Including Structurally Defined Particulate Matter Patents (Class 428/372)
  • Publication number: 20140363670
    Abstract: Optical preforms and methods for forming optical preforms are disclosed. According to one embodiment, a method for producing an optical preform includes compressing silica-based glass soot to form a porous optical preform comprising a soot compact. The porous optical preform is heated to a dwell temperature greater than or equal to 100° C. Thereafter, the porous optical preform is humidified at the dwell temperature in a water-containing atmosphere having a dew point greater than or equal to 30° C. to form a humidified porous optical preform. The soot compact portion of the humidified porous optical preform generally comprises greater than or equal to 0.5 wt. % water.
    Type: Application
    Filed: June 3, 2014
    Publication date: December 11, 2014
    Applicant: CORNING INCORPORATED
    Inventors: Dana Craig Bookbinder, Steven Bruce Dawes, Richard Michael Fiacco, Andrey V. Filippov, Pushkar Tandon
  • Patent number: 8895459
    Abstract: The present invention relates to a new bicomponent fiber, a nonwoven fabric comprising said new bicomponent fiber and sanitary articles made therefrom. The bicomponent fiber contains a polyethylene-based resin forming at least part of the surface of the fiber longitudinally continuously and is characterized by a Co-monomer Distribution Constant greater than about 45, a recrystallization temperature between 85° C. and 110° C., a tan delta value at 0.1 rad/sec from about 15 to 50, and a complex viscosity at 0.1 rad/second of 1400 Pa·sec or less. The nonwoven fabric comprising the new bicomponent fiber according to the instant invention are not only excellent in softness, but also high in strength, and can be produced in commercial volumes at lower costs due to higher thoughputs and requiring less energy.
    Type: Grant
    Filed: January 29, 2013
    Date of Patent: November 25, 2014
    Assignee: Trevira GmbH
    Inventors: Jorg Dahringer, Bernd Blech, Werner Stefani, Werner Grasser, Mehmet Demirors, Gert Claåsen
  • Publication number: 20140335354
    Abstract: To provide a polyester composite fiber having a heat-shielding property due to high reflectance in an infrared wavelength range (800 to 3000 nm) easy to be changed into thermal energy, and having color development property comparable to that of conventional polyester fibers. The composite fiber is a core-sheath type composite fiber including a core component and a sheath component of 10:90 to 30:70 (mass ratio). The core component includes a thermoplastic polymer including a sunlight shielding material having an average particle size of 0.5 ?m or smaller in 8-70 wt %. The sheath component includes a polyester-type polymer including heat-shielding fine particles in 0.5-10 wt %, the heat-shielding fine particles capable of maintaining color development property and having an average particle size of 0.1 ?m or smaller which is smaller than that of the sunlight shielding material.
    Type: Application
    Filed: July 28, 2014
    Publication date: November 13, 2014
    Applicant: KURARAY CO., LTD.
    Inventors: DAISUKE OHGA, Hitoshi Nakatsuka, Shinya Kawakado, Eriko Takahashi, Shoji Sueyoshi
  • Patent number: 8883303
    Abstract: The invention pertains to a method for making a polymer-additive composite particle from a dope by jet spinning the dope to obtain a pulp, fibril or fibrid, wherein the solvent of the dope is selected from N-methyl-2-pyrrolidone, N,N?-dimethylformamide, N,N?-dimethylacetamide, tetramethylurea, and 4 to 75 wt % of a composition consisting of 2 to 95 wt % of a para-aramid polymer and 5-98 wt % of a solid additive material, to a total of 100 wt %, and wherein the aramid polymer is dissolved in the solvent; or coagulating the dope by means of a rotor-stator apparatus in which the polymer solution is applied through the stator on the rotor so that the precipitating polymer-additive composite particle is subjected to shear forces while they are in a plastic deformable stage.
    Type: Grant
    Filed: February 12, 2013
    Date of Patent: November 11, 2014
    Assignee: Teijin Aramid B.V.
    Inventors: Anton Johannes Josef Hendriks, Mirjam Ellen Oldenzeel, Johannus Maria Bergmans, Tetsuya Akamatsu
  • Publication number: 20140329087
    Abstract: The present invention aims to provide and insulated wire having an insulation layer which is excellent in insulation properties and has a low dielectric constant. The insulated wire of the present invention includes a conductor (A) and an insulation layer (B) formed around the periphery of the conductor (A). The insulation layer (B) is formed from a resin composition containing an aromatic polyether ketone resin (I) and a fluororesin (II). The fluororesin (II) is a copolymer of tetrafluoroethylene and a perfluoroethylenic unsaturated compound represented by the following formula (1): CF2?CF—Rf1??(1) wherein Rf1 represents —CF3 or —ORf2, and Rf2 is a C1-C5 perfluoroalkyl group. The aromatic polyether ketone resin (I) and the fluororesin (II) satisfy a melt viscosity ratio (I)/(II) of 0.3 to 5.0.
