Coated Patents (Class 428/403)
  • Patent number: 8603362
    Abstract: A method is provided for preparing luminescent semiconductor nanoparticles composed of a first component X, a second component A, and a third component B, wherein X, A, and B are different, by combining B with X and A in an amount such that the molar ratio B:(A+B) is in the range of approximately 0.001 to 0.20 and the molar ratio X:(A+B) is in the range of approximately 0.5:1.0 to 2:1. The characteristics of these nanoparticles can be substantially similar to those of nanoparticles containing only X and B while maintaining many useful properties characteristic of nanoparticles containing only X and A; and can additionally exhibit emergent properties such as a peak emission energy less than that characteristic of a particle composed of XA or XB alone. This method is particularly applicable to the preparation of stable, bright nanoparticles that emit in the red to infrared regions of the electromagnetic spectrum.
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: December 10, 2013
    Assignee: Life Technologies Corporation
    Inventors: Marc Schrier, Donald Zehnder, Joseph Treadway, Joseph Bartel
  • Patent number: 8603213
    Abstract: A method of making dispersion-strengthened alloy particles involves melting an alloy having a corrosion and/or oxidation resistance-imparting alloying element, a dispersoid-forming element, and a matrix metal wherein the dispersoid-forming element exhibits a greater tendency to react with an introduced reactive species than does the alloying element and wherein one or more atomizing parameters is/are modified to controllably reduce the amount of the reactive species, such as oxygen, introduced into the atomized particles so as to reduce anneal times and improve reaction (conversion) to the desired strengthening dispersoids in the matrix. The atomized alloy particles are solidified as solidified alloy particles or as a solidified deposit of alloy particles.
    Type: Grant
    Filed: February 25, 2008
    Date of Patent: December 10, 2013
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Iver E. Anderson, Joel Rieken
  • Patent number: 8597730
    Abstract: A process for the production of surface functionalised nanoparticles, such as the production of semiconductor quantum dot nanoparticles incorporating surface-bound functional groups that increase the ease with which the dots can be employed in applications, such as incorporation into solvents, inks, polymers, glasses, metals, electronic materials and devices, bio-molecules and cells. Embodiments of the method include reacting first and second nanoparticle precursor species in the presence of a nanoparticle surface binding ligand X—Y—Z where X is a nanoparticle surface binding group, Y is a linker group, and Z is a functional group, in which Y comprises a polyethyleneglycol group and/or Z comprises an aliphatic group incorporating a terminal unsaturated group, the reaction being effected under conditions permitting binding of said surface binding ligand to the growing nanoparticles to produce said surface functionalised nanoparticles.
    Type: Grant
    Filed: August 7, 2009
    Date of Patent: December 3, 2013
    Assignee: Nanoco Technologies Ltd.
    Inventors: Nigel Pickett, Mark C. McCairn, Steven M. Daniels, Imrana Mushtaq, Paul Glarvey
  • Patent number: 8597789
    Abstract: The present invention relates to innovative antifouling additives, to a process for producing them, to coating systems comprising the antifouling systems of the invention, to a process for producing the coating systems, and to the use of the antifouling additives and coating systems of the invention for preventing the underwater fouling of surfaces of objects which are in contact or come into contact with water.
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: December 3, 2013
    Assignee: Evonik Degussa GmbH
    Inventors: Katharina Schulz, Rüdiger Mertsch, Jürgen Meyer, Günther Michael, Matthias Rochnia, Thorsten Schultz, Juri Tschernjaew
  • Patent number: 8592036
    Abstract: Nano-constructs comprising nanoshells and methods of using the nano-constructs for treating or ameliorating a medical condition are provided.
    Type: Grant
    Filed: September 20, 2012
    Date of Patent: November 26, 2013
    Assignee: Abbott Cardiovascular Systems Inc.
    Inventors: Florian Niklas Ludwig, Stephen D. Pacetti, Syed F. A. Hossainy, Dariush Davalian
  • Publication number: 20130309161
    Abstract: An ammonia production process is disclosed. The process uses gasification of biomass waste and the like to produce syngas which, using an integrated system including using nitrogen enriched air and a porous coated catalyst, produces ammonia in a plasma reactor. The ammonia is finally recovered using sulphonated PolyHIPE Polymer which can be used as a fertilizer after neutralisation.
    Type: Application
    Filed: August 30, 2011
    Publication date: November 21, 2013
    Applicant: UNIVERSITY OF NEWCASTLE UPON TYNE
    Inventor: Galip Akay
  • Patent number: 8586182
    Abstract: A composite particle for electrode as an active material capable of forming an electrochemical device with excellent discharge capacities and rate characteristics is provided. A composite particle for electrode according to the present invention comprises a particulate core including at least one mother particle containing an electrode active material, and an electron-conducting layer which covers at least part of the surface of the particulate core, the electron-conducting layer including carbon and microparticles containing an electrode active material, and the microparticles having a particle size of 300 nm or less.
