Coated Patents (Class 428/403)
  • Patent number: 8809678
    Abstract: CIGS absorber layers fabricated using coated semiconducting nanoparticles and/or quantum dots are disclosed. Core nanoparticles and/or quantum dots containing one or more elements from group 13 and/or IIIA and/or VIA may be coated with one or more layers containing elements group IB, IIIA or VIA. Using nanoparticles with a defined surface area, a layer thickness could be tuned to give the proper stoichiometric ratio, and/or crystal phase, and/or size, and/or shape. The coated nanoparticles could then be placed in a dispersant for use as an ink, paste, or paint. By appropriate coating of the core nanoparticles, the resulting coated nanoparticles can have the desired elements intermixed within the size scale of the nanoparticle, while the phase can be controlled by tuning the stoichiometry, and the stoichiometry of the coated nanoparticle may be tuned by controlling the thickness of the coating(s).
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: August 19, 2014
    Assignee: aeris CAPITAL Sustainable IP Ltd.
    Inventors: Brian M. Sager, Dong Yu, Matthew R. Robinson
  • Patent number: 8808567
    Abstract: A nanoparticle composition comprises a ferromagnetic or superparamagnetic metal nanoparticle, and a functionalized carbonaceous coating on a surface of the ferromagnetic or superparamagnetic metal nanoparticle. A magnetorheological fluid comprises the nanoparticle composition.
    Type: Grant
    Filed: November 3, 2011
    Date of Patent: August 19, 2014
    Assignee: Baker Hughes Incorporated
    Inventors: Oleg A. Mazyar, Soma Chakraborty, Terry R. Bussear, Michael H. Johnson
  • Publication number: 20140225144
    Abstract: A light-reflective conductive particle for an anisotropic conductive adhesive used for connecting a light-emitting element to a wiring board by anisotropic conductive connection includes a core particle covered with a metal material and a light reflecting layer formed of a light-reflective inorganic particle having a refractive index of 1.52 or greater on the surface of the core particle. Examples of the light-reflective inorganic particles having a refractive index of 1.52 or greater include a titanium oxide particle, a zinc oxide particle, and an aluminum oxide particle. The coverage of the light reflecting layer on the surface of the core particle is 70% or more.
    Type: Application
    Filed: March 21, 2014
    Publication date: August 14, 2014
    Applicant: DEXERIALS CORPORATION
    Inventors: Hidetsugu NAMIKI, Shiyuki KANISAWA, Hideaki UMAKOSHI
  • Patent number: 8802234
    Abstract: A composite nanoparticle, for example a nanoparticle containing one or a plurality of cores embedded in another material. A composite nanoparticle can be formed by a one step process that includes: ejecting material from a bulk target material using physical energy source, with the bulk target material disposed in a liquid. Composite nanoparticles are formed by cooling at least a portion of the ejected material in the liquid. The composite fine particles may then be collected from the liquid. A product that includes composite fine particles may be formed with laser ablation, and ultrashort laser ablation may be utilized so as to preserve composite nanoparticle stoichiometry. For applications of the composite fine particles, optical properties and/or magnetic properties may be exploited for various applications.
    Type: Grant
    Filed: January 3, 2011
    Date of Patent: August 12, 2014
    Assignee: Imra America, Inc.
    Inventors: Yong Che, Makoto Murakami, Wei Guo
  • Publication number: 20140220351
    Abstract: The disclosure provides methods and materials for preparing a titania nanoparticle product. For example, titania nanoparticle products having desirable optical properties such as a desirable refractive index are prepared according to the methods provided herein.
    Type: Application
    Filed: April 5, 2014
    Publication date: August 7, 2014
    Applicant: Svaya Nanotechnologies, Inc.
    Inventors: Kevin Krogman, Siglinde Schmid, Melissa Fardy, J. Wallace Parce
  • Publication number: 20140220348
    Abstract: Provided is a process for economically preparing a graphene shell having a desired configuration which is applicable in various fields wherein in the process the thickness of the graphene shell can be controlled, and a graphene shell prepared by the process.
    Type: Application
    Filed: April 7, 2014
    Publication date: August 7, 2014
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jae-young CHOI, Hyeon- Jin SHIN, Seon-mi YOON
  • Patent number: 8795834
    Abstract: The present invention describes a synthetic turf having super absorbent materials in order to keep the synthetic turf cooler than conventional synthetic turfs. The present invention also provides for synthetic turf infill cooling particles comprising a layer of water-absorbing material coating a foundation comprising a core substrate. In one embodiment, the cooling particle is comprised of a core particle or substrate, which is coated with a water-absorbing material. In one embodiment, the water-absorbing material is a super absorbent polymer.
