Of Inorganic Material Patents (Class 428/688)
  • Patent number: 10236349
    Abstract: A p-type oxide which is amorphous and is represented by the following compositional formula: xAO.yCu2O where x denotes a proportion by mole of AO and y denotes a proportion by mole of Cu2O and x and y satisfy the following expressions: 0?x<100 and x+y=100, and A is any one of Mg, Ca, Sr and Ba, or a mixture containing at least one selected from the group consisting of Mg, Ca, Sr and Ba.
    Type: Grant
    Filed: August 14, 2017
    Date of Patent: March 19, 2019
    Assignee: RICOH COMPANY, LTD.
    Inventors: Yukiko Abe, Naoyuki Ueda, Yuki Nakamura, Shinji Matsumoto, Yuji Sone, Mikiko Takada, Ryoichi Saotome
  • Patent number: 10166104
    Abstract: A bone-repair composite includes a core and a sheath. The core is a first primary unit including a combination of a first set of yarns coated with a calcium phosphate mineral layer. The first set of yarns being made from a first group of one or more polymers. The sheath is a second primary unit a combination of a second set of yarns or one or more polymer coatings. The second set of yarns being made from a second group of one or more polymers, wherein the composite is made by covering the core with the sheath, and the composite is compression molded to allow the sheath to bond to the core. The bone-repair composite has a bending modulus comparable to that of a mammalian bone, such that the ratio of the core to the sheath is provided to maximize the mechanical strength of the bone-repair composite to mimic the mammalian bone.
    Type: Grant
    Filed: February 1, 2017
    Date of Patent: January 1, 2019
    Assignees: TELEFLEX MEDICAL INCORPORATED, THE UNIVERSITY OF CONNECTICUT
    Inventors: Mei Wei, James R. Olson, Montgomery T. Shaw
  • Patent number: 10072329
    Abstract: A method to transfer a layer of harder thin film substrate onto a softer, flexible substrate. In particular, the present invention provides a method to deposit a layer of sapphire thin film on to a softer and flexible substrate e.g. PET, polymers, plastics, paper and fabrics. This combination provides the hardness of sapphire thin film to softer flexible substrates.
    Type: Grant
    Filed: September 10, 2015
    Date of Patent: September 11, 2018
    Assignee: Hong Kong Baptist University
    Inventors: Kok Wai Cheah, King Fai Li, Hoi Lam Tam, Ka Suen Lee, Guixin Li, Wing Yui Lam, Yu Wai Chan
  • Patent number: 9939036
    Abstract: One exemplary embodiment may include a friction material having a base layer and a secondary layer over the base layer. The secondary layer may include carbon particles having a tightly controlled particle size distribution.
    Type: Grant
    Filed: June 26, 2009
    Date of Patent: April 10, 2018
    Assignee: BorgWarner Inc.
    Inventors: Herschel L. McCord, Robert A. Denes, Benjamin S. Lambers, Paul M. Prickett
  • Patent number: 9805837
    Abstract: A transparent conductive film, includes: an organic polymer film substrate; at least one undercoat layer formed on the organic polymer film substrate by a dry process; and a transparent conductive coating provided on at least one surface of the organic polymer film substrate with the undercoat layer interposed therebetween, wherein the transparent conductive coating is a crystalline coating of an indium-based complex oxide having a content of a tetravalent metal element oxide of 7 to 15% by weight as calculated by the formula {(the amount of the tetravalent metal element oxide)/(the amount of the tetravalent metal element oxide+the amount of indium oxide)}×100(%), the transparent conductive coating has a thickness in the range of 10 to 40 nm, and the transparent conductive coating has a specific resistance of 1.3×10?4 to 2.8×10?4 ?·cm.
    Type: Grant
    Filed: January 15, 2014
    Date of Patent: October 31, 2017
    Assignee: NITTO DENKO CORPORATION
    Inventors: Kazuaki Sasa, Yusuke Yamamoto, Hironobu Machinaga
  • Patent number: 9761345
    Abstract: A transparent conductive film, includes: an organic polymer film substrate; at least one undercoat layer formed on the organic polymer film substrate by a dry process; and a transparent conductive coating provided on at least one surface of the organic polymer film substrate with the undercoat layer interposed therebetween, wherein the transparent conductive coating is a crystalline coating of an indium-based complex oxide having a content of a tetravalent metal element oxide of 7 to 15% by weight as calculated by the formula {(the amount of the tetravalent metal element oxide)/(the amount of the tetravalent metal element oxide+the amount of indium oxide)}×100(%), the transparent conductive coating has a thickness in the range of 10 to 40 nm, and the transparent conductive coating has a specific resistance of 1.3×10?4 to 2.8×10?4 ?·cm.