    Type: Grant
    Filed: September 24, 2008
    Date of Patent: November 19, 2013
    Assignee: TDK Corporation
    Inventors: Tadashi Suzuki, Hisashi Suzuki, Masato Kurihara
  • Patent number: 8586137
    Abstract: The present invention relates to a method for spraying particulate solids onto a substrate, comprising the steps of: coating the substrate with a wet and/or adhesive synthetic resin layer, building up a gas pressure in a line, generating a pressure differential in the line, swirling and carrying along particulate solids in the line, ejecting swirled, particulate solids from the line onto the surface of the wet and/or adhesive synthetic resin layer of the substrate. The invention also relates to a substrate, in particular a wood-based panel or decorative paper, at least partially coated with a particulate solid, characterized in that the particulate solid is applied to the substrate with an accuracy of up to ±0.8 g/m2, preferably of up to ±0.5 g/m2, particularly preferably of up to ±0.3 g/m2, preferably of up to 0.1 g/m2.
    Type: Grant
    Filed: January 10, 2012
    Date of Patent: November 19, 2013
    Assignee: Kronotec AG
    Inventors: Pius Steinmann, Christian Huebner, Erich Bauer
  • Publication number: 20130298991
    Abstract: The present invention provides methods of producing manufactured aggregates and other compositions from a particulate PCM slurry, suspension or emulsion by combining a cementitious binder and a adsorbent and/or absorbent with the PCM slurry. The PCM-containing composition can be produced in an agglomeration process. The ingredients can also be mixed to form a viscous mass which can be extruded or otherwise formed to produce useful products.
    Type: Application
    Filed: May 13, 2013
    Publication date: November 14, 2013
    Applicant: PCM INNOVATIONS LLC
    Inventors: Joseph B. Parker, Joseph A. Driscoll
  • Publication number: 20130302614
    Abstract: Plant biomass particles coated with a biological agent such as a bacterium or seed, characterized by a length dimension (L) aligned substantially parallel to a grain direction and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. In particular, the L x H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers, the W×H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers, and the L×W dimensions define a pair of substantially parallel top and bottom surfaces.
    Type: Application
    Filed: July 11, 2013
    Publication date: November 14, 2013
    Inventors: James H. Dooley, David N. Lanning
  • Patent number: 8580372
    Abstract: The present invention provides an optical film comprising a substrate having a first optical surface and a second surface and a micro structure layer on the first optical surface of the substrate, wherein the micro structure layer comprises a plurality of first light-adjusting structures selected from the group consisting of prism columnar structures, conical columnar structures, solid angle structures and orange-segment like structures and a combination thereof and a plurality of second light-adjusting structures selected from the group consisting of arc columnar structures, lens-like structures, and capsule-like structures and a combination thereof, wherein at least a portion of the second light-adjusting structures has a height greater than those of all the first light-adjusting structures. The optical film of the present invention will not suffer the damage caused on the microstructure layers while achieving a light-gathering effect and effectively reducing optical interference.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: November 12, 2013
    Assignee: Eternal Chemical Co., Ltd.
    Inventors: Ting-Yuang Wu, Hsung-Hsing Wang, Yi-Chia Wang
  • Patent number: 8581209
    Abstract: The present disclosure relates to microcapsules that include a shell material and a core material. The core material of the microcapsules contains an environmentally sensitive luminescent colorant which exhibits characteristics of an emitted wavelength bandwidth, a peak intensity for emission and a time for luminescence decay, one or more of the characteristics capable of changing upon exposure to a given environment, and a luminescent standard which exhibits characteristics of an emitted wavelength bandwidth, a peak intensity for emission and a time for luminescence decay, one or more of the characteristics do not change upon exposure to said given environment.
    Type: Grant
    Filed: January 29, 2009
    Date of Patent: November 12, 2013
    Assignee: Southwest Research Institute
    Inventors: James D Oxley, Jenny J. Finkbiner, Nitin Nitin
  • Patent number: 8580141
    Abstract: A method for treating calcium carbonate includes combining calcium carbonate with an amount of stearic acid and an amount of water to form a mixture, the amount of water being at least about 0.1% by weight relative to the total weight. The method further includes blending the mixture to form a stearic acid-treated calcium carbonate composition.
    Type: Grant
    Filed: September 4, 2009
    Date of Patent: November 12, 2013
    Assignee: Imerys Pigments, Inc.
