods of treating walls, and products related to any of the foregoing, including reinforcement trim, e.g., for protecting corners where boards meet, fasteners, and tape. The joint compound preferably is a drying type composition with reduced shrinkage property, and includes binder and hollow spheres, resulting in an ultra lightweight formulation in some embodiments. The joint compound composition can be applied in a one-coat treatment in preferred embodiments. Other aspects of board finishing system accommodate such a one-coat treatment to thusly allow a user to manipulate the compound closer to the plane of board as compared with conventional formulations. Joint tape and reinforcement trim can include non-swelling synthetic paper facing material in some embodiments.
    Type: Application
    Filed: September 29, 2014
    Publication date: March 26, 2015
    Inventors: Robert H. Negri, Mark Miklosz
  • Publication number: 20150083461
    Abstract: An electrical conductor includes an ultra-thin layer of aluminum-doped zinc-oxide and a nano-layer of alumina in contact and conformal with a surface of the ultra-thin aluminum-doped zinc-oxide layer.
    Type: Application
    Filed: September 26, 2013
    Publication date: March 26, 2015
    Inventors: Mitchell Stewart BURBERRY, Lee William TUTT
  • Patent number: 8986824
    Abstract: A structure. The structure includes a substrate and a material adhered to said substrate. The material includes a structural layer and an interfacial layer. The structural layer includes at least one crosslinkable polymer and nanostructures having a predefined morphology. The nanostructures are surrounded by the at least one crosslinkable polymer in the structural layer. The interfacial layer essentially lacks nanostructures and includes essentially the at least one crosslinkable polymer.
    Type: Grant
    Filed: July 2, 2013
    Date of Patent: March 24, 2015
    Assignee: International Business Machines Corporation
    Inventors: Jennifer N. Cha, James L. Hedrick, Ho-Cheol Kim, Robert D. Miller, Willi Volksen
  • Patent number: 8986823
    Abstract: The present development is a process for coating a substrate with a microlayered extrusion coating, or for producing a laminate from a first substrate, a microlayered extrudate and a second substrate. The present development also includes a microlayered extrusion coating used for laminating two or more plastic extrudates. The microlayered extrusion coating comprises a microlayer core comprising a plurality of layers of gas barrier material having a thickness of less than five microns per layer with alternating tie layers. The microlayer core is sandwiched between polymeric boundary layers which are further sandwiched between polymeric skin layers. The present microlayered extrudate surprisingly exhibits a gas barrier significantly better than conventional thicker single barrier layers and increased opacity in the extrudate using white pigmented LDPE enhances the printed graphics in a laminate structure using a printed substrate.
    Type: Grant
    Filed: July 19, 2012
    Date of Patent: March 24, 2015
    Assignee: Bryce Corporation
    Inventors: Mark Montsinger, Michael Williams
  • Patent number: 8986829
    Abstract: A planarized fine particle layered body which has fine particles sufficiently bonded together, sufficient density, flat surface and uniform density from a deposition of fine particles formed by supplying the fine particles to a substrate by aerosol deposition method.
    Type: Grant
    Filed: January 9, 2007
    Date of Patent: March 24, 2015
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventor: Jun Akedo
  • Publication number: 20150079349
    Abstract: A hard faced surface comprises a metal substrate. Inserts are attached to the substrate as a covering layer on the substrate. Each insert comprises a thermally stable polycrystalline diamond (TSP) body (or polycrystalline diamond or cubic boron nitride) having a plan section, a contact surface and a flat top surface. A boundary coating on the ultra-hard body renders the body wettable by first braze material. A tungsten carbide cap is brazed with said first braze material to at least the top surface of the TSP block. The inserts are brazed to the substrate in a closely packed side-by-side formation with a second braze material that penetrates the gaps between the inserts and between the contact surface of the bodies and the metal substrate. The tungsten carbide caps of the inserts provide a gauge for the hard faced surface, which caps are ground in a finishing step exposing the caps and providing the hard faced surface with a desired dimension including an amount of the thickness of the caps.