    Type: Application
    Filed: November 29, 2012
    Publication date: November 6, 2014
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Haruhisa Masuda, Yuki Adachi
  • Patent number: 8871343
    Abstract: A partial-discharge-resistant insulating varnish has a polyamide-imide enamel varnish and an organo-silica sol that are dispersed in a solvent. The solvent has 50 to 100% by weight of ?-butyrolactone. An insulated wire has a conductor, and a partial-discharge-resistant insulation coating film formed on the surface of the conductor. The partial-discharge-resistant insulation coating film is made of the partial-discharge-resistant insulating varnish.
    Type: Grant
    Filed: December 19, 2005
    Date of Patent: October 28, 2014
    Assignee: Hitachi Metals, Ltd.
    Inventors: Hideyuki Kikuchi, Yuzo Yukimori
  • Publication number: 20140312006
    Abstract: A composite wire for use with a wire arc spray system and related methods. The composite wire can include: a low melting point material at a core region thereof and a cladding including a metal surrounding the core region, the low metal point material having a melting point less than that of the metal, wherein the low melting point material includes a polymer in the form of a powder having particles having a size of from approximately 1 nanometer to approximately 100 nanometers.
    Type: Application
    Filed: July 2, 2014
    Publication date: October 23, 2014
    Inventors: Joshua Lee Margolies, Surinder Singh Pabla
  • Patent number: 8852733
    Abstract: The present disclosure relates to a fibrous veil and methods of making the same. The fibrous veil includes a base having a plurality of fibers, each of the plurality of fibers having an average diameter ranging from about 7,000 nm to about 9,000 nm. Graphite nano-platelets are attached to at least some of the plurality of fibers without a polymeric binder.
    Type: Grant
    Filed: June 16, 2011
    Date of Patent: October 7, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Choongyong Kwag, Chen-Shih Wang
  • Publication number: 20140295185
    Abstract: Disclosed herein are monofilament fibers comprising at least one polymeric resin and at least one coated filler, wherein the at least one coated filler has an average particle size of less than or equal to about 3 microns and/or has a top cut of less than or equal to about 10 microns, and wherein the at least one coated filler is present in an amount of less than or equal to about 50% by weight, relative to the total weight of the monofilament fibers. Also disclosed herein are methods for producing monofilament fibers comprising adding ground calcium carbonate to at least one polymeric resin and extruding the resulting mixture.
    Type: Application
    Filed: February 28, 2014
    Publication date: October 2, 2014
    Applicant: Imerys Pigments, Inc.
    Inventor: LARRY McAMISH
  • Publication number: 20140272411
    Abstract: Herein is provided a fiber that includes a cladding material disposed along a longitudinal-axis fiber length and a plurality of discrete and disconnected high-stress domains that are disposed as a sequence along a longitudinal line parallel to the longitudinal fiber axis in at least a portion of the fiber length. Each high stress domain has an internal pressure of at least 0.1 GPa and comprises a material that is interior to and different than the fiber cladding material.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 18, 2014
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Alexander Gumennik, Yoel Fink, Benjamin Jean-Baptiste Grena, John D. Joannopoulos
  • Patent number: 8834998
    Abstract: A variable stiffness tow cable comprising a plurality of strands. Most of the strands comprise a polymer with interstitial spaces filled with a ferrofluid comprising nanoparticles. And, least one of the strands is a nanoparticle control field source. The stiffness is varied for a number of control objectives such to dampen motion. In another application, strum is controlled by electrical input rather than by changing the length of tow cable let out.