    Inventors: Yash Khanna, David Taylor, David Anstine, Christopher Paynter
  • Patent number: 8580382
    Abstract: Provided are a coated metal pigment which can satisfy both the coating stability in use as an aqueous coating, i.e., water resistance, and the chemical resistance of coating films produced by application thereof at practically satisfactory levels; a method for producing the same; and an aqueous coating containing the same. The invention relates to a coated metal pigment including a metal pigment and a composite coating layer, wherein the composite coating layer includes an adhesion layer which is disposed on the surface of the metal pigment either in contact with the metal pigment or at an interposition of another layer and contains polysiloxane and/or silica, and a resin layer which is disposed on the surface of the adhesion layer either in contact with the adhesion layer or at an interposition of another layer.
    Type: Grant
    Filed: October 6, 2006
    Date of Patent: November 12, 2013
    Assignee: Toyo Aluminium Kabushiki Kaisha
    Inventors: Takayuki Sato, Taro Morimitsu, Shunichi Setoguchi, Yoshiki Hashizume
  • Publication number: 20130295386
    Abstract: A waterproof pigment, the preparing method and the use thereof are provided. The pigment has a primary flake with a layered structure of at least three layers including a top layer, an assembled intermediate layer and a bottom layer, wherein the assembled intermediate layer has at least one layer of active metal. The pigment has a coating on the side of the primary flake only.
    Type: Application
    Filed: June 3, 2011
    Publication date: November 7, 2013
    Applicant: SHANTOU LONGHUA PEARL LUSTRE PIGMENTS CO., LTD
    Inventors: Jiansheng Fu, Fen Long, Junli Zhang
  • Patent number: 8575059
    Abstract: A metal compound catalyst is formed by vaporizing a quantity of catalyst material and a quantity of carrier thereby forming a vapor cloud, exposing the vapor cloud to a co-reactant and quenching the vapor cloud. The nanoparticles are impregnated onto supports. The supports are able to be used in existing heterogeneous catalysis systems. A system for forming metal compound catalysts comprises components for vaporizing a quantity of catalyst material and a quantity of carrier, quenching the resulting vapor cloud, forming precipitate nanoparticles comprising a portion of catalyst material and a portion of carrier, and subjecting the nanoparticles to a co-reactant. The system further comprises components for impregnating the supports with the nanoparticles.
    Type: Grant
    Filed: December 11, 2007
    Date of Patent: November 5, 2013
    Assignee: SDCmaterials, Inc.
    Inventors: Maximilian A. Biberger, Stephen Edward Lehman, Jr., Robert Matthew Kevwitch, Qinghua Yin, Jesudos J. Kingsley
  • Patent number: 8569428
    Abstract: The invention provides methods of producing composite polymers by combining fillers with polymers in the presence of pre-formed high molecular weight polymer. Monomer polymerization can be initiated through the addition of initiators or by reactive chemical groups on the surface of the fibers. The composite materials formed possess superior mechanical properties compared to similar polymer composites made by either purely mechanical mixing or solely polymerization of monomers in the presence of the fillers.
    Type: Grant
    Filed: June 8, 2009
    Date of Patent: October 29, 2013
    Inventors: John R. Dorgan, Birgit Braun
  • Patent number: 8568882
    Abstract: A mesostructured material is described, which consists of at least two elementary spherical particles, each one of said particles comprising a mesostructured matrix based on aluminium oxide, said matrix having a pore diameter ranging between 1.5 and 30 nm, and an aluminium oxide content representing more than 46 wt. % of the mass of said matrix, which has amorphous walls of thickness ranging between 1 and 30 nm, said elementary spherical particles having a diameter D greater than 10 ?m and less than or equal to 100 ?m (10<D(?m)?100). Said mesostructured matrix can also contain silicon oxide. Each spherical particle of the mesostructured material can also contain zeolite nanocrystals so as to form a mixed porosity material of both mesostructured and zeolitic nature. The preparation of said material is also described.
    Type: Grant
    Filed: February 26, 2009
    Date of Patent: October 29, 2013
    Assignee: IFP Energies Nouvelles
    Inventors: Alexandra Chaumonnot, Aurelie Coupe, Clement Sanchez, Cedric Boissiere, Michel Martin
  • Patent number: 8568881
    Abstract: Microspheres, populations of microspheres, and methods for forming microspheres are provided. One microsphere configured to exhibit fluorescent and magnetic properties includes a core microsphere and a magnetic material coupled to a surface of the core microsphere. About 50% or less of the surface of the core microsphere is covered by the magnetic material. The microsphere also includes a polymer layer surrounding the magnetic material and the core microsphere. One population of microspheres configured to exhibit fluorescent and magnetic properties includes two or more subsets of microspheres. The two or more subsets of microspheres are configured to exhibit different fluorescent and/or magnetic properties. Individual microspheres in the two or more subsets are configured as described above.