    Type: Grant
    Filed: January 15, 2014
    Date of Patent: September 12, 2017
    Assignee: NITTO DENKO CORPORATION
    Inventors: Kazuaki Sasa, Yusuke Yamamoto, Hironobu Machinaga
  • Patent number: 9620634
    Abstract: The invention is a field-effect transistor with a channel consisting of a thin sheet of one or more atomic layers of lateral heterostructures based on hybridized graphene. The role of lateral heterostructures is to modify the energy gap in the channel so as to enable the effective operation of the transistor in all bias regions. This solution solves the problem of the missing bandgap in single-layer and multi-layer graphene, which does not allow the fabrication of transistors that can be efficiently switched off. The possibility of fabricating lateral heterostructures, with patterns of domains with different energy dispersion relations, enables the realization of field-effect transistors with additional functionalities with respect to common transistors.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: April 11, 2017
    Assignee: UNIVERSITA DI PISA
    Inventors: Giuseppe Iannaccone, Fiori Gianluca
  • Patent number: 9570210
    Abstract: The transparent conductive film of the invention includes a transparent conductive coating provided on at least one surface of an organic polymer film substrate, wherein the transparent conductive coating is a crystalline coating of an indium-based complex oxide having a tetravalent metal oxide content of 7 to 15% by weight as calculated by the formula {(the amount of the tetravalent metal element oxide)/(the amount of the tetravalent metal element oxide+the amount of indium oxide)}×100 (%), has a thickness of 10 to 40 nm and a specific resistance of 1.3×10?4 to 2.8×10?4 ?·cm, has main X-ray diffraction peaks corresponding to (222) and (440) planes, and has a ratio (I440/I222) of (440) peak intensity to (222) peak intensity of less than 0.2. The transparent conductive film of the invention has a crystalline thin coating with a low level of specific resistance and surface resistance.
    Type: Grant
    Filed: January 15, 2014
    Date of Patent: February 14, 2017
    Assignee: NITTO DENKO CORPORATION
    Inventors: Kazuaki Sasa, Yusuke Yamamoto, Hironobu Machinaga
  • Patent number: 9570215
    Abstract: A method for manufacturing a superconducting wire includes the following steps. A laminate metal having a first metal layer and a Ni layer formed on the first metal layer is prepared. An intermediate layer (20) is formed on the Ni layer of the laminate metal. A superconducting layer (30) is formed on the intermediate layer (20). By subjecting the laminate metal to a heat treatment after at least either of the step of forming a intermediate layer (20) and the step of forming a superconducting layer (30), a nonmagnetic Ni alloy layer (12) is formed from the laminate metal.
    Type: Grant
    Filed: August 5, 2014
    Date of Patent: February 14, 2017
    Assignees: Sumitomo Electric Industries, Ltd., TOYO KOHAN CO., LTD.
    Inventor: Hajime Ota
  • Patent number: 9562282
    Abstract: A transparent conductive film includes a transparent conductive coating provided on at least one surface of an organic polymer film substrate, wherein the transparent conductive coating is a crystalline coating of an indium-based complex oxide having a content of a tetravalent metal element oxide of 7 to 15% by weight calculated by the formula {(the amount of the tetravalent metal element oxide)/(the amount of the tetravalent metal element oxide+the amount of indium oxide)}=100(%), has a thickness in the range of more than 40 to 200 nm, a specific resistance of 1.2×10?4 to 2.0×10?4 ?·cm, main X-ray diffraction peaks corresponding to (222) and (440) planes and has a ratio (I440/I222) of (440) peak intensity (I440) to (222) peak intensity (I222) of less than 0.3, and has an internal stress of 700 MPa or less as determined by an X-ray stress measurement method.