    Type: Application
    Filed: June 16, 2014
    Publication date: March 19, 2015
    Applicant: CUTTING & WEAR RESISTANT DEVELOPMENTS LIMITED
    Inventor: Mark Russell
  • Publication number: 20150064450
    Abstract: To manufacture a chamber component for a processing chamber a first anodization layer is formed on a metallic article with impurities, the first anodization layer having a thickness greater than about 100 nm, and an aluminum coating is formed on the first anodization layer, the aluminum coating being substantially free from impurities. A second anodization layer can be formed on the aluminum coating.
    Type: Application
    Filed: August 19, 2014
    Publication date: March 5, 2015
    Inventors: Jennifer Y. Sun, Biraja P. Kanungo
  • Publication number: 20150064430
    Abstract: Disclosed is a heat insulation layer system for metallic components, in particular for components stressed by high temperatures and/or hot gas, of a flow machine, having at least one heat insulation layer of a material comprising at least one component having at least one phase which stoichiometrically contains from 1 to 80 mol % of Mx2O3, from 0.5 to 80 mol % of MyO with Al2O3 and unavoidable impurities as balance, where Mx is selected from the elements lanthanum, neodymium, chromium or mixtures thereof and My is selected from alkaline earth metals, transition metals, rare earths or mixtures thereof, where an Al2O3 layer is present on the at least one heat insulation layer on the side facing away from the component.
    Type: Application
    Filed: September 3, 2014
    Publication date: March 5, 2015
    Inventor: Philipp DOEBBER
  • Publication number: 20150053339
    Abstract: The invention provides a label composite that includes a print receptive layer, an intermediate extensible layer, a structural layer, and a primary adhesive. The print receptive layer is adapted to withstand temperatures up to 1200° F. (649° C.) without loss of any of readability, cracking, peeling or edge lifting. The intermediate extensible adhesive layer is provided on one side of the print receptive layer, and the intermediate extensible adhesive layer is capable of surviving temperatures up to 1200° F. The structural layer is adhered on a first side of the structural layer to the intermediate extensible adhesive layer, and the structural layer is adapted to withstand temperatures up to 1200° F. The primary adhesive layer is capable of surviving temperatures up to 1200° F. and is adapted to form a bond between an elevated temperature material and the structural layer of the label composite.
    Type: Application
    Filed: August 25, 2014
    Publication date: February 26, 2015
    Inventors: Ronald Ducharme, Kenneth Koldan, Richard T. Skov
  • Patent number: 8956689
    Abstract: A method for producing a ferroelectric thin film comprising: coating a composition for forming a ferroelectric thin film on a base electrode of a substrate having a substrate body and the base electrode that has crystal faces oriented in the (111) direction, calcining the coated composition, and subsequently performing firing the coated composition to crystallize the coated composition, and thereby forming a ferroelectric thin film on the base electrode, wherein the method includes formation of an orientation controlling layer by coating the composition on the base electrode, calcining the coated composition, and firing the coated composition, where an amount of the composition coated on the base electrode is controlled such that a thickness of the orientation controlling layer after crystallization is in a range of 35 nm to 150 nm, and thereby controlling the preferential crystal orientation of the orientation controlling layer in the (100) plane.
    Type: Grant
    Filed: May 15, 2012
    Date of Patent: February 17, 2015
    Assignee: Mitsubishi Materials Corporation
    Inventors: Toshiaki Watanabe, Hideaki Sakurai, Nobuyuki Soyama, Toshihiro Doi
  • Patent number: 8951603
    Abstract: A method for producing a ferroelectric thin film comprising: coating a composition for forming a ferroelectric thin film on a base electrode of a substrate having a substrate body and the base electrode that has crystal daces oriented in the (111) direction, calcining the coated composition, and subsequently performing firing the coated composition to crystallize the coated composition, and thereby forming a ferroelectric thin film on the base electrode, wherein the method includes formation of an orientation controlling layer by coating the composition on the base electrode, calcining the coated composition, and firing the coated composition, where an amount of the composition coated on the base electrode is controlled such that a thickness of the orientation controlling layer after crystallization is in a range of 5 nm to 30 nm, and thereby controlling the preferential crystal orientation of the orientation controlling layer to be in the (110) plane.