    Type: Grant
    Filed: October 9, 2012
    Date of Patent: October 29, 2013
    Assignee: Luminex Corporation
    Inventors: Don J. Chandler, Jason Bedre
  • Patent number: 8568879
    Abstract: A polymer-coated particulate material having: a particulate substrate; and an applied compound, wherein the applied compound coats at least 50% of the surface of the particulate substrate, and wherein, at the time of application, the applied compound includes a dispersion including: a thermoplastic polymer; and a stabilizing compound. In another aspect, embodiments disclosed herein relate to a method of forming a polymer-coated particulate material, the method including the steps of: incorporating a particulate substrate and a dispersion, the dispersion comprising: a thermoplastic polymer; a stabilizing compound; and a dispersion medium selected from the group consisting of an organic solvent, water, and combinations thereof; removing at least a portion of the dispersion medium.
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: October 29, 2013
    Assignee: Dow Global Technologies LLC
    Inventors: Loic F. Chereau, Julien H. J. M. Damen, Thomas Allgeuer
  • Patent number: 8568607
    Abstract: A process for forming thermoelectric nanoparticles includes the steps of providing a reducing agent, and at least one first metal; mixing the reducing agent and at least one first metal forming a premixed reducing solution; providing a second metal containing compound, and a core material; mixing the second metal containing compound and the core material forming a premixed second metal reaction solution separate from the premixed reducing solution; and mixing and reacting the premixed second metal reaction solution with the premixed reducing solution. A spontaneous alloying occurs about the core material forming thermoelectric composite nanoparticles.
    Type: Grant
    Filed: February 8, 2011
    Date of Patent: October 29, 2013
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventor: Michael Paul Rowe
  • Patent number: 8568880
    Abstract: Provided is a process for advantageously producing spherical particles of furfuryl alcohol resin without irradiating the reaction system with ultrasonic waves and without using a harmful aldehyde as a starting material. In the process, furfuryl alcohol is subjected to resinification and curing to form spherical fine particles of furfuryl alcohol resin. More specifically, the furfuryl alcohol is subjected to a self-condensation with an acid catalyst having a pKa of less than 1.5 in the presence of a protective colloid and then heated for curing to form spherical particles of furfuryl alcohol resin.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: October 29, 2013
    Assignee: Asahi Organic Chemicals Industry Co., Ltd.
    Inventor: Yasuhiro Matsumoto
  • Publication number: 20130280151
    Abstract: A composite structure for capturing a gaseous electrophilic species, the composite structure comprising mesoporous refractory sorbent particles on which an ionic liquid is covalently attached, wherein said ionic liquid includes an accessible functional group that is capable of binding to said gaseous electrophilic species. In particular embodiments, the mesoporous sorbent particles are contained within refractory hollow fibers. Also described is a method for capturing a gaseous electrophilic species by use of the above-described composite structure, wherein the gaseous electrophilic species is contacted with the composite structure.
    Type: Application
    Filed: April 23, 2013
    Publication date: October 24, 2013
    Inventors: Jong Suk Lee, William J. Koros, Nitesh Bhuwania, Patrick C. Hillesheim, Sheng Dai
  • Patent number: 8563485
    Abstract: A tribo-system includes a metal substrate having a surfactant layer chemisorbed to a side thereof, a lubricant established on the metal substrate, and a plurality of nanoparticles dispersed in the lubricant. Each of the nanoparticles includes i) an inorganic core having a predetermined size and shape, and ii) a surfactant shell chemisorbed to a surface of the inorganic core, where the surfactant shell has a predetermined thickness. The adhesive force and energy between the metal substrate surface and the nanoparticles is higher than the adhesive force and energy between individual particles of the nanoparticles.
    Type: Grant
    Filed: May 20, 2010
    Date of Patent: October 22, 2013
    Assignees: GM Global Technology Operations LLC, The Regents of The University of California
    Inventors: Gregory Mordukhovich, Jacob N. Israelachvili
  • Patent number: 8563135
    Abstract: A mesostructured aluminosilicate material is described, which consists of at least two elementary spherical particles, each one of said spherical particles consisting of a matrix based on silicon oxide and aluminium oxide, said matrix having a pore diameter ranging between 1.5 and 30 nm, a Si/Al molar ratio at least equal to 1 and amorphous walls of thickness ranging between 1 and 30 nm, said elementary spherical particles having a diameter D such that 10<D(?m)?100. A method of preparing said material and its application in the spheres of refining and petrochemistry are also described.