    Type: Grant
    Filed: January 14, 2014
    Date of Patent: February 7, 2017
    Assignee: NITTO DENKO CORPORATION
    Inventors: Kazuaki Sasa, Yusuke Yamamoto, Hironobu Machinaga
  • Patent number: 9481813
    Abstract: A first bonding material composition according to the present invention is a bonding material composition used when aluminum nitride sintered bodies containing a rare-earth metal oxide are bonded to each other, in which the bonding immaterial composition contains, in addition, to an O element-containing aluminum nitride raw material, (a) as a fluorine compound, at least one of a fluorine compound of an alkaline-earth metal and a fluorine compound of a rare-earth metal, or (b) as a fluorine compound, at least one of a fluorine compound of an alkaline-earth metal and a fluorine compound of a rare-earth metal, and a rare-earth metal oxide.
    Type: Grant
    Filed: December 5, 2014
    Date of Patent: November 1, 2016
    Assignee: NGK Insulators, Ltd.
    Inventors: Masashi Goto, Noboru Nishimura, Yuji Katsuda
  • Patent number: 9453283
    Abstract: A method of manufacturing a nanowire includes: forming a silicon oxide layer by performing deposition of a silicon oxide on a substrate; forming a metal layer by performing deposition of a metal on the silicon oxide layer; forming a metal agglomerate by performing heat treatment on the substrate where the metal layer is formed; and growing a nanowire in an area where the metal agglomerate is formed by performing plasma treatment on the substrate where the metal agglomerate is formed.
    Type: Grant
    Filed: February 17, 2015
    Date of Patent: September 27, 2016
    Assignee: Samsung Display Co., Ltd.
    Inventor: Kyung Min Choi
  • Patent number: 9431258
    Abstract: A method for photodepositing a particle on a graphene-semiconductor hybrid panel is disclosed. The method for photodepositing the particle on the graphene-semiconductor includes providing a graphene-semiconductor hybrid panel, dipping the graphene-semiconductor hybrid panel in a fluid containing a precursor, and irradiating the graphene-semiconductor hybrid panel using a light source until the precursor has been reduced or oxidized to form a particle photodeposited on a surface of a graphene sheet. The graphene-semiconductor hybrid panel includes a semiconductor substrate and the graphene sheet adhered to the semiconductor substrate. The light source has an energy equal to or higher than a band gap of the semiconductor substrate. As such, the particle can be directly deposited on the surface of the graphene sheet without the need of modifying the graphene.
    Type: Grant
    Filed: March 24, 2015
    Date of Patent: August 30, 2016
    Assignee: NATIONAL SUN YAT-SEN UNIVERSITY
    Inventors: Chun-Hu Chen, Cheng-Chi Kuo
  • Patent number: 9340869
    Abstract: A formed article includes a gas barrier layer that is formed of a material that includes at least an oxygen atom, a carbon atom, and a silicon atom, the gas barrier layer having an oxygen atom content that gradually decreases from the surface of the gas barrier layer in the depth direction, and having a carbon atom content that gradually increases from the surface of the gas barrier layer in the depth direction. An electronic device member includes the formed article, and an electronic device includes the electronic device member. The formed article exhibits an excellent gas barrier capability and excellent transparency.
    Type: Grant
    Filed: August 18, 2009
    Date of Patent: May 17, 2016
    Assignee: LINTEC CORPORATION
    Inventors: Shinichi Hoshi, Takeshi Kondo, Yuuta Suzuki
  • Patent number: 9278338
    Abstract: A method for producing a catalyst using an additive layer method includes: (i) forming a layer of a powdered catalyst or catalyst support material, (ii) binding or fusing the powder in said layer according to a predetermined pattern, (iii) repeating (i) and (ii) layer upon layer to form a shaped unit, and (iv) optionally applying a catalytic material to said shaped unit.
    Type: Grant
    Filed: August 22, 2011
    Date of Patent: March 8, 2016
    Assignee: Johnson Matthey PLC
    Inventor: Duncan Roy Coupland
  • Patent number: 9272264
    Abstract: A method for producing a catalyst using an additive layer method includes: (i) forming a layer of a powdered catalyst or catalyst support material, (ii) binding or fusing the powder in said layer according to a predetermined pattern, (iii) repeating (i) and (ii) layer upon layer to form a shaped unit, and (iv) optionally applying a catalytic material to said shaped unit.