    Type: Grant
    Filed: May 15, 2012
    Date of Patent: February 10, 2015
    Assignee: Mitsubishi Materials Corporation
    Inventors: Toshiaki Watanabe, Hideaki Sakurai, Nobuyuki Soyama, Toshihiro Doi
  • Patent number: 8945704
    Abstract: A multi-layer film which is excellent in transferability to a metal shape during thermoforming and hardly produces uneven thickness, wrinkles, whitening or cracks on the surface of the obtained molded article. The multi-layer film has a layer (layer A) containing a polycarbonate resin and a polyester-based thermoplastic elastomer and a layer (layer B) containing an acrylic resin, wherein the layer B is formed on at least one side of the layer A.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: February 3, 2015
    Assignee: Teijin Chemicals, Ltd.
    Inventors: Junichi Shibata, Hideaki Nitta, Shoichi Maekawa
  • Patent number: 8945708
    Abstract: Decorative ionomeric surfaced film and sheet (e.g., multilayer co-extruded polymer) and articles made therefrom (e.g., automotive panels and parts) exhibiting good weatherability, mar resistance, and surface appearance of a high quality automotive finish (including color, haze, gloss, and DOI) and economical process for making (e.g., co-extrusion) and using (e.g., thermoforming and injection backfilling) the same.
    Type: Grant
    Filed: January 17, 2012
    Date of Patent: February 3, 2015
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Randall Allen Vogel, I-Hwa Lee, Sumita Sanjeevi Ranganathan, Lori J. Pike
  • Publication number: 20150017430
    Abstract: The invention relates to a component (1) having a coating (3) that is metallurgically bonded on as well as thermally sprayed on and re-melted. In order to prevent wear phenomena from continuing to occur when force impacts occur in the component (1) and further surface stress occurs, the invention provides that the coating (3) is provided with a thermal spray layer (4).
    Type: Application
    Filed: March 11, 2013
    Publication date: January 15, 2015
    Applicant: Thermico GmbH & Co. KG
    Inventor: Goetz Matthaeus
  • Publication number: 20150017429
    Abstract: In one aspect, methods of making a carbon coating are described herein. In some implementations, a method of making a carbon coating comprises applying a first adhesive material to a substrate surface to provide an adhesive surface; rolling a carbon source over the adhesive surface to provide a carbon layer on the adhesive surface; and rolling an adhesive roller over the carbon layer to remove some but not all of the carbon of the carbon layer to provide the carbon coating.
    Type: Application
    Filed: July 12, 2013
    Publication date: January 15, 2015
    Inventors: Angela W. Li, Jeffrey H. Hunt, Wayne R. Howe
  • Patent number: 8926868
    Abstract: A superconducting article comprises a substrate, a buffer layer overlying the substrate, and a high-temperature superconducting (HTS) layer overlying the buffer layer. The HTS layer includes a plurality of nanorods. A method of forming a superconducting article comprises providing a substrate, depositing a buffer layer overlying the substrate; forming a nanodot array overlying the buffer layer; depositing an array of nanorods nucleated on the nanodot array; and depositing a high-temperature superconducting (HTS) layer around the array of nanorods and overlying the buffer layer.
    Type: Grant
    Filed: July 27, 2010
    Date of Patent: January 6, 2015
    Assignees: University of Houston System, Superpower, Inc.
    Inventors: Venkat Selvamanickam, Goran Majkic, Maxim Martchevskii
  • Publication number: 20150001519
    Abstract: An electrode foil functioning as both a supporting substrate and an electrode and suitable for low-cost high-efficiency production of flexible electronic devices having functionality on their both sides is provided. An electrode foil of the present invention comprises a metal foil, wherein the metal foil has a thickness of 1 to 250 ?m, and wherein the outermost surfaces on both sides of the electrode foil are ultra-smooth surfaces each having an arithmetic mean roughness Ra of 30.0 nm or less as determined in accordance with JIS B 0601-2001.