    Type: Grant
    Filed: July 6, 2010
    Date of Patent: September 16, 2014
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: Joseph P. Teter
  • Patent number: 8829103
    Abstract: A composite material includes: carbon fibers having an average fiber length of more than about 10 mm and about 100 mm or less; and a thermoplastic resin. The carbon fibers are substantially two-dimensionally-randomly oriented. The composite material includes a carbon fiber bundle (A) in a ratio of more than 0 volume % and less than about 30 volume % to a total volume of the carbon fibers, the carbon fiber bundle (A) including the carbon fibers of a critical single fiber number defined by formula (1) or more. An average number (N) of the carbon fibers in the carbon fiber bundle (A) satisfies formula (2). Critical single fiber number=600/D??(1) 1.0×104/D2<N<2.5×104/D2??(2) D is an average fiber diameter (?m) of the carbon fibers.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: September 9, 2014
    Assignee: Teijin Limited
    Inventors: Yuhei Konagai, Yutaka Kondo, Naoaki Sonoda
  • Patent number: 8802229
    Abstract: Meltblown lyocell fibers incorporating polyolefinic hydrophobic polymers are disclosed. The polymer is distributed fairly uniformly within the fiber and exists as approximately one to two micron diameter domains. The fibers have a high hemicellulose level, show reduced water retention values and have varying diameters depending on processing conditions. The fibers have a brightness of at least 60.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: August 12, 2014
    Assignee: Weyerhaeuser NR Company
    Inventor: Mengkui Luo
  • Patent number: 8802230
    Abstract: An electrically-insulative coating for minimizing an electrical conductivity of a metal substrate includes a polymer component formed from a monomer precursor, and a powder component substantially dispersed in the polymer component. The powder component is present in the electrically-insulative coating in an amount of from about 5 parts to about 80 parts by weight based on 100 parts by weight of the electrically-insulative coating. The electrically-insulative coating does not substantially degrade when exposed to from about 100 V to about 330 V at a temperature of from about ?50 ° C. to about 500 ° C., and has a dielectric strength of at least about 2,000 VAC/mil. An electrically-insulative coating system and a method of forming an electrically-insulative coating on a metal substrate are also disclosed.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: August 12, 2014
    Assignee: GM Global Technology Operations LLC
    Inventor: Yucong Wang
  • Publication number: 20140220341
    Abstract: Disclosed are a method of fabricating a nano wire and a nano wire complex. The method of fabricating a nano wire includes forming a plurality of seed particles by allowing a first ion to react with a second ion in a solvent, and forming a metallic nano wire by adding and heating a metallic compound in the solvent.
    Type: Application
    Filed: June 25, 2012
    Publication date: August 7, 2014
    Applicant: LG INNOTEK CO., LTD.
    Inventors: Joon Rak Choi, Jong Woon Moon, Young Sun You, Kyoung Hoon Chai
  • Publication number: 20140212664
    Abstract: Provided in one embodiment is a method of forming an inorganic nanowire, comprising: providing an elongated organic scaffold; providing a plurality of inorganic nanoparticles attached to the organic scaffold along a length of the organic scaffold; and fusing the nanoparticles attached to the organic scaffold to form an inorganic nanowire.
    Type: Application
    Filed: August 27, 2013
    Publication date: July 31, 2014
    Applicants: Massachusetts Institute of Technology, Board of Regents, The University of Texas System
    Inventors: Angela M. BELCHER, Chuanbin MAO, Daniel J. SOLIS
  • Patent number: 8790772
    Abstract: A wound friction coating and a method for the production thereof.
    Type: Grant
    Filed: December 24, 2009
    Date of Patent: July 29, 2014
    Assignee: Schaeffler Technologies AG & Co. KG
    Inventors: Tim-Florian Gerbing, Christian Spandern
  • Publication number: 20140205836
    Abstract: A composite cord includes a rubber core and a rubber sheath surrounding, at least in part, the rubber core. A formulation of the core is different from that of the sheath. The rubber core includes at least one diene elastomer and more than 30 phr of a filler A. The filler A includes nanoparticles having a weight-average size of less than 500 nm. The rubber sheath includes at least one diene elastomer, from 0 to less than 30 phr of a filler A?, and more than 70 phr of a filler B. The filler A? includes nanoparticles having a weight-average size of less than 500 nm. The filler B includes microparticles having a weight-median size of greater than 1 ?m.
    Type: Application
    Filed: May 15, 2012
    Publication date: July 24, 2014
    Applicants: MICHELIN RECHERCHE ET TECHNIQUE S.A., COMPAGNIE GENERALE DES ETABLISSEMENTS MICHELIN
    Inventors: Jean-Denis Hidrot, Vincent Abad
  • Publication number: 20140205831
    Abstract: A pre-impregnated yarn having a bundle made of reinforcing fiber filaments impregnated with a first resin composition infiltrated into the pre-impregnated yarn and at least partially connected via the first resin composition. The first resin composition contains at least two bisphenol A epichlorohydrin resins H1 and H2 in a weight ratio H1:H2 of 1.1 to 1.4, and an aromatic polyhydroxy ether P1. The pre-impregnated yarn has a second resin composition on the bundle outer side in the form of adhesive particles or drops. The second resin composition is solid at ambient temperatures and has a melting temperature in the range from 80 to 150° C. The bundle interior and at least 50% of the surface of the bundle outer side are free of the second resin composition.