    Type: Grant
    Filed: July 20, 2015
    Date of Patent: March 1, 2016
    Assignee: Johnson Matthey PLC
    Inventor: Duncan Roy Coupland
  • Patent number: 9121350
    Abstract: The seal arrangement is arranged between the casing portions and a fluoropolymer O-ring seal is positioned between the casing portions. A first protecting member is positioned between the fluoropolymer O-ring seal and the casing portion and the first protecting member consists of a polymer and hydroxyapatite. The first protecting member consists of 50 to 80 wt % polymer and 20 to 50 wt % hydroxyapatite and incidental impurities. The first protecting member is located in an annular groove and is thus arranged between the casing portion and the fluoropolymer O-ring seal. The first protecting member is substantially U-shaped in cross-section and the fluoropolymer O-ring seal is positioned between the legs of the U-shaped cross-section first protecting member. The first protecting member prevents corrosion of the casing portion by the fluoropolymer O-ring seal.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: September 1, 2015
    Assignee: ROLLS-ROYCE PLC
    Inventors: Jonathan M. Taylor, Benjamin Shaw
  • Patent number: 9040160
    Abstract: A multilayer armor is provided that includes a first rigid layer, a second rigid layer, and an interlayer securing the first and second rigid layers to one another. At least one of the first and second rigid layers can include a plurality of regions with a physical or material property that varies between the regions. The interlayer can have a force-extension ratio of 5,600 psi/in or less. The interlayer can have a physical or material property that varies within the interlayer.
    Type: Grant
    Filed: April 6, 2012
    Date of Patent: May 26, 2015
    Assignee: Schott Corporation
    Inventors: John Carberry, Katherine T. Leighton, Carsten Weinhold, Eric Urruti
  • Patent number: 9034489
    Abstract: A coating composition which imparts antifog, antireflective, easy-cleaning, and/or antistatic properties to substrates coated therewith. The coating compositions utilize nanoparticles funtionalized with amine groups and/or protected amine groups, and amine-reactive groups.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: May 19, 2015
    Assignee: 3M Innovative Properties Company
    Inventors: Naiyong Jing, Zhigang Yu, Xue-hua Chen, Bangwei Xi, Appuswamy Devasenapathi, Wei De Liu, George Van Dyke Tiers, Justin A. Riddle, Deivaraj Theivanayagam Chairman, Michelle L. Legatt, Cecil V. Francis
  • Patent number: 9034469
    Abstract: A tempered glass substrate has a compression stress layer on a surface thereof, and has a glass composition comprising, in terms of mass %, 40 to 70% of SiO2, 12 to 21% of Al2O3, 0 to 3.5% of Li2O, 10 to 20% of Na2O, 0 to 15% of K2O, and 0 to 4.5% of TiO2, wherein the tempered glass substrate has a plate thickness of 1.5 mm or less, and an internal tensile stress in the tempered glass substrate is 15 to 150 MPa.
    Type: Grant
    Filed: February 8, 2012
    Date of Patent: May 19, 2015
    Assignee: NIPPON ELECTRIC GLASS CO., LTD.
    Inventor: Takashi Murata
  • Patent number: 9028983
    Abstract: A coated article includes a coating, such as a low emissivity (low-E) coating, supported by a substrate (e.g., glass substrate). The coating includes at least one dielectric layer including tin oxide that is doped with another metal(s). The coating may also include one or more infrared (IR) reflecting layer(s) of or including material such as silver or the like, for reflecting at least some IR radiation. In certain example embodiments, the coated article may be heat treated (e.g., thermally tempered, heat bent and/or heat strengthened). Coated articles according to certain example embodiments of this invention may be used in the context of windows, including monolithic windows for buildings, IG windows for buildings, etc.
    Type: Grant
    Filed: November 12, 2014
    Date of Patent: May 12, 2015
    Assignee: Guardian Industries Corp.
    Inventors: Muhammad Imran, Brent Boyce, Jean-Marc Lemmer, Marcus Frank, Yongli Xu
  • Patent number: 9023480
    Abstract: A glass substrate for chemical strengthening is formed by a float process. The glass substrate includes at least one layer of a film formed of an inorganic material that contains H atoms in a concentration of 1.0×1015 to 1.0×1019 atom/mm3. The at least one layer is formed on at least one surface of the glass substrate.