    Type: Application
    Filed: July 27, 2012
    Publication date: January 1, 2015
    Applicant: MITSUI MINING & SMELTING CO., LTD.
    Inventors: Yoshinori Matsuura, Nozomu Kitajima, Toshimi Nakamura, Masaharu Myoi
  • Publication number: 20150004400
    Abstract: A support assembly includes a first functional element, a second functional element adjacent to the cooling plate, and an adhesive layer disposed between the cooling plate and the substrate. An intermediate layer is disposed between the cooling plate and the substrate. The intermediate layer has a melting temperature less than a temperature that the adhesive layer melts or decomposes at in order to provide for recycling of the support assemblycar.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 1, 2015
    Inventors: John Lilleland, Richard Phaler
  • Publication number: 20140377544
    Abstract: Disclosed herein are a composite material including an anisotropic filler and a component having directionality, wherein the component having directionality has a length in a range of 1.5 to 20 based on a length of the anisotropic filler, a method for preparing thereof, and a substrate using the same as an insulation layer. According to the exemplary embodiment of the present invention, in the composite material using the anisotropic filler, the component having directionality is used for controlling the dispersion directionality of the anisotropic filler, whereby at the time of orientation of the component having directionality, the directionality in which the anisotropic filler is dispersed may be controlled to improve the dispersion of the anisotropic filler.
    Type: Application
    Filed: October 2, 2013
    Publication date: December 25, 2014
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Ye Jun PARK, Jun Young KIM, Jung Wook SEO, Jun Hyeon KIM, Byung Kun KIM
  • Publication number: 20140377522
    Abstract: One or more aspects of the disclosure pertain to an article including an optical film structure disposed on a substrate, which may include a strengthened or non-strengthened substrate that may be amorphous or crystalline, such that the article exhibits scratch resistance and retains the same or improved optical properties as the substrate, without the optical film structure disposed thereon. In one or more embodiments, the article exhibits an average transmittance of 85% or more, over the visible spectrum (e.g., 380 nm-780 nm). Embodiments of the optical film structure include aluminum-containing oxides, aluminum-containing oxy-nitrides, aluminum-containing nitrides (e.g., AlN) and combinations thereof. The optical film structures disclosed herein also include a transparent dielectric including oxides such as silicon oxide, germanium oxide, aluminum oxide and a combination thereof. Methods of forming such articles are also provided.
    Type: Application
    Filed: September 9, 2014
    Publication date: December 25, 2014
    Inventors: Karl William Koch, III, Charles Andrew Paulson
  • Patent number: 8911878
    Abstract: Metal-clad polymer articles containing structural fine-grained and/or amorphous metallic coatings/layers optionally containing solid particulates dispersed therein. The fine-grained and/or amorphous metallic coatings are particularly suited for strong and lightweight articles, precision molds, sporting goods, automotive parts and components exposed to thermal cycling although the CLTE of the metallic layer and the one of the substrate is mismatched. The interface between the metallic layer and the polymer is suitably pretreated to withstand thermal cycling without failure.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: December 16, 2014
    Assignee: Integran Technologies Inc.
    Inventors: Klaus Tomantschger, Jonathan McCrea, Nandakumar Nagarajan, Francisco Gonzalez, Gino Palumbo, Konstantinos Panagiotopoulos, Herath Katugaha
  • Patent number: 8911857
    Abstract: The disclosure describes a coating for medical implants, in particular, vascular stents, said coating comprising silicon dioxide, towards medical implants with a coating containing silicon dioxide and towards a method for their production. The coating can contain additional admixtures and have functionalization coats. The substrate of the coating is produced from a durable material, preferably from a stainless steel.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: December 16, 2014
    Assignee: Axetis AG
    Inventor: Carlo Civelli
  • Patent number: 8911642
    Abstract: A heat conduction composition is proposed, comprising at least one polymer and a heat-conducting auxiliary material that has an especially high heat conductivity and at the same time has a high mechanical strength. To this end, the heat-conducting auxiliary material comprises particles that in turn are made up of primary particles and that have a mass-specific surface area of 1.3 m2/g or less. Also described are a heat-conducting surface element manufactured from said heat conduction composition as well as application possibilities thereof.