    Type: Application
    Filed: July 20, 2012
    Publication date: July 24, 2014
    Applicant: TOHO TENAX EUROPE GMBH
    Inventors: Markus Schneider, Silke Stüsgen, Silke Witzel, Bernd Wohlmann
  • Patent number: 8784988
    Abstract: The instant invention generally provides polymer inorganic-particulate composite fiber comprising a molecularly self-assembling material and an inorganic-particulate, and a process of making and an article comprising the polymer inorganic-particulate composite fiber.
    Type: Grant
    Filed: November 20, 2009
    Date of Patent: July 22, 2014
    Assignee: Dow Global Technologies LLC
    Inventors: Leonardo C. Lopez, Scott T. Matteucci
  • Publication number: 20140199511
    Abstract: This invention relates to certain modified nanoparticles grafted with polymers comprise sulfonated benzene groups and preparation thereof. This invention also relates to certain polyester compositions comprising the modified nanoparticles, and their use to improve cationic dyeability of said polyester compositions.
    Type: Application
    Filed: June 22, 2012
    Publication date: July 17, 2014
    Applicant: E I DU PONT DE NEMOURS AND COMPANY
    Inventors: Fanliang Meng, Xiaocong Shao
  • Publication number: 20140186622
    Abstract: A composite flame retardant which exhibits excellent flame retardancy and high dispersibility in a resin and rarely experiences the deterioration of mechanical strength, and a resin composition comprising the composite flame retardant. The composite flame retardant contains (i) 100 parts by weight of magnesium hydroxide particles (A) having an average thickness of 10 to 100 nm, an average width of 2.4 ?m or more and an average aspect ratio of 20 to 120 and (ii) 100 to 900 parts by weight of magnesium hydroxide particles (B) having an average width of 1 ?m or less and an average aspect ratio of less than 20.
    Type: Application
    Filed: April 9, 2013
    Publication date: July 3, 2014
    Applicant: Kyowa Chemical Industry Co., Ltd.
    Inventors: Daisuke Kudo, Kohei Oohori, Hitoshi Manabe, Shigeo Miyata
  • Patent number: 8759472
    Abstract: A polyamide-imide resin insulating paint according to the present invention includes polyamide-imide resin containing no halogen element in its molecular chain which is dissolved in a polar solvent, in which the polyamide-imide resin contains an aromatic diisocyanate component (A) having three or more benzene rings or an aromatic diamine component (E) having three or more benzene rings in a monomer, and a ratio M/N between a molecular weight (M) of the polyamide-imide resin per repeat unit and an average number (N) of amide groups and imide groups is equal to or more than 200.
    Type: Grant
    Filed: April 25, 2013
    Date of Patent: June 24, 2014
    Assignee: Hitachi Metals, Ltd.
    Inventors: Hideyuki Kikuchi, Yuzo Yukimori
  • Patent number: 8753672
    Abstract: The present application discloses an alternative method for the formation of non-woven with fibers in the 1 to 200 ?m range. Using an aqueous solution of gelatin (optionally with <30% of low molecular weight alcohol) the fibers are ejected utilizing pressurized air emitted from nozzle and the non-woven formed directly from the emitted thin fibers. The gelatin non-woven can be cross-linked by heat-treatment or chemical cross-linking, and the non-woven is biocompatible as measured by fibroblast growth in vitro and wound healing on pigs in vivo.
    Type: Grant
    Filed: April 24, 2007
    Date of Patent: June 17, 2014
    Assignee: Coloplast A/S
    Inventors: Jens Hassingboe, Jakob Vange, Hanne Everland
  • Patent number: 8753741
    Abstract: A fine denier poly(trimethylene arylate) spun drawn fiber is characterized by high denier uniformity. A process for preparing uniform fine denier yarns at spinning speeds of 4000 to 6000 m/min is further disclosed. The poly(trimethylene arylate) fiber hereof comprises 0.1 to 3% by weight of polystyrene dispersed therewithin. Fabrics prepared therefrom are also disclosed.
    Type: Grant
    Filed: October 7, 2011
    Date of Patent: June 17, 2014
    Assignee: E I du Pont de Nemours and Company
    Inventor: W. Douglas Bates
  • Publication number: 20140162061
    Abstract: The invention has for its object to provide a process of producing a conducting material suitable for being filled in TSVs for LSI chip 3D package, etc. A solution containing a monomer that provides a conducting polymer, anions, and metal ions such as Ag+ or Cu2+ is irradiated with ultraviolet radiation or light having the energy necessary for exciting electrons up to an energy level capable of reducing the metal ions to precipitate a conducting polymer/metal composite. This enables an electrical conductor of high electrical conductivity to be precipitated faster than could be achieved by conventional processes.