    Type: Grant
    Filed: March 8, 2012
    Date of Patent: August 5, 2014
    Assignee: Sapturf, LLC
    Inventors: Christopher Tetrault, Phil M. Stricklen, Raymond A. Berard
  • Patent number: 8795831
    Abstract: The invention relates to addition compounds and their salts, characterized in that the addition compounds are obtainable by reacting (a) one or more polyisocyanates having at least two isocyanate groups per molecule with (b) one or more compounds of the formula Y—(XH)n and (c) one or more compounds from the group consisting of (c1) compounds M-Q, (c2) a blocking agent for isocyanate groups, and (c3) optionally compounds of the general formula Z-Q. The invention further relates to the preparation of the addition compounds and to their use as dispersants, wetting agents and dispersion stabilizers, and also to solids coated with the addition compounds.
    Type: Grant
    Filed: January 9, 2009
    Date of Patent: August 5, 2014
    Assignee: BYK-Chemie GmbH
    Inventors: Wolfgang Pritschins, Karlheinz Haubennestel, Hans-Josef Teuwsen
  • Publication number: 20140212670
    Abstract: Provided is a process for obtaining solid cellulose, such as a cellulose solidified article or cellulose shaped article, from a cellulose solution without causing discharge of large amounts of waste liquids and environmental issues such as large energy consumption. The process produces solid cellulose through the steps of (A) dissolving cellulose in a solvent (s1) to give a cellulose solution, where the solvent (s1) includes at least one onium hydroxide in a content of from 45 to 85 percent by weight and water in a content of from 15 to 55 percent by weight, and the at least one onium hydroxide is selected from the group consisting of quaternary phosphonium hydroxides and quaternary ammonium hydroxides; (B) bringing the cellulose solution into contact with a poor solvent (s2) to precipitate cellulose as a cellulose solidified article; and (C) separating and collecting the cellulose solidified article.
    Type: Application
    Filed: December 23, 2013
    Publication date: July 31, 2014
    Applicant: DAICEL CORPORATION
    Inventors: Shu SHIMAMOTO, Hiroyuki OHNO
  • Patent number: 8790608
    Abstract: Non-spherical siliceous particles having a plurality of porous branches are disclosed and claimed. The porous branches are randomly oriented and elongated, ring-like, and/or aggregated. An additive introduced during synthesis of the particles modifies pore volume and morphology. The tunability of the pore volume includes an inner diameter ranging from about 2 ? to about 50,000 ?. Synthesizing the particles includes mixing under constant or intermittent stirring in a reaction vessel an aqueous silicic acid solution with an acidic heel solution to form a mixture. The stirring may optionally be performed at a variable speed. An additive is introduced into the mixture at a controlled rate, wherein the additive imposes a pH change from a lower pH to a higher pH to the mixture to induce siliceous particle precipitation.
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: July 29, 2014
    Assignee: Nalco Company
    Inventors: Brian T. Holland, Sascha Welz
  • Patent number: 8791488
    Abstract: Provided are a surface treated phosphor having high dispersibility and remarkably improved moisture resistance without degradation in fluorescence properties, and a method of producing the surface treated phosphor.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: July 29, 2014
    Assignee: Sekisui Chemical Co., Ltd.
    Inventors: Ren-de Sun, Yasuhiro Nakatani, Takahiro Oomura
  • Patent number: 8790778
    Abstract: Roofing granules include a core having an average ultraviolet transmission of greater than sixty percent and an average near infrared reflectance of greater than sixty percent and a UV coating layer on the exterior surface. The coating provides UV opacity, while the core provides near infrared reflectance.
    Type: Grant
    Filed: February 20, 2013
    Date of Patent: July 29, 2014
    Assignee: CertainTeed Corporation
    Inventors: Ming Liang Shiao, Jennifer A. Millberg, Gregory F. Jacobs
  • Patent number: 8790774
    Abstract: Exemplary embodiments provide materials and methods for a nanocomposite material and a fuser member containing the nanocomposite material in a fusing system, wherein the nanocomposite material can contain a plurality of carbon nanotubes (CNTs) and a plurality of inorganic nano-fillers (INFs) disposed in a polymer matrix to provide the nanocomposite material with desirable properties.