    Type: Grant
    Filed: September 23, 2009
    Date of Patent: December 16, 2014
    Assignee: tesa SE
    Inventors: Klaus Keite-Telgenbüscher, Anja Staiger, Florian Meyer
  • Patent number: 8911860
    Abstract: An electrically insulating material for high voltage generators is provided. The electrically insulating material comprises a polymer based dielectric material filled with nanoparticles, wherein the voltage at which partial discharges start in the polymer based dielectric material is greater than the voltage at which partial discharges start in an unfilled polymer based dielectric material.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: December 16, 2014
    Assignee: General Electric Company
    Inventor: Hans Jedlitschka
  • Publication number: 20140363596
    Abstract: An article includes a body that is coated with a ceramic coating. The ceramic coating may include Y2O3 in a range between about 45 mol % to about 99 mol %, ZrO2 in a range between about 0 mol % to about 55 mol %, and Al2O3 in a range between about 0 mol % to about 10 mol %. The ceramic coating may alternatively include Y2O3 in a range between about 30 mol % to about 60 mol %, ZrO2 in a range between about 0 mol % to about 20 mol %, and Al2O3 in a range between about 30 mol % to about 60 mol %.
    Type: Application
    Filed: July 30, 2013
    Publication date: December 11, 2014
    Applicant: Applied Materials, Inc.
    Inventors: Jennifer Y. Sun, Biraja P. Kanungo, Tom Cho
  • Patent number: 8906515
    Abstract: Metal-clad polymer articles containing structural fine-grained and/or amorphous metallic coatings/layers optionally containing solid particulates dispersed therein, are disclosed. The fine-grained and/or amorphous metallic coatings are particularly suited for strong and lightweight articles, precision molds, sporting goods, automotive parts and components exposed to thermal cycling although the coefficient of linear thermal expansion (CLTE) of the metallic layer and the substrate are mismatched. The interface between the metallic layer and the polymer is suitably pretreated to withstand thermal cycling without failure.
    Type: Grant
    Filed: May 24, 2010
    Date of Patent: December 9, 2014
    Assignee: Integran Technologies, Inc.
    Inventors: Klaus Tomantschger, Jonathan McCrea, Nandakumar Nagarajan, Francisco Gonzalez, Gino Palumbo, Konstantinos Panagiotopoulos, Herath Katugaha, Diana Facchini, Jared J. Victor, Uwe Erb
  • Patent number: 8906498
    Abstract: A method of making a sandwich of impact resistant material, the method comprising: providing a powder; performing a spark plasma sintering process on powder to form a tile; and coupling a ductile backing layer to the tile. In some embodiments, the powder comprises micron-sized particles. In some embodiments, the powder comprises nano-particles. In some embodiments, the powder comprises silicon carbide particles. In some embodiments, the powder comprises boron carbide particles. In some embodiments, the ductile backing layer comprises an adhesive layer. In some embodiments, the ductile backing layer comprises: a layer of polyethylene fibers; and an adhesive layer coupling the layer of polyethylene fibers to the tile, wherein the adhesive layer comprises a thickness of 1 to 3 millimeters.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: December 9, 2014
    Assignee: SDCmaterials, Inc.
    Inventor: Maximilian A. Biberger
  • Publication number: 20140355126
    Abstract: An electronic device comprising a cover plate is disclosed. The cover plate comprises one or more thin sapphire layers having a thickness of from about 50 microns to about 500 microns. Also disclosed are methods for preparing these thin sapphire layers.