    Type: Application
    Filed: July 27, 2012
    Publication date: June 12, 2014
    Applicant: NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Jin Kawakita, Toyohiro Chikyo
  • Patent number: 8741429
    Abstract: A fixing heater is provided that employs, as a heating element, a material having small heat capacity and excellent wear resistance. A metal or semi-metal compound that can act as an electrical conduction inhibiting material is mixed into a carbon-containing resin such as a furan resin, chlorinated vinyl chloride resin, etc., and a pattern of a heating element is formed on a substrate, by screen printing, and then is sintered at temperature of about 1000° C. to obtain a fixing heater including amorphous carbon and having NTC characteristics.
    Type: Grant
    Filed: January 26, 2012
    Date of Patent: June 3, 2014
    Assignee: Mitsubishi Pencil Co., Ltd.
    Inventors: Noboru Kanba, Yoshihisa Suda
  • Publication number: 20140147377
    Abstract: A nanocrystalline photocatalyst for water splitting and a method for fabricating a nanocrystalline photocatalyst for water splitting. The photocatalyst comprises a structure having a specific surface area and a volume fraction of atoms located both on the surface and at the grain boundaries adapted for enhancement of a photocatalytic reaction.
    Type: Application
    Filed: July 16, 2012
    Publication date: May 29, 2014
    Applicant: NATIONAL UNIVERSITY OF SINGAPORE
    Inventors: Ghim Wei Ho, Kian Jon Chua
  • Patent number: 8703288
    Abstract: Cable coatings having effective low-smoke emission, fire resistance and moisture resistance provided by a single layer are described. The cable coatings contain an base polymer, a oxygen containing ethylene copolymer, a fire retardant and a synergistic blend of magnesium hydroxide and aluminum hydroxide. Cables coated with the described coatings have improved wet electrical performance, and satisfactory fire performance and smoke characteristics.
    Type: Grant
    Filed: March 21, 2008
    Date of Patent: April 22, 2014
    Assignee: General Cable Technologies Corporation
    Inventor: Tim Clancy
  • Patent number: 8685536
    Abstract: A polyamide-imide resin insulating coating material, which is obtained by reacting an isocyanate component with an acid component, has a main solvent component of ?-butyrolactone. In the coating material, a total compounding ratio of 4,4?-diphenylmethane diisocyanate (MDI) and trimellitic anhydride (TMA) is 85 to 98 mol %, where the total compounding ratio is given by averaging a compounding ratio of MDI to the isocyanate component and a compounding ration of TMA to the acid component.
    Type: Grant
    Filed: December 21, 2005
    Date of Patent: April 1, 2014
    Assignee: Hitachi Metals, Ltd.
    Inventors: Hideyuki Kikuchi, Yuzo Yukimori
  • Publication number: 20140073210
    Abstract: An article comprises a substrate, a first functional polymeric phase change material, and a plurality of containment structures that contain the first functional polymeric phase change material. The article may further comprise a second phase change material chemically bound to at least one of the plurality of containment structures or the substrate. In certain embodiments, the article further comprises a second phase change material and a binder that contains at least one of the first polymeric phase change material and the second phase change material.
    Type: Application
    Filed: February 27, 2013
    Publication date: March 13, 2014
    Applicant: OUTLAST TECHNOLOGIES, LLC
    Inventors: Mark Hartmann, Aharon Eyal, Carmi Raz
  • Publication number: 20140065419
    Abstract: The invention concerns a high performance polyethylene (HPPE) member comprising at least 5 wt-% of a radiopaque component, the HPPE member is biocompatible and the radiopaque component is a particulate at least partially arranged inside a HPPE filament of the HPPE member. Furthermore, the radiopaque component has a particle size of at most 1 ?m, preferably the radiopaque component has a particle size if at most 0.5 ?m. The invention also concerns a method of making the HPPE member and various medical devices and repair products comprising the HPPE member.
    Type: Application
    Filed: December 12, 2011
    Publication date: March 6, 2014
    Inventors: Claudia Maria Vaz, Leonardus Gerardus Bernardus Bremer, Joseph Arnold Paul Maria Simmelink, Marko Dorschu, Josef Maria Rudi Hendrik Goossens, Harm Van der Werff
  • Publication number: 20140050921
    Abstract: Materials and methods is present for manufacturing fiber reinforced parts. A powder material comprising a matrix material of a size particular distribution comprising substantially oriented fiber of a predetermined length distribution and diameter (L/D). A manufactured part that has substantially randomly oriented fiber is provided using an energy delivery system and the powder material.