    Type: Grant
    Filed: December 27, 2010
    Date of Patent: July 29, 2014
    Assignee: Xerox Corporation
    Inventors: Qi Zhang, Yu Qi, Nan-Xing Hu, Gordon Sisler
  • Patent number: 8784702
    Abstract: Copper-containing nanoparticles with excellent oxidation resistance is provided. The present invention relates to a method for manufacturing copper-containing nanoparticles including obtaining copper-containing nanoparticles that contain an organic component by heat treating an organic copper compound at a temperature equal to or higher than a decomposition initiation temperature of the compound and lower than a complete decomposition temperature of the compound in a non-oxidative atmosphere in the presence of an organic material containing a 1,2-alkanediol having 5 or more carbon atoms and/or a derivative thereof.
    Type: Grant
    Filed: August 6, 2009
    Date of Patent: July 22, 2014
    Assignees: Osaka Municipal Technical Research Institute, Daiken Chemical Co., Ltd.
    Inventors: Masami Nakamoto, Mari Yamamoto, Yukiyasu Kashiwagi, Yukio Yoshida, Hiroshi Kakiuchi, Shinsuke Matsumura
  • Patent number: 8778495
    Abstract: A phenol-formaldehyde novolac resin having a low concentration of free phenol prepared by distilling residual phenol from a molten novolac resin and replacing at least a portion of the phenol with a solvent having a volatility equal to or less than phenol. Such modified novolac resins are suitable for the production of resin coated molding sands for shell molding and sand cores, as well as for the production of resin coated proppants for use in oil and gas recovery operations.
    Type: Grant
    Filed: August 1, 2012
    Date of Patent: July 15, 2014
    Assignee: Gerogia-Pacific Chemicals LLC
    Inventors: Richard A. Rediger, Edward Lucas
  • Patent number: 8778494
    Abstract: The present invention relates to an intrinsically markable laser pigment in the form of a reducible metal compound in the form of a preparation, and to the use thereof in inorganic systems and in organic polymers, in particular plastics, surface coatings, automobile paints, powder coatings, printing inks, paper coatings and papermaking stocks.
    Type: Grant
    Filed: February 27, 2010
    Date of Patent: July 15, 2014
    Assignee: Merck Patent GmbH
    Inventors: Gerhard Edler, Helge Bettina Kniess, Klaus Bernhardt
  • Publication number: 20140191652
    Abstract: A phosphor for low-pressure discharge lamps is disclosed, wherein the phosphor is present in the form of phosphor grains coated with a protective layer, wherein the protective layer consists of a metal oxide, a metal borate, a metal phosphate or mixtures thereof.
    Type: Application
    Filed: June 25, 2012
    Publication date: July 10, 2014
    Applicant: OSRAM GMBH
    Inventors: Renate Hirrle, Armin Konrad, Robert Otto, Joerg Strauss
  • Patent number: 8770294
    Abstract: A proppant comprises a particle and a polyamide imide coating disposed on the particle. A method of forming the proppant comprises the steps of providing the particle, providing the polyamide imide coating, and coating the particle with the polyamide imide coating.
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: July 8, 2014
    Assignee: BASF SE
    Inventors: Christopher Tanguay, Rajesh Kumar
  • Patent number: 8771553
    Abstract: An object of the present invention is to provide a conductive fine particle for producing a metal paste that can produce an electrode film having a low resistance, and a metal paste utilizing the conductive fine particle. The present invention is a conductive particle for electrode formation having a core/shell structure, and the conductive particle comprises a core particle made of Pt or a Pt alloy and having a particle diameter of 10 to 200 nm, and a shell made of a ceramic containing Al2O3 or ZrO2 and covers at least a part of the core particle, wherein the ceramic constituting the shell is added in an amount of 0.5 to 15% by weight based on the core particle to cover the core. The core particle is preferably Pt or a Pt alloy alloyed with Pd, Au, Ag, or Rh.
    Type: Grant
    Filed: July 8, 2011
    Date of Patent: July 8, 2014
    Assignee: Tanaka Kikinzoku Kogyo K.K.
    Inventors: Takuya Hosoi, Nobuhisa Okamoto, Koichi Sakairi
  • Publication number: 20140186631
    Abstract: The invention discloses a seed used for crystalline silicon ingot casting. A seed according to a preferred embodiment of the invention includes a crystal and an impurity diffusion-resistant layer. The crystal is constituted by at least one grain. The impurity diffusion-resistant layer is formed to overlay an outer surface of the crystal. A crystalline silicon ingot fabricated by use of the seed of the invention has significantly reduced red zone and yellow zone.
    Type: Application
    Filed: December 23, 2013
    Publication date: July 3, 2014
    Applicant: Sino-American Silicon Products Inc.