    Type: Grant
    Filed: June 19, 2014
    Date of Patent: May 5, 2015
    Assignee: Asahi Glass Company, Limited
    Inventors: Naoki Okahata, Koji Nakagawa, Yuichi Kuwahara, Daisuke Kobayashi
  • Patent number: 9023220
    Abstract: A method of manufacturing a graphene monolayer on insulating substrates from CVD graphene synthesis, comprising: applying a thermal release adhesive tape to the bottom graphene layer deposited at the bottom of the metal foil in the CVD graphene synthesis, detaching the thermal release adhesive tape and the bottom graphene layer from the metal foil via the application of heat, from 1° C. up to 5° C. higher than the release temperature of the thermal release adhesive tape so that the thermal release adhesive tape with the bottom graphene layer can be removed, obtaining a metal foil with a top graphene layer sample, and transferring the top graphene layer onto a substrate via a sacrificial protective layer.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: May 5, 2015
    Assignee: Graphenea, S.A.
    Inventors: Amaia Zurutuza Elorza, Alba Centeno Perez, Beatriz Alonso Rodriguez, Amaia Pesquera Rodriguez
  • Publication number: 20150117828
    Abstract: In one embodiment, a chalcogenide glass optical fiber is produced by forming a billet including a chalcogenide glass mass and a polymer mass in a stacked configuration, heating the billet to a temperature below the melting point of the chalcogenide glass, extruding the billet in the ambient environment to form a preform rod having a chalcogenide glass core and a polymer jacket, and drawing the preform rod.
    Type: Application
    Filed: May 3, 2013
    Publication date: April 30, 2015
    Inventors: Ayman F. Abouraddy, Guangming Tao, Soroush Shabahang
  • Patent number: 9017805
    Abstract: The present disclosure relates to a polyimide-graphene composite material and a method for preparing same. More particularly, it relates to a polyimide-graphene composite material prepared by adding modified graphene and a basic catalyst during polymerization of a polyimide precursor so as to improve mechanical strength and electrical conductivity and enable imidization at low temperature and a method for preparing same.
    Type: Grant
    Filed: March 26, 2013
    Date of Patent: April 28, 2015
    Assignee: Korea Institute of Science and Technology
    Inventors: Nam Ho You, Ok-kyung Park, Bon-Cheol Ku, Joong Hee Lee, Munju Goh
  • Patent number: 9017821
    Abstract: A coated article is provided so as to include a low-E (low emissivity) coating having an infrared (IR) reflecting layer(s) of or including a material such as silver (Ag), which is provided between a pair of contact layers. The low-E coating includes an overcoat having at least one layer of or including zirconium oxide and/or a substantially metallic layer. The overcoat has been found to improve the durability of the coating without significantly sacrificing desired optical characteristics. Such coated articles may be used in the context of windows.
    Type: Grant
    Filed: February 22, 2012
    Date of Patent: April 28, 2015
    Assignee: Guardian Industries Corp.
    Inventors: Muhammad Imran, Francis Wuillaume, Brent Boyce
  • Publication number: 20150111449
    Abstract: We report a method of preparation of highly elastic graphene oxide films, and their transformation into graphene oxide fibers and electrically conductive graphene fibers by spinning. Methods typically include: 1) oxidation of graphite to graphene oxide, 2) preparation of graphene oxide slurry with high solid contents and residues of sulfuric acid impurities. 3) preparation of large area films by bar-coating or dropcasting the graphene oxide dispersion and drying at low temperature. 4) spinning the graphene oxide film into a fiber, and 5) thermal or chemical reduction of the graphene oxide fiber into an electrically conductive graphene fiber. The resulting films and fiber have excellent mechanical properties, improved morphology as compared with current graphene oxide fibers, high electrical conductivity upon thermal reduction, and improved field emission properties.