    Type: Application
    Filed: December 7, 2012
    Publication date: February 20, 2014
    Applicant: THE BOEING COMPANY
    Inventor: THE BOEING COMPANY
  • Publication number: 20140050922
    Abstract: A coating composition for forming a paper coat includes nano-fibrillated cellulose, pigment, latex, an auxiliary additive, and water. On a dry weight basis, the nano-fibrillated cellulose is in an amount by weight of 0.02 parts to 10 parts in the total composition, the pigment is in an amount by weight of 75 parts to 95 parts in the total composition, the latex is in an amount by weight of 5 parts to 15 parts in the total composition, and the auxiliary additive is in an amount by weight of 0.35 parts to 10 parts in the total composition.
    Type: Application
    Filed: April 7, 2013
    Publication date: February 20, 2014
    Applicant: GOLDEAST PAPER (JIANGSU) CO., LTD
    Inventors: YUNGCHANG F. CHIN, YAN FENG
  • Publication number: 20140020197
    Abstract: A filament for cosmetic brush is constituted by a polyester resin filament having many projections over its entire surface, wherein the polyester resin is polytrimethylene terephthalate and/or polybutylene terephthalate, the polyester resin contains glass particles of 1 to 2 ?m in average particle size by 0.3 to 1.0 percent by weight as the inorganic particles, the thermal conductivity of the glass particle is in a range of 5 to 7 times that of the resin, and the projections are formed over the entire surface of the cosmetic filament by the glass particles covered with the resin.
    Type: Application
    Filed: April 7, 2011
    Publication date: January 23, 2014
    Inventors: Kenji Nakamura, Koji Nakamura
  • Publication number: 20140017492
    Abstract: A foamable article is disclosed. The article includes a substrate and an outer layer covering at least a portion of the substrate and including an unactivated expandable sphere foaming agent and an unactivated chemical foaming agent. The unactivated foaming agents may be activated to increase the volume of the outer layer.
    Type: Application
    Filed: July 12, 2012
    Publication date: January 16, 2014
    Inventors: Jeffrey L. Hamer, Alan R. Seville, Kenneth F. Teeters
  • Publication number: 20130344325
    Abstract: Embodiments disclosed herein include a structure comprising an adherend and an adhesive composition, wherein the adhesive composition comprises at least a thermosetting resin, a curing agent, and an interfacial material, wherein the adherend is suitable for concentrating the interfacial material in an interfacial region between the adherend and the adhesive composition upon curing of the adhesive composition; a method of manufacturing a composite article by curing the adhesive composition and a reinforcing fiber; and a method of manufacturing an adhesive bonded joint comprising applying the adhesive composition to a surface of one of the two or of different kinds the adherend, and curing the adhesive composition to form an adhesive bond between the adherends. The resulting interfacial region, viz., the reinforced interphase, is reinforced by one or more layers of the interfacial material such that substantial improvements in bond strength and fracture toughness are observed.
    Type: Application
    Filed: February 24, 2012
    Publication date: December 26, 2013
    Applicant: TORAY INDUSTRIES, INC.
    Inventors: Felix N. Nguyen, Kenichi Yoshioka, Alfred P. Haro, Nobuyuki Arai
  • Patent number: 8608905
    Abstract: This invention concerns the production of a multilayer fiber product. According to the method, on top of a bottom layer consisting of at least one fiber layer, a second fiber layer is fitted containing filler that forms the surface layer. According to the invention, the layers are formed by multilayer web forming technology, and the surface layer filler includes cellulose or lignocellulose fibrils, on which light-scattering material particles are deposited, having a maximum proportion of the total filler weight of 85%. By means of the invention, a base paper is achieved that is suited to thin, coated paper grades, where conventionally the intrusion of the coating color into the bottom paper and through it is a problem.
    Type: Grant
    Filed: August 2, 2010
    Date of Patent: December 17, 2013
    Inventors: Markku Leskela, Jari Meuronen, Petri Silenius, Sami Haapala
  • Publication number: 20130309473
    Abstract: The present invention relates to carbon materials comprising carbon nanotubes, powders comprising carbon nanotubes and methods of making carbon nanotubes. In the methods of the present invention, the size and/or formation of floating catalyst particles is closely controlled. The resulting carbon nanotubes typically exhibit armchair chirality and typically have metallic properties. The carbon nanotubes produced by this method readily form bulk materials, which typically have a conductivity of at least 0.7×106 Sm?1 in at least one direction. The invention has particular application to the manufacture of components such as electrical conductors. Suitable electrical conductors include wires (e.g. for electrical motors) and cables (e.g. for transmitting electrical power).