    Inventors: Hung-Sheng CHOU, Yu-Tsung CHIANG, Yu-Min YANG, Ming-Kung HSIAO, Wen-Huai YU, Sung-Lin HSU, I-Ching LI, Chung-Wen LAN, Wen-Ching HSU
  • Patent number: 8765261
    Abstract: A method for preparing ceramic powders in the presence of a carbon powder including a step which consists in homogenizing a mixture of particles capable of resulting in a ceramic by heat treatment. Said method can be carried out in the presence of an accelerated solvent and provides, at reduced energy consumption, carbon-coated ceramic powders and then ceramics.
    Type: Grant
    Filed: April 5, 2013
    Date of Patent: July 1, 2014
    Assignee: Hydro-Quebec
    Inventors: Karim Zaghib, Abdelbast Guerfi, Michel Armand, Patrick Charest
  • Publication number: 20140178632
    Abstract: This invention relates to thermally sprayed coatings of a high purity yttria or ytterbia stabilized zirconia powder, said high purity yttria or ytterbia stabilized zirconia powder comprising from about 0 to about 0.15 weight percent impurity oxides, from about 0 to about 2 weight percent hafnium oxide (hafnia), from about 6 to about 25 weight percent yttrium oxide (yttria) or from about 10 to about 36 weight percent ytterbium oxide (ytterbia), and the balance zirconium oxide (zirconia). Thermal barrier coatings for protecting a component such as blades, vanes and seal surfaces of gas turbine engines, made from the high purity yttria or ytterbia stabilized zirconia powders, have a density greater than 88% of the theoretical density with a plurality of vertical macrocracks homogeneously dispersed throughout the coating to improve its thermal fatigue resistance.
    Type: Application
    Filed: February 28, 2014
    Publication date: June 26, 2014
    Inventors: Thomas Alan TAYLOR, Danny Lee APPLEBY, Albert FEUERSTEIN, Ann BOLCAVAGE, Neil HITCHMAN
  • Patent number: 8758853
    Abstract: The invention is directed to a process and apparatus for preparing coated particles, in particular a process for preparing particles that are coated with small particles using electrospraying. The coated particles produced according to the present invention find use for instance as catalysts or as pharmaceuticals. According to the invention a host particle is contacted in a gas stream where it is allowed to contact with one or more moving tribocharging particles, thus providing a charged host particle, which is subsequently contacted with charged guest particles in an electrospraying step.
    Type: Grant
    Filed: March 25, 2010
    Date of Patent: June 24, 2014
    Assignee: Technische Universiteit Delft
    Inventors: Jan Rudolf van Ommen, Naoko Ellis, Caner Yurteri, Johannes Cornelis Maria Marijnissen
  • Patent number: 8759248
    Abstract: A method of making catalysts includes loading a quantity of catalyst material and quantity of carrier in into a plasma gun in a desired ratio and vaporizing the catalyst material and carrier in a reaction chamber, thereby forming a vapor cloud. The vapor cloud is quenched in a quench chamber to form solid nanoparticles, wherein the quench chamber comprises a frusto-conical body having a wide end, a narrow end, and a quench region formed between the wide end and the narrow end, and a reactive mixture inlet configured to receive the vapor cloud and to supply the vapor cloud into the quench region in the direction of the narrow end. The quench chamber further includes at least one conditioning fluid inlet configured to supply a conditioning fluid into the quench region in the direction of the narrow end. The nanoparticles are bonded to supports.
    Type: Grant
    Filed: November 19, 2012
    Date of Patent: June 24, 2014
    Assignee: SDCmaterials, Inc.
    Inventors: Maximilian A. Biberger, Stephen Edward Lehman, Jr., Robert Matthew Kevwitch, Qinghua Yin, Jesudos J. Kingsley
  • Publication number: 20140168919
    Abstract: To provide an anisotropic conductive film, which contains conductive particles, wherein the anisotropic conductive film is an anisotropic conductive film configured to anisotropic conductively connect a terminal of a substrate with a terminal of an electronic component, wherein the conductive particles are conductive particles, in each of which a metal plated layer and an insulating layer are sequentially provided on a surface of a resin particle, or conductive particles, in each of which an insulating layer is provided on a metal particle, or both thereof, and wherein 3.0 to 10.0 conductive particles are linked together on average.
    Type: Application
    Filed: February 20, 2014
    Publication date: June 19, 2014
    Applicant: DEXERIALS CORPORATION
    Inventor: Tomoyuki ISHIMATSU
  • Patent number: 8753471
    Abstract: Disclosed is a vacuum heat insulating material. Also disclosed is a heat insulating box using the vacuum heat insulating material. The vacuum heat insulating material includes a core member and envelope members having gas-barrier properties and including heat-seal layers. The envelope members are opposed to each other in such a manner that the core member is disposed between the heat-seal layers. The envelope members are entirely heated to a temperature at which the heat-seal layers are melted, and the heat-seal layers are heat sealed to each other by applying uniform pressure to the entire envelope members from outside to inside the envelope members.