    Type: Application
    Filed: May 28, 2014
    Publication date: December 4, 2014
    Applicant: GTAT CORPORATION
    Inventors: Thomas Gutierrez, Vikram Singh
  • Patent number: 8900701
    Abstract: A fibrous columnar structure aggregate having excellent mechanical properties, a high specific surface area, excellent heat resistance, excellent pressure-sensitive adhesive properties under temperature conditions ranging from room temperature to a high temperature, and such pressure-sensitive adhesive property that its adhesive strength for adherends different from each other in surface free energy does not change (the aggregate is free of adherend selectivity). The fibrous columnar structure aggregate (1) includes fibrous columnar structures having a plurality of diameters, in which the distribution width of the diameter distribution of the fibrous columnar structures having the plurality of diameters is 10 nm or more, and the relative frequency of the mode of the diameter distribution is 30% or less.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: December 2, 2014
    Assignee: Nitto Denko Corporation
    Inventors: Youhei Maeno, Yoshikazu Nakayama, Kaori Hirahara
  • Patent number: 8900507
    Abstract: A laser-engraveable composition comprises one or more elastomeric rubbers including at least 10 parts of one or more CLCB EPDM elastomeric rubbers, based on parts per hundred of the total weight of elastomeric rubbers (phr). The laser-engraveable composition further comprises 2-30 phr of a near-infrared radiation absorber and either 1-80 phr of an inorganic, non-infrared radiation absorber filler, or a vulcanizing composition that comprises a mixture of at least two peroxides. One first peroxide has a t90 value of 1-6 minutes as measured at 160° C., and a second peroxide has a t90 value of 8-20 minutes as measured at 160° C. This laser-engraveable composition can be used to form various flexographic printing precursors that can be laser-engraved to provide relief images in flexographic printing plates, printing cylinders, or printing sleeves.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: December 2, 2014
    Assignee: Eastman Kodak Company
    Inventors: Ophira Melamed, Ido Gal, Limor Dahan
  • Publication number: 20140345914
    Abstract: A metal-ceramic substrate and to a method for the production thereof. The metal-ceramic substrate having at least one ceramic layer (2), which is provided on a first surface side (2a) with at least one first metallization (3) and on a second surface side (2b), opposite from the first surface side (2a), with a second metallization (4), wherein the first metallization (3) is formed by a film or layer of copper or a copper alloy and is connected to the first surface side (2a) of the ceramic layer (2) with the aid of a “direct copper bonding” process. The second metallization (4) is formed by a layer of aluminum or an aluminum alloy.
    Type: Application
    Filed: February 13, 2013
    Publication date: November 27, 2014
    Inventors: Andreas Meyer, Christoph Wehe, Jürgen Schulz-Harder, Karsten Schmidt
  • Publication number: 20140349084
    Abstract: Composite tile systems and methods are disclosed. Embodiments of this disclosure can comprise a composite floor tile having a ceramic upper layer with one or more reinforcing layers. The reinforcing layer or layers can comprise a reinforcing material, such as fiberglass, and an adhesive. An under layer can be disposed under, or integrated with, the reinforcing layer, and can comprise a ceramic or a polymer laminate. A bottom layer can comprise a pressure sensitive adhesive, or other adhering system, that attaches to various substrates. Embodiments of this disclosure can improve ease of installation of tile, improve strength of tile, and reduce the weight of tile, among other advantages.
    Type: Application
    Filed: May 27, 2014
    Publication date: November 27, 2014
    Applicant: Mohawk Carpet Corporation
    Inventors: Rahul Patki, Jason Abercrombie
  • Publication number: 20140342127
    Abstract: A method for transfer of a two-dimensional material includes forming a spreading layer of a two-dimensional material on a first substrate. The spreading layer has at least one monolayer. A stressor layer is formed on the spreading layer. The stressor layer is configured to apply stress to a closest monolayer of the spreading layer. The closest monolayer is exfoliated by mechanically splitting the spreading layer wherein at least the closest monolayer remains on the stressor layer. The at least one monolayer is stamped against a second substrate to adhere remnants of the two-dimensional material on the at least one monolayer to the second substrate to provide a single monolayer on the stressor layer. The single monolayer is transferred to a third substrate.