    Type: Grant
    Filed: February 26, 2009
    Date of Patent: October 22, 2013
    Assignee: IFP Energies Nouvelles
    Inventors: Alexandra Chaumonnot, Aurelie Coupe, Clement Sanchez, Cedric Boissiere, Michel Martin
  • Patent number: 8563089
    Abstract: Disclosed are a functional reinforcing filler including inorganic particles surface-modified with an alkenylsilanol obtained by hydrolyzing an alkenylalkoxysilane compound, and a method for preparing the same. Since the disclosed functional reinforcing filler has a functional group having a double bond, it has good reactivity for styrene-butadiene rubber and sulfur. Thus, when used as a functional reinforcing filler in the manufacture of rubber, it allows improvement of physical properties through adjustment of the addition amount of sulfur without additional use of the coupling agent. In addition, because of superior hydrolysis reactivity, the problem of alcohol can be solved and a rubber mixture with long scorch time can be prepared. In particular, when the functional reinforcing filler of the present invention is used in the manufacture of tires, improvement in modulus, tensile strength, rotational resistance and wet traction performance can be expected.
    Type: Grant
    Filed: July 8, 2011
    Date of Patent: October 22, 2013
    Assignee: Korea Institute of Science and Technology
    Inventors: Bok Ryul Yoo, Joon Soo Han, Dong Euy Jung
  • Patent number: 8563081
    Abstract: Fabrication and arrangement of nanoparticles into one-dimensional linear chains is achieved by successive chemical reactions, each reaction adding one or more nanoparticles by building onto exposed, unprotected linker functionalities. Optionally, protecting groups may be used to control and organize growth. Nanoparticle spheres are functionalized in a controlled manner in order to enable covalent linkages. Functionalization of nanoparticles is accomplished by either ligand exchange or chemical modification of the terminal functional groups of the capping ligand. Nanoparticle chains are obtained by a variety of connectivity modes such as direct coupling, use of linker molecules, and use of linear polymeric templates. In particular, a versatile building block system is obtained through controlled monofunctionalization of nanoparticles.
    Type: Grant
    Filed: January 22, 2013
    Date of Patent: October 22, 2013
    Assignee: Massachusetts Institute of Technology
    Inventors: Joseph M. Jacobson, David W. Mosley, Kie-Moon Sung
  • Patent number: 8563148
    Abstract: Subject: A process for producing a magnetic recording medium, having a magnetic recording layer and a protective layer on a substrate which is a non-magnetic support, wherein the medium is able to greatly inhibit migration of a lubricant from the protective layer to the surface of the metal pressing plate having a mirrored finish in a hot pressing step during production of the magnetic recording medium, while maintaining satisfactory scratch resistance, suitable adhesion with the magnetic recording layer and the protective layer, and excellent read and write properties of the magnetic recording medium.
    Type: Grant
    Filed: January 20, 2009
    Date of Patent: October 22, 2013
    Assignee: DIC Corporation
    Inventors: Satoshi Hayakawa, Daisuke Yano, Yoshikazu Yamazaki
  • Patent number: 8563133
    Abstract: Ligand compositions for use in preparing discrete coated nanostructures are provided, as well as the coated nanostructures themselves and devices incorporating same. Methods for post-deposition shell formation on a nanostructure, for reversibly modifying nanostructures, and for manipulating the electronic properties of nanostructures are also provided. The ligands and coated nanostructures of the present invention are particularly useful for close packed nanostructure compositions, which can have improved quantum confinement and/or reduced cross-talk between nanostructures. Ligands of the present invention are also useful for manipulating the electronic properties of nanostructure compositions (e.g., by modulating energy levels, creating internal bias fields, reducing charge transfer or leakage, etc.).
    Type: Grant
    Filed: December 9, 2005
    Date of Patent: October 22, 2013
    Assignee: SanDisk Corporation
    Inventors: Jeffery A. Whiteford, Mihai A. Buretea, Jian Chen, William P. Freeman, Andreas Meisel, Linh Nguyen, J. Wallace Parce, Erik Scher
  • Patent number: 8557382
    Abstract: The present disclosure relates to a microcapsule and a method of forming a microcapsule which may be used for oxygen sensitive materials. The microcapsule may comprise a shell encapsulating a core material having a surface, wherein the shell comprises a first organic or inorganic polyelectrolyte providing a plurality of cationic or anionic charges. This may then be followed by forming a first layer comprising an inorganic or organic polyelectrolyte on the microcapsule surface, where the polyelectrolyte of the first layer provides a plurality of cationic or anionic charges, opposite to the charge of the shell polyelectrolyte. This may then be followed by forming a second layer comprising a second organic or inorganic polyelectrolyte providing a plurality of cationic or anionic charges, opposite to the charge of the first layer polyelectrolyte.