    Type: Grant
    Filed: February 2, 2010
    Date of Patent: June 17, 2014
    Assignee: Panasonic Corporation
    Inventors: Muneto Yamada, Kazuo Hashimoto, Hiroaki Katsumura, Kiyoshi Kinoshita
  • Patent number: 8753530
    Abstract: An aspect of the present invention relates to a method of preparing a magnetic particle, which comprises attaching a transition metal-containing organic compound to a surface of a hard magnetic particle and then thermally decomposing the transition metal-containing organic compound to obtain the magnetic particle.
    Type: Grant
    Filed: July 22, 2011
    Date of Patent: June 17, 2014
    Assignees: FUJIFILM Corporation, Tohoku University
    Inventors: Yasushi Hattori, An-Pang Tsai, Satoshi Kameoka
  • Publication number: 20140162067
    Abstract: A method forms a bimetallic core-shell nanostructure. The bimetallic core-shell nanostructure comprises a core comprising silver and a shell comprising gold. The bimetallic core-shell nanostructure may be used in various technical fields, such as surface-enhanced Raman scattering (SERS), photovoltaic cells, biomedical, bioimaging and biosensing applications.
    Type: Application
    Filed: December 6, 2013
    Publication date: June 12, 2014
    Inventors: Mohammad Mehdi Shahjamali, Can Xue, Yin Chiang Freddy Boey
  • Publication number: 20140158020
    Abstract: A metal-polymer composite scaffold includes metal particles coupled with polymer binder, the scaffold having regions of aligned porosity with a gradient. In a particular embodiment, the metal particles include stainless steel. The metal particles have sizes equal to or smaller than 3 ?m. The scaffold has Young's modulus is below 950 MPa. The polymer binder includes chitosan and gelatin. The composite also includes ethanol. The composite has porosity of at least 70%. Systems and methods for producing such metal polymer composite scaffold are also provided.
    Type: Application
    Filed: February 7, 2012
    Publication date: June 12, 2014
    Applicant: THE TRUSTEES OF DARTMOUTH COLLEGE
    Inventors: Ulrike G.K. Wegst, Philipp M. Hunger
  • Patent number: 8747999
    Abstract: The present invention related to (micro-or nano-) capsules that have two different functional groups on the outer shell of the particles that allow deposition onto the textile surfaces (i.e. exhibit substantivity) and subsequent covalent bonding of the particles onto the textile (i.e. are reactive towards the fiber).
    Type: Grant
    Filed: November 20, 2006
    Date of Patent: June 10, 2014
    Assignee: BASF SE
    Inventors: Bryan David Grey, Kishor Kumar Mistry, Chun-tian Zhao
  • Patent number: 8748001
    Abstract: Modified zirconia fine particles which are stable in an acidic region as well as in an alkaline region, and which may be readily adjusted in refractive index in a predetermined range are disclosed. Also disclosed is a substrate with a hard coat film excellent in adhesiveness with the substrate, abrasion resistance, scratch strength, pencil hardness and the like without interference fringes and a coating solution which may form the hard coat film. The substrate with a hard coat film is composed of composite oxide particles formed on at least one surface of the substrate and a matrix component, wherein the composite oxide particles are composite oxide particles having a core-shell structure composed of a core formed from zirconium oxide and a shell formed from antimony pentoxide and/or silica.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: June 10, 2014
    Assignee: JGC Catalysts and Chemicals Ltd.
    Inventors: Ryo Muraguchi, Mitsuaki Kumazawa, Wataru Futagami, Yuji Tawarazako, Masayuki Matsuda, Toshiharu Hirai
  • Patent number: 8741432
    Abstract: Coated particles comprise a core of fumed or precipitated inorganic metal oxide having a surface area of about 50 to about 500 square meters per gram and a shell consisting of an array of fluoroalkyl molecular chains at a density of at least 1 chain per square nanometer, joined to the core by covalent chemical bonds and with a total organic content of at least 9.9 percent by weight. These particles are formed by the chemical attachment of fluoroalkyl-alkylsilanes after exposure to an alkylamine and followed by an extraction to remove any organic material not covalently bound. The dense packing of molecular chains in the fluoroalkyl shell combined with a mesoporous structure imparts a very low surface energy, a very high specific surface area, and surface texture over a wide range of length scales. Such features are highly desirable for the creation of, for example, superhydrophobic and superoleophobic surfaces, separation media, and release films.