    Type: Application
    Filed: November 2, 2011
    Publication date: November 21, 2013
    Applicant: CAMBRIDGE ENTERPRISE LIMITED
    Inventors: Rajyashree Sundaram, Krzysztof Kazimierz Koziol, Agnieszka Ewa Lekawa-Raus, Alan Windle
  • Publication number: 20130310908
    Abstract: Provided herein are silk fibroin-based photothermal elements and uses thereof. The silk fibroin-based photothermal elements comprise a plurality of plasmonic nanoparticle distributed in a silk fibroin matrix, and can generate heat when the plasmonic nanoparticles are exposed to electromagnetic radiation. The silk fibroin-based photothermal elements can be adapted to be conformable and biodegradable, and can further be integrated with various electronic components, such as a thermo-electric device for conversion of heat into electricity. The invention is useful for various in vivo applications, such as photothermal therapy, controlled drug-delivery devices or wireless powering of implanted micro-devices.
    Type: Application
    Filed: September 3, 2011
    Publication date: November 21, 2013
    Applicant: TUFTS UNIVERSITY
    Inventors: Fiorenzo Omenetto, David L. Kaplan, Hu Tao
  • Patent number: 8586143
    Abstract: The present invention relates to a method of grafting, by covalent bonding, hollow or solid composite capsules onto any type of natural, artificial or synthetic, organic or inorganic, support, the capsules being chemically, physically or physico-chemically modified, so as possibly to improve their affinity with the support and to functionalize them, and then grafted, after the capsules and/or the support have been activated. The invention also relates to the capsules thus modified, to the supports grafted by the capsules, especially fibres and textiles, and also to the use of these grafted supports, especially fibres and textiles, for making up what are called “functional” articles.
    Type: Grant
    Filed: February 19, 2007
    Date of Patent: November 19, 2013
    Assignee: Centre National de la Recherche Scientifique (C.N.R.S.)
    Inventors: Yves Frere, Louis Danicher, Mahdi Merji
  • Patent number: 8575045
    Abstract: An article is provided that includes a polymeric fiber that has an excess number of surface active reactive moieties relative to the number of surface reactive moieties found on the fiber in a native state. A particle is bonded covalently to the fiber through an intermediate coupling agent. Multiple particles can be covalently bonded to the fiber, the multiple particles can be bonded uniformly or asymmetrically around the fiber diameter. A process for modifying a fiber includes creating surface activated reactive moieties thereon. The activated fiber is then exposed to a liquid solution containing a coupling agent to form a covalent bond. The coupling agent is also reacted with a particle in a liquid solution to form a covalent bond between the coupling agent and the particle. The coupling agent is covalently bonded to either a particle and then bonded to the fiber, or vice versa.
    Type: Grant
    Filed: May 23, 2005
    Date of Patent: November 5, 2013
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Steven H. McKnight, Robert E. Jensen, Joshua A. Orlicki
  • Patent number: 8574315
    Abstract: The present invention relates to structures that contain one or more fiber and/or nanofiber structures where such structures can be formed on a wide variety of structures or surfaces (e.g., asperities, flat surfaces, angled surface, hierarchical structures, etc.). In one embodiment, the present invention relates to a process for forming one or more fibers, nanofibers or structures made therefrom on a wide variety of structures or surfaces (e.g., asperities, flat surfaces, angled surface, hierarchical structures, etc.). In another embodiment, the present invention relates to a process for forming one or more fibers, nanofibers or structures made therefrom on a wide variety of structures or surfaces (e.g., asperities, flat surfaces, angled surface, hierarchical structures, etc.) where such fibers and/or structures are designed to sequester, carry and/or encapsulate one or more substances.
    Type: Grant
    Filed: May 9, 2007
    Date of Patent: November 5, 2013
    Assignee: The University of Akron
    Inventors: Darrell Reneker, Tao Han, Daniel Smith, Camden Ertley, Joseph W. Reneker
  • Patent number: 8568876
    Abstract: Techniques for making nanowires with a desired diameter are provided. The nanowires can be grown from catalytic nanoparticles, wherein the nanowires can have substantially same diameter as the catalytic nanoparticles. Since the size or the diameter of the catalytic nanoparticles can be controlled in production of the nanoparticles, the diameter of the nanowires can be subsequently controlled as well. The catalytic nanoparticles are melted and provided with a gaseous precursor of the nanowires. When supersaturation of the catalytic nanoparticles with the gaseous precursor is reached, the gaseous precursor starts to solidify and form nanowires. The nanowires are separate from each other and not bind with each other to form a plurality of nanowires having the substantially uniform diameter.