    Type: Grant
    Filed: May 19, 2009
    Date of Patent: October 15, 2013
    Assignee: Southwest Research Institute
    Inventors: James D Oxley, Jenny J. Finkbiner, Darren E. Barlow
  • Patent number: 8557336
    Abstract: Methods and apparatus for coating particulate material are provided. The apparatus includes a vessel having a top and a bottom, a vertically extending conduit having an inlet in the vessel and an outlet outside of the vessel, a first fluid inlet in the bottom of the vessel for introducing a transfer fluid, a second fluid inlet in the bottom of the vessel for introducing a coating fluid, and a fluid outlet from the vessel. The method includes steps of agitating a material, contacting the material with a coating material, and drying the coating material to produce a coated material. The invention may be adapted to coat aerogel beads, among other materials. A coated aerogel bead and an aerogel-based insulation material are also disclosed.
    Type: Grant
    Filed: July 18, 2012
    Date of Patent: October 15, 2013
    Assignee: Rensselaer Polytechnic Institute
    Inventors: Howard Littman, Joel L. Plawsky, John D. Paccione
  • Patent number: 8552108
    Abstract: A room temperature curable organopolysiloxane composition is provided. The composition comprises (I) an organopolysiloxane which is a condensation product of component (A) (an organopolysiloxane comprising R3SiO1/2 unit and SiO4/2 unit and containing 0.02 to 0.12 mol/100 g of hydroxy group bonded to the silicon atom) and component (B) (a diorganopolysiloxane raw rubber having hydroxy group on opposite ends thereof), (II) an organosilane compound having at least 2 hydrolyzable groups bonded to the silicon atom on average per molecule, and/or its partial hydrolytic condensate, (III) a solvent, and (IV) a silica nano particle having its surface modified by a branch structure. The composition is capable of providing a high strength film without incorporating reinforcement fillers, with no curing inhibition by the inorganic nano particles, and without inhibiting gas separation performance realized by the inorganic nano particles.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: October 8, 2013
    Assignees: Tokyo Metropolitan University, Shin-Etsu Chemical Co., Ltd.
    Inventors: Hiroyoshi Kawakami, Shoichi Hasebe, Tsuneo Kimura
  • Patent number: 8551617
    Abstract: The present invention provides magnetically responsive activated carbon, and a method of forming magnetically responsive activated carbon. The method of forming magnetically responsive activated carbon typically includes providing activated carbon in a solution containing ions of ferrite forming elements, wherein at least one of the ferrite forming elements has an oxidation state of +3 and at least a second of the ferrite forming elements has an oxidation state of +2, and increasing pH of the solution to precipitate particles of ferrite that bond to the activated carbon, wherein the activated carbon having the ferrite particles bonded thereto have a positive magnetic susceptibility. The present invention also provides a method of filtering waste water using magnetic activated carbon.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: October 8, 2013
    Assignee: UT-Battelle, LLC
    Inventors: Patricia Taboada-Serrano, Constantino Tsouris, Cristian I. Contescu, Joanna McFarlane
  • Publication number: 20130259913
    Abstract: Particles containing at least two incompatible materials, such as a hydrophilic agent and a lipophilic agent, and particles from gas saturated solution (PGSS) processes for making such particles are provided.
    Type: Application
    Filed: March 29, 2012
    Publication date: October 3, 2013
    Inventors: Holly Balasubramanian Rauckhorst, Qing Stella, Andreas Josef Dreher
  • Publication number: 20130260152
    Abstract: Apparatus to deliver predetermined forces, containers to hold particulate material and media, media, and the associated parameters for operating such equipment along with methods and compositions provided by the apparatus and methods.
    Type: Application
    Filed: March 30, 2012
    Publication date: October 3, 2013
    Inventors: Scott L. Murray, Jim L. Peyton, Korey Morris
  • Patent number: 8535554
    Abstract: A process for forming thermoelectric nanoparticles includes the steps of providing a core material and a bismuth containing compound in a reverse micelle; providing a tellurium containing compound either in or not in a reverse micelle; reacting the bismuth containing compound with the tellurium containing compound in the presence of a base, forming a composite thermoelectric nanoparticle having a core and shell structure.
    Type: Grant
    Filed: July 27, 2010
    Date of Patent: September 17, 2013
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Michael Paul Rowe, Minjuan Zhang, Paul Jantzen
  • Patent number: 8535803
    Abstract: Solar-reflective roofing granules having deep-tone colors are formed by coating base mineral particles with a coating composition including an infrared-reflective pigment. Color is provided by colored infrared pigment, light-interference platelet pigment, or a metal oxide.