    Type: Grant
    Filed: August 10, 2011
    Date of Patent: June 3, 2014
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Raymond Campos, Timothy Haddad, Joseph M. Mabry, Andrew J. Guenthner
  • Patent number: 8741431
    Abstract: A liquid phase method for producing titanium oxide sol by hydrolysis of titanium tetrachloride, which includes mixing an aqueous titanium tetrachloride solution into water at a temperature of 80° C. or higher within 60 seconds while maintaining the mixed solution at the temperature and cooling it to less than 60° C. within 15 minutes after the mixing is completed. Also disclosed is a titanium oxide sol obtained by the method, having an average primal particle diameter (DBET) of 3 to 8 nm, a cumulative 50% volume particle diameter (D50DLS) and DBET have the relationship represented by D50DLS=k×DBET where k is 1 or more and less than 5, and an anatase content of 70% or more; a particulate titanium oxide obtained by drying the titanium oxide sol; and a production method and application thereof to solar cells, lithium ion battery electrodes and dielectric materials.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: June 3, 2014
    Assignee: Showa Denko K.K.
    Inventors: Kei Mizue, Susumu Kayama
  • Patent number: 8734946
    Abstract: A product which at least partly comprises an agglomerate formed from a powder having a pre-determined wettability.
    Type: Grant
    Filed: June 2, 2009
    Date of Patent: May 27, 2014
    Assignee: The Queen's University of Belfast
    Inventors: Steven Ernest John Bell, Iain Alexander Larmour, Graham Charles Saunders
  • Patent number: 8734959
    Abstract: The present invention relates to a biopolymer based barrier coating composition wherein said biopolymer based barrier coating composition comprises a plasticizer, a nano-sized clay and a biopolymer comprising a native starch and/or a de-graded starch and/or a chemically modified starch. The present invention also relates to a method for preparing the biopolymer based barrier coating composition as well as to a method for coating a cellulose based substrate with the biopolymer based barrier coating composition. Finally, the present invention relates to a cellulose based substrate coated with said biopolymer based barrier coating composition.
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: May 27, 2014
    Assignees: Sheffield Hallam University
    Inventors: Caisa Johansson, Lars Järnström, Christopher Breen
  • Patent number: 8734948
    Abstract: The present invention relates to absorbent compositions which exhibit swelling, deswelling, and reswelling behavior. More specifically, absorbent compositions of this invention swell and absorb fluids after exposure to aqueous fluids, deswell and release fluids from the swollen absorbent compositions, and may also reswell and absorb fluids. The swelling-deswelling-reswelling behavior allows enhanced liquid distribution in absorbent composites.
    Type: Grant
    Filed: November 21, 2012
    Date of Patent: May 27, 2014
    Assignee: Evonik Stockhausen, LLC
    Inventors: Gonglu Tian, Scott J. Smith, Yaru Shi, Richard N. Dodge, Jian Qin
  • Patent number: 8729190
    Abstract: A particulate water-absorbent agent containing a polyacrylate salt-type water-absorbent resin. The agent has an absorption capacity without load of 28 g/g or higher and has a diffusion absorption index of 1.40 to 10.0 g/g min. The amount of water-soluble components in the agent, with stirring, is 15-60% by mass. The difference between this amount and the amount of water-soluble components, without stirring, is 15-50% by mass. Also disclosed is a method of making the above-identified agent.
    Type: Grant
    Filed: February 28, 2008
    Date of Patent: May 20, 2014
    Assignee: Nippon Shokubai Co., Ltd.
    Inventors: Takahiro Kitano, Takaaki Kawano, Katsuyuki Wada
  • Patent number: 8715530
    Abstract: A fluorescent paste that can form a fluorescent film and can be manufactured without a binder resin and has a high recording density and peel resistance Fluorescent fine particles each coated with a film formed of a film compound having a reactive group and a curing agent having a plurality of crosslinking reaction groups each reacting with the reactive group to form bonds are blended with a solvent to manufacture fluorescent paste. The fluorescent paste is applied to a substrate coated with a film formed of a second film compound having a second reactive group and is cured by crosslinking reactions between the reactive group and the second reactive group, and the crosslinking reaction groups to form a fluorescent film.