    Type: Grant
    Filed: September 1, 2011
    Date of Patent: October 29, 2013
    Assignee: Korea University Research and Business Foundation
    Inventor: Kwangyeol Lee
  • Publication number: 20130280151
    Abstract: A composite structure for capturing a gaseous electrophilic species, the composite structure comprising mesoporous refractory sorbent particles on which an ionic liquid is covalently attached, wherein said ionic liquid includes an accessible functional group that is capable of binding to said gaseous electrophilic species. In particular embodiments, the mesoporous sorbent particles are contained within refractory hollow fibers. Also described is a method for capturing a gaseous electrophilic species by use of the above-described composite structure, wherein the gaseous electrophilic species is contacted with the composite structure.
    Type: Application
    Filed: April 23, 2013
    Publication date: October 24, 2013
    Inventors: Jong Suk Lee, William J. Koros, Nitesh Bhuwania, Patrick C. Hillesheim, Sheng Dai
  • Patent number: 8563131
    Abstract: A thermoplastic composition comprises poly(arylene ether) having an initial intrinsic viscosity greater than 0.25 dl/g as measured in chloroform at 25° C.; a polyolefin having a melt temperature greater than or equal to 120° C. and a melt flow rate of 0.3 to 15; a first block copolymer having a aryl alkylene content greater than or equal to 50 weight percent based on the total weight of the first block copolymer; a second block copolymer having an aryl alkylene content less than 50 weight percent based on the total weight of the second block copolymer; and a flame retardant, wherein the poly(arylene ether) is present in an amount greater than the amount of polyolefin. The composition is useful in the production of covered wire.
    Type: Grant
    Filed: July 19, 2010
    Date of Patent: October 22, 2013
    Assignee: SABIC Innovative Plastics IP B.V.
    Inventors: Vijay R. Mhetar, Vijay Rajamani
  • Publication number: 20130273365
    Abstract: A viscose fiber comprises a fiber body including a regenerated cellulosic material and a plurality of microcapsules dispersed in the regenerated cellulosic material. The regenerated cellulosic material is derived from an organic plant material and the plurality of microcapsules containing a phase change material has a transition temperature in the range of 0° C. to 100° C., the phase change material providing thermal regulation based on at least one of absorption and release of latent heat at the transition temperature.
    Type: Application
    Filed: April 13, 2012
    Publication date: October 17, 2013
    Inventors: Mark H. Hartmann, James B. Worley, Matthew North
  • Publication number: 20130255210
    Abstract: A retaining seal material includes inorganic fibers, inorganic particles adhering to surfaces of the inorganic fibers, a first principal surface, and a second principal surface. A mean particle diameter of the inorganic particles in a vicinity of a center in a thickness direction of the retaining seal material is smaller than at least one of a mean particle diameter of the inorganic particles in a vicinity of the first principal surface and a mean particle diameter of the inorganic particles in a vicinity of the second principal surface.
    Type: Application
    Filed: March 14, 2013
    Publication date: October 3, 2013
    Applicant: IBIDEN CO., LTD.
    Inventors: Takahiko OKABE, Keiji KUMANO
  • Publication number: 20130252497
    Abstract: A thermoplastic fiber comprises a core constructed of a first material, a shell positioned to surround the core and constructed of a second material, and magnetic particles that are ferromagnetic and/or ferrimagnetic particles where the particles are either mainly, almost exclusively, or exclusively arranged in the shell. A fiber perform or semifinished textile product includes at least one thermoplastic fiber. A hybrid yarn comprises reinforcement fibers, thermoplastic fibers, and at least some of the plurality of thermoplastic fibers include at least proportionately ferromagnetic and/or ferrimagnetic particles.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 26, 2013
    Applicant: Faserinstitut Bremen e.V.
    Inventors: Patrick Schiebel, Lars Bostan
  • Publication number: 20130211308
    Abstract: Nanosilver coated bacterial cellulose nanofiber and a method of producing the nanosilver coated bacterial cellulose nanofiber. The nanosilver coated bacterial cellulose nanofiber is produced by preparing a suspension of bacterial cellulose fibers, oxidizing bacterial cellulose fibers; adding the thio- group to the polymer backbone; reacting the resulting product with silver proteinate and enhancing the nanosilver particle size. The nanosilver coated bacterial cellulose nanofibers exhibit antimicrobial properties.
    Type: Application
    Filed: February 4, 2013
    Publication date: August 15, 2013
    Applicant: AXCELON BIOPOLYMERS CORPORATION
    Inventor: AXCELON BIOPOLYMERS CORPORATION