    Type: Grant
    Filed: December 9, 2011
    Date of Patent: September 17, 2013
    Assignee: CertainTeed Corporation
    Inventors: Ming Liang Shiao, Husnu M. Kalkanoglu, Keith C. Hong
  • Patent number: 8530048
    Abstract: The invention relates to surface-modified particles, more particularly inorganic-based particles having reactive surfaces, more particularly surfaces containing silane-reactive and/or siloxane-reactive groups, preferably hydroxyl-containing surfaces and/or particles comprising or consisting of metal and/or semi-metal oxides and/or hydroxides, preferably nanoparticles, which on their surface have a polysiloxane-based modifier having more particularly been reacted on their surface with a polysiloxane-based modifier, preferably with the formation of chemical bonds, more particularly covalent bonds, and also to a method of producing these surface-modified particles.
    Type: Grant
    Filed: July 16, 2007
    Date of Patent: September 10, 2013
    Assignee: Byk-Chemie GmbH
    Inventors: Ulrich Nolte, Alfred Bubat, Karlheinz Haubennestel, Thomas Sawitowski
  • Patent number: 8529693
    Abstract: An adhesion bond strength enhancer for cementitious adhesive mortar is disclosed. The adhesion enhancer improves bond strength between the mortar and relatively hydrophobic plastic material, such as extruded polystyrene boards and expanded polystyrene boards of the type generally employed in Exterior Insulation Finishing Systems (“EIFS”). Preparation of non-caking, free-flowing, solid dialkyl sulfosuccinate compositions for use as the adhesion enhancer is also disclosed. The adhesion enhancer is attractive for large-scale application in mineral mortar dry-mixes or other solid construction materials. The invention can be used to improve the strength of an adhesive bond between a) gypsum based plaster or stucco and concrete or bricks, b) tile adhesives and concrete, and c) mineral mortars on polystyrene boards, among others.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: September 10, 2013
    Assignee: Troy Corporation
    Inventors: Gerald Krätschmer, Jörg Thomas Wilken
  • Patent number: 8529694
    Abstract: A composition including particles of a carrier having on a surface thereof a compound according to structure (A) wherein either m is 1 and R is according to structure (B) in which n is an integer from 3 to 7, or m is 2 and R is according to structure C in which p is an integer from 1 to 10. Such compositions are useful for a variety of applications, for example the preparation of mortars and cements.
    Type: Grant
    Filed: October 26, 2006
    Date of Patent: September 10, 2013
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Laurent Herschke, Roger William Franciscus Reinartz
  • Patent number: 8530785
    Abstract: The present invention generally relates to a method of laser-marking. The method can include exposing a precursor to a laser creating a mark. The precursor can include a polymer or plastic loaded with a laser-marking additive in an amount of or greater than about 1 wt. %. The additive can include: at least one compound of the formula: MOCl where M is, independently, As, Sb, or Bi; or a compound of the formula BiONO3, Bi2O2CO3, BiOOH, BiOF, BiOBr, Bi2O3, BiOC3H5O7, Bi(C7H5O2)3, BiPO4, Bi2(SO4)3, Pb(OH)2.2PbCO3, or Pb(OH)2.PbCO3.
    Type: Grant
    Filed: August 2, 2005
    Date of Patent: September 10, 2013
    Assignee: Merck Patent GmbH
    Inventor: Qinyun Peng
  • Patent number: 8530047
    Abstract: The oligonucleotide polymerization method of the present invention is advantageous in that an oligonucleotide with a small molecular weight can be easily polymerized into high-molecular weight oligonucleotides. Further, the high-molecular oligonucleotide prepared by the method of the present invention can bind to hydrophilic high-molecular materials or inorganic materials, and then can be stably delivered to a living body. Therefore, the high-molecular oligonucleotide prepared by the method of the present invention can be widely used for treating various diseases.
    Type: Grant
    Filed: March 2, 2010
    Date of Patent: September 10, 2013
    Assignee: Korea Institute of Science and Technology
    Inventors: KwangMeyung Kim, Ick Chan Kwon, Kui Won Choi, Seung Young Lee, In Chan Youn, Myung Sook Huh, So Jin Lee
  • Publication number: 20130230720
    Abstract: A processed DRI material having an average surface roughness (Ra) of less than 1.5 ?m is disclosed. A method and system for making processed DRI are also disclosed. One embodiment of the method and system may include assembling a rotatable chamber having an internal screen capable of supporting DRI during tumbling, with at least one opening in the chamber to permit fines to exit the chamber during tumbling, and delivering DRI into the chamber to tumble the DRI on the screen to remove fines from the DRI. Another embodiment of the method and system may include assembling a rotatable chamber having a feed end and an exit end, and having a screen therein capable of supporting DRI as the DRI moves through the chamber, and delivering DRI to the chamber and rotating the chamber to tumble the DRI while removing fines.