    Type: Grant
    Filed: June 5, 2008
    Date of Patent: May 6, 2014
    Assignee: Empire Technology Development LLC
    Inventor: Kazufumi Ogawa
  • Patent number: 8715544
    Abstract: A process of forming a population of microcapsules is described comprising a liquid hydrophilic core material and a wall material at least partially surrounding the core material. The liquid hydrophilic core material can be anionic, cationic, or neutral but polar. The microcapsule population is formed by providing liquid hydrophilic core material; providing an oil continuous phase which is low boiling and preferably nonflammable, the oil continuous phase comprising preferably one or more organic oil materials such as esters with chain length up to about 42 carbons. A mixture is formed by dispersing the liquid hydrophilic material in the oil continuous phase. Either an oil soluble or dispersible monofunctional amine acrylate or monofunctional amine methacrylate, along with acid; or alternatively monofunctional acid acrylate or monofunctional acid methacrylate along with base; or alternatively, monofunctional amine acrylate or monofunctional amine methacrylate along with acid acrylate or methacrylate; is added.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: May 6, 2014
    Assignee: Appvion, Inc.
    Inventor: Todd Arlin Schwantes
  • Patent number: 8703282
    Abstract: A core-shell type magnetic particle comprises magnetic metal particle and an oxide coating layer formed on the surface of the magnetic metal particle. The magnetic metal particle contains a magnetic metal containing at least one selected from the group consisting of Fe, Co and Ni, a nonmagnetic metal and at least one element selected from carbon and nitrogen. The oxide coating layer is constituted of an oxide or a composite oxide containing the nonmagnetic metal which is one of the constituents of the magnetic metal particle.
    Type: Grant
    Filed: August 28, 2007
    Date of Patent: April 22, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tomohiro Suetsuna, Kouichi Harada, Seiichi Suenaga
  • Patent number: 8703291
    Abstract: The present teachings provide a fuser member. The fuser member includes a substrate layer and a surface layer disposed on the substrate layer. The substrate layer comprises a plurality of core-shell particles wherein the core is a conductive particle and the shell is a fluoroplastic dispersed in a fluoroelastomer.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: April 22, 2014
    Assignee: Xerox Corporation
    Inventors: Jin Wu, Edward F. Grabowski, Lin Ma, Lanhui Zhang
  • Patent number: 8703289
    Abstract: The organic polymer particles comprise a carboxyl group and 2,3-dihydroxypropyl group, and the magnetic particles for diagnostics comprise fine magnetic material particles and a polymer part containing a hydrophilic polymer part and a crosslinked polymer part, a dry coating film obtained from a water dispersion thereof having a contact angle with water of 5° to 60°. The process for producing the carboxyl group-containing particles comprises a step of producing an ester bond by reacting a hydroxyl group in organic polymer particles having the hydroxyl group with a carboxylic anhydride. The organic polymer particles comprise a hydroxyl group originating from a 2,3-dihydroxypropyl group and a polyoxyethylene group.
    Type: Grant
    Filed: October 27, 2006
    Date of Patent: April 22, 2014
    Assignee: JSR Corporation
    Inventors: Kouji Tamori, Tetsuo Fukuta, Mitsuhiro Murata, Masaru Ueno, Satoshi Katayose, Eiji Takamoto, Kiyoshi Kasai
  • Publication number: 20140107738
    Abstract: Materials and methods for making small magnetic particles, e.g., clusters of metal atoms, which can be employed as a substrate for immobilizing a plurality of ligands. Also disclosed are uses of these magnetic nanoparticles as therapeutic and diagnostic reagents, and in the study of ligand-mediated interactions.
    Type: Application
    Filed: October 2, 2013
    Publication date: April 17, 2014
    Applicants: Midatech Limited, Consejo Superior De Investigacione Cientificas
    Inventors: Soledad Penades, Manual Martin-Lomas, Jesus Martines de la Fuente, Thomas William Rademacher
  • Patent number: 8696946
    Abstract: A conductive powder improving various performances as compared to conventional conductive powders is described. The conductive power includes conductive particles, each of which have a metal or alloy film formed on the surface of a core particle. The conductive particle has thereon protrusions protruding from the surface of the film. Each protrusion includes a particle chain including particles of the metal or alloy linked in a row. It is preferred that the metal or alloy is nickel or a nickel alloy. It is also preferred that the ratio of the total area of the exposed portions of the film to the projection area of the conductive particle is 60% or less.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: April 15, 2014
    Assignee: Nippon Chemical Industrial Co., Ltd.