    Type: Application
    Filed: May 15, 2013
    Publication date: November 20, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Christos D. Dimitrakopoulos, Keith E. Fogel, Jeehwan Kim, Hongsik Park
  • Patent number: 8888464
    Abstract: Method for fabricating a reinforcing coating for a part made of composite material. Pre-impregnated reinforcing fibers are used in the form of slivers and said slivers are laid on the part in two layers of longitudinal slivers by being placed thereon. This fabrication makes provision for using an angular orientation for the slivers of each layer respectively of 0° and of some other angle relative to said determined direction of the solid body for covering using an interlaced pattern type that gives layer crossing lines parallel to a longitudinal axis of the solid body for covering, which pattern type is selected to form interlacing patterns that limit the number of layer crossing lines along the longitudinal axis of the solid body for covering to a single line.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: November 18, 2014
    Assignee: Airbus Helicopters
    Inventors: Jacques Gaffiero, André Amari, Bénédicte Rinaldi, Didier Trallero
  • Publication number: 20140335349
    Abstract: A coated glass ceramic cooking plate is provided, which has a multilayer coating on its lower surface. The multilayer coating includes a metallic layer of an alloy including components chromium, iron, nickel, and silicon. The silicon content of the alloy is at least 2 atomic percent. This metallic layer is covered by a barrier layer in form of an oxide of an alloy including components chromium, iron, nickel, and silicon, also with a silicon content of at least 2 atomic percent. The molar content of oxygen of the barrier layer is greater by at least a factor of 10 than that of the metallic layer.
    Type: Application
    Filed: May 7, 2014
    Publication date: November 13, 2014
    Applicant: SCHOTT AG
    Inventors: Christian Henn, Eveline Rudiger-Voigt, Stephanie Mangold, Tanja Woywod
  • Publication number: 20140332782
    Abstract: An adhesive film, a method for preparing an adhesive film, and an organic electronic device are provided. According to the adhesive film in exemplary embodiments of the present invention, fluidity of an adhesive can be controlled in the case of applying the adhesive between objects to be subsequently adhered to each other and then thermal-compressing by including an adhesive layer with cured side faces contacting with the outside. The adhesive film is used, for example for assembling a panel and the like, and thereby a defect rate at the time of assembling a panel and the like can be reduced and excellent work characteristics can be provided. In addition, before being applied to a panel or the like, a moisture absorbent included inside an adhesive layer of an adhesive film can be protected from external moisture or the like, thereby being easily stored, and also when it is applied to a product, reliability of life span, and the like can be secured.
    Type: Application
    Filed: July 22, 2014
    Publication date: November 13, 2014
    Inventors: Hyun Jee YOO, Suk Ky CHANG, Seung Min LEE
  • Publication number: 20140329081
    Abstract: Embodiments of the disclosed technology provide methods of boronizing titanium and other metals and metal alloys. The method proceeds, in an embodiment of the disclosed technology, by using a boron source, and placing it in a heated environment, followed by a reduced pressure environment, as is described in the disclosure. In a solid phase embodiment of the disclosure, boronized stainless steel alloys are produced having zero galling at 17,000 psi.
    Type: Application
    Filed: July 16, 2014
    Publication date: November 6, 2014
    Applicant: UNIVERSAL GLOBAL PRODUCTS, LLC.
    Inventors: Svetoslav Zlatev, Roumiana Petrova
  • Patent number: 8877343
    Abstract: The present invention provides a laminated polyester film which can be prevented from suffering from occurrence of interference fringes owing to reflection of external light and is excellent in adhesion to various surface functional layers such as a hard coat. The laminated polyester film of the present invention comprises a polyester film and a coating layer formed on at least one surface of the polyester film which is produced by applying a coating solution comprising a compound having a condensed polycyclic aromatic structure and an oxazoline compound or an epoxy compound thereonto, which coating layer has a thickness of 0.04 to 0.15 ?m.
    Type: Grant
    Filed: May 31, 2010
    Date of Patent: November 4, 2014
    Assignee: Mitsubishi Plastics, Inc.
    Inventors: Taishi Kawasaki, Masato Fujita