    Type: Application
    Filed: September 9, 2011
    Publication date: September 5, 2013
    Applicant: NU-IRON TECHNOLOGY, LLC
    Inventors: Gary M. Levanduski, Kyle Bartholomew, David W. Hendrickson, Christopher P. Manning, Anthony Ramjewan
  • Publication number: 20130230721
    Abstract: A method for producing a catalyst using an additive layer method includes: (i) forming a layer of a powdered catalyst or catalyst support material, (ii) binding or fusing the powder in said layer according to a predetermined pattern, (iii) repeating (i) and (ii) layer upon layer to form a shaped unit, and (iv) optionally applying a catalytic material to said shaped unit.
    Type: Application
    Filed: August 22, 2011
    Publication date: September 5, 2013
    Applicant: JOHNSON MATTHEY PLC
    Inventor: Duncan Roy Coupland
  • Patent number: 8524365
    Abstract: A method of producing nanoparticles comprises effecting conversion of a nanoparticle precursor composition to the material of the nanoparticles. The precursor composition comprises a first precursor species containing a first ion to be incorporated into the growing nanoparticles and a separate second precursor species containing a second ion to be incorporated into the growing nanoparticles. The conversion is effected in the presence of a molecular cluster compound under conditions permitting seeding and growth of the nanoparticles.
    Type: Grant
    Filed: October 6, 2011
    Date of Patent: September 3, 2013
    Assignee: Nanoco Technologies Ltd.
    Inventors: Paul O'Brien, Nigel Pickett
  • Patent number: 8524364
    Abstract: The present invention is directed to a composite particle that is microscopically two-dimensional with a third nanoscopic dimension, and to methods of making same. The particle may include a support and a metal layer. The metal layer may be catalytically active such that the particle is adapted to act as a catalyst.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: September 3, 2013
    Assignee: Southwest Research Institute
    Inventors: James H. Arps, Kent Edward Coulter
  • Publication number: 20130224490
    Abstract: The present invention relates to a process for forming cobalt nanoparticles and coating them with copper or copper oxide, in which process a copper salt is mixed to a cobalt salt so that the formed salt mixture obtains a cobalt:copper ratio of >1:1, and a reduction is carried out with a reducing gas, whereby nanoparticles are formed while a coating is formed onto their surface.
    Type: Application
    Filed: February 7, 2011
    Publication date: August 29, 2013
    Applicant: TEKNOLOGIAN TUTKIMUSKESKUS VTT
    Inventors: Ari Auvinen, Jorma Jokiniemi, Pipsa Mattila, Unto Tapper
  • Patent number: 8518288
    Abstract: A process for forming thermoelectric nanoparticles includes the steps of forming a core material reverse micelle or micelle, adding a bismuth containing compound to the core material reverse micelle or micelle forming a reverse micelle or micelle having the bismuth containing compound dispersed therein, adding a tellurium containing compound with the formed micelle or reverse micelle in the presence of a reducing agent that alloys with the bismuth containing compound forming composite thermoelectric nanoparticles having a core and shell structure, and washing the core and shell nanoparticles in a solvent mixture including ammonium hydroxide, water and methanol wherein the core and shell nanoparticles remain un-agglomerated and have a particle size of from 1-25 nanometers.
    Type: Grant
    Filed: February 9, 2011
    Date of Patent: August 27, 2013
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventor: Michael Paul Rowe
  • Patent number: 8518540
    Abstract: Multilayer expanded polypropylene resin beads that are heat moldable at low steam pressure and can provide an expanded mold with sufficient rigidity and heat resistance. The beads are formed from a polypropylene resin and a coating layer formed from a different polypropylene resin. The multilayer expanded resin beads can be molded in-mold at a steam pressure lower than the steam pressure for molding single-layer expanded beads made from the polypropylene resin which forms the core layer. The coating layer to core layer resin weight ratio in the multi-layer resin beads is not less than 0.001 and not greater than 0.040 and the expansion ratio of the expanded beads, the average value of the thickness of the coating layer of the expanded beads, calculated based on the coating weight ratio of the multi-layer resin beads, is not less than 0.1 ?m and not greater than 3.0 ?m.
    Type: Grant
    Filed: June 3, 2010
    Date of Patent: August 27, 2013
    Assignee: JSP Corporation
    Inventors: Masakazu Sakaguchi, Kouki Nishijima, Masaharu Oikawa
  • Patent number: 8519609
    Abstract: The invention relates to coated phosphor particles comprising luminescent particles and a, preferably substantially transparent, metal, transition-metal or semimetal oxide coating, and to a process for the production thereof.
    Type: Grant
    Filed: October 11, 2008
    Date of Patent: August 27, 2013
    Assignee: Merck Patent GmbH
    Inventors: Holger Winkler, Ralf Petry, Reinhold Rueger, Tim Vosgroene