    Inventors: Chihiro Matsumoto, Masaaki Oyamada
  • Patent number: 8697453
    Abstract: A coated magnetic particle comprising an optionally porous magnetic polymer particle of a matrix polymer, said polymer particle having on a surface and/or in the pores thereof superparamagnetic crystals, said coated particle having a coat formed of a coating polymer, wherein said coated magnetic particle is essentially non-autofluorescent.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: April 15, 2014
    Assignee: Life Technologies AS
    Inventors: Ellen Weng, Geir Fonnum, Grete Modahl, Astrid Molteberg, Erling Finne
  • Patent number: 8697233
    Abstract: A metal-coated material comprising a metal-coated lipid bilayer vesicle and a preparation method thereof are provided. A metal-coated material comprising a metal-coated lipid bilayer vesicle having a network of siloxane bonding (Si—O—Si) on its surface. a method for preparing the metal-coated lipid bilayer vesicle comprising the following steps: (1) rendering the functional group(s) having the ability of carrying the metal catalyst to the surface of lipid bilayer vesicle having a network of siloxane bonding (Si—O—Si bonding) on its surface, at or after the formation, by self-organization, of the lipid bilayer vesicle; (2) immobilizing the metal catalyst on the surface of the lipid bilayer vesicle; (3) optionally, reducing the metal catalyst; and (4) performing electroless plating.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: April 15, 2014
    Assignees: Nara Institute of Science and Technology, JX Nippon Mining & Metals Corporation
    Inventors: Jun-ichi Kikuchi, Yoshihiro Sasaki, Mineo Hashizume, Toru Imori
  • Patent number: 8697798
    Abstract: A silicone rubber composition comprising (A) an organopolysiloxane composition of the organic peroxide cure or addition reaction cure type, (B) a normally solid organic compound having at least two ester bonds per molecule, and (C) particulate aluminum hydroxide having an average particle size of up to 20 ?m is suited for use as high-voltage electric insulator since it maintains insulating properties for a long term in outdoor service and has acid resistance and a long lifetime even in polluted areas.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: April 15, 2014
    Assignees: Shin-Etsu Chemical Co., Ltd., NGK Insulators, Ltd.
    Inventors: Noriyuki Meguriya, Yoshiaki Koike, Osamu Hayashida, Takanori Kondo, Tatsuya Kuroda
  • Publication number: 20140097377
    Abstract: A magnetic powder comprises a first magnetic particle, one or more inorganic insulating particles and one or more second magnetic particles. The first magnetic particle is made of a soft magnetic metal. The first magnetic particle has a flat shape. The inorganic insulating particles are attached to the first magnetic particle. The inorganic insulating particles partially cover the first magnetic particle. Each of the second magnetic particles is made of a soft magnetic metal. Each of the second magnetic particles has a flat shape. The second magnetic particles are attached to the first magnetic particle via the inorganic insulating particles.
    Type: Application
    Filed: October 3, 2013
    Publication date: April 10, 2014
    Applicant: NEC TOKIN CORPORATION
    Inventor: Toshiyuki IGARASHI
  • Publication number: 20140099718
    Abstract: Heterogeneous nanowires having a core-shell structure consisting of single-crystal apatite as the core and graphitic layers as the shell and a synthesis method thereof are provided. More specifically, provided is a method capable of producing large amounts of heterogeneous nanowires, composed of graphitic shells and apatite cores, in a reproducible manner, by preparing a substrate including an element corresponding to X of X5(YO4)3Z is a chemical formula for apatite, adding to the substrate a gaseous source containing an element corresponding to Y of the chemical formula, adding thereto a gaseous carbon source, and allowing these reactants to react under optimized synthesis conditions using chemical vapor deposition (CVD), and to a method capable of freely controlling the structure and size of the heterogeneous nanowires and also to heterogeneous nanowires synthesized thereby.
    Type: Application
    Filed: November 11, 2013
    Publication date: April 10, 2014
    Applicant: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Nam Jo JEONG, Jung Hoon LEE
  • Patent number: 8691717
    Abstract: The invention discloses core/shell, type catalyst particles comprising a Mcore/Mshell structure with Mcore=inner particle core and Mshell=outer particle shell, wherein the medium diameter of the catalyst particle (dcore+shell) is in the range of 20 to 100 nm, preferably in the range of 20 to 50 nm. The thickness of the outer shell (tshell) is about 5 to 20% of the diameter of the inner particle core of said catalyst particle, preferably comprising at least 3 atomic layers. The core/shell type catalyst particles, particularly the particles comprising a Pt˜based shell reveal a high specific activity. The catalyst particles are preferably supported on suitable support materials such as carbon black and are used as electrocatalysts for fuel cells.
    Type: Grant
    Filed: July 24, 2012
    Date of Patent: April 8, 2014
    Assignee: Umicore AG & Co. KG
    Inventors: Marco Lopez, Michael Lennartz, Dan V. Goia, Carsten Becker, Stéphanie Chevalliot