    Type: Application
    Filed: October 21, 2014
    Publication date: April 23, 2015
    Inventors: Rodolfo Cruz-Silva, Aaron Morelos, Mauricio Terrones, Ana Laura Elias, Nestor Perea-Lopez, Morinobu Endo
  • Patent number: 9012043
    Abstract: A medical implant device or component thereof comprising a metal substrate and a coating layer structure provided on the substrate. The coating layer structure comprises an outermost layer of a ceramic material. A bonding structure is deposited between the metal substrate and the coating layer structure. The bonding structure comprises a chromium rich layer, which is deposited onto the metal substrate surface and has a higher concentration of chromium than the metal substrate, as well as a gradient layer having a composition gradient from the chromium rich layer towards the surface of the device providing increasing proportions of a gradient material which has structural correspondence with the layer of the coating layer structure that is most adjacent to the bonding structure.
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: April 21, 2015
    Assignee: Sandvik Intellectual Property AB
    Inventors: Ola Wilhelmsson, Tom Eriksson, Per Mårtensson
  • Patent number: 9012024
    Abstract: The invention relates to a glazing comprising a transparent glass substrate containing ions of at least one alkali metal and a transparent layer made of silicon oxycarbide (SiOxCy) having a total thickness E with (a) a carbon-rich deep zone, extending from a depth P3 to a depth P4, where the C/Si atomic ratio is greater than or equal to 0.5, and (b) a carbon-poor surface zone, extending from a depth P1 to a depth P2, where the C/Si atomic ratio is less than or equal to 0.4, with P1<P2<P3<P4 and (P2?P1)+(P4?P3)<E the distance between P1 and P2 representing from 10% to 70% of the total thickness E of the silicon oxycarbide layer and the distance between P3 and P4 representing from 10% to 70% of the total thickness E of the silicon oxycarbide layer.
    Type: Grant
    Filed: November 14, 2012
    Date of Patent: April 21, 2015
    Assignee: Saint-Gobain Glass France
    Inventors: Claire Thoumazet, Martin Melcher, Arnaud Huignard, Raphael Lante
  • Patent number: 9012044
    Abstract: A process of forming optically clear conductive metal or metal alloy thin films is provided that includes depositing the metal or metal alloy film on a polycrystalline seed layer that has been deposited directly on a nucleation layer of metal oxide comprising zinc oxide. Also conductive films made by this process are provided. In some embodiments, the metal alloy thin films include silver/gold alloys.
    Type: Grant
    Filed: July 26, 2010
    Date of Patent: April 21, 2015
    Assignee: 3M Innovative Properties Company
    Inventor: Clark I. Bright
  • Publication number: 20150103487
    Abstract: In accordance with embodiments of the present disclosure, a method for forming a layered composite structural member may include reducing post-consumable material in size into smaller particles, forming the smaller particles into a core layer of material, and coupling the core layer of material to at least one layer of laminate material.
    Type: Application
    Filed: October 10, 2013
    Publication date: April 16, 2015
    Applicant: Dell Products L.P.
    Inventors: Andrew Thomas Sultenfuss, Nicholas D. Abbatiello, Deeder M. Aurongzeb
  • Publication number: 20150104661
    Abstract: A manufacturing method of artificial graphite sheet and a product thereof. The artificial graphite sheet manufactured by means of the manufacturing method can be rolled up to minimize the occupied space and facilitate transfer and delivery. The manufacturing method includes steps of: selecting graphite powder (granules) and polymer and mixing the graphite powder with polymer; heating, compounding and homogenizing the mixture to form a graphite (mixture) subassembly with a basic thickness; calendering the graphite subassembly to form a graphite (mixture) sheet assembly with a purposed thickness; thermostatically maturing the graphite sheet assembly and gradually cooling the graphite sheet assembly to room temperature to form a flexible sheet body; and rolling up the flexible sheet body into a roll form with a rolling apparatus. The manufacturing equipment and process of the artificial graphite sheet are simplified and the manufacturing time is shortened.
    Type: Application
    Filed: November 19, 2013
    Publication date: April 16, 2015
    Inventor: CHE-YUAN WU
  • Publication number: 20150096743
    Abstract: A coating having a gradient composite structure, applied to a substrate, which may be a disposable tool. The gradient composite comprises a bonding component and an erosion and/or corrosion resistant component. When applied to a disposable tool, such as a ball and seat assembly in a downhole environment, the coating enhances the performance of disintegrable materials used in such tools. The coating may be configured to expire at the end of a selected duration, allowing the underlying material to disintegrate.
    Type: Application
    Filed: October 7, 2013
    Publication date: April 9, 2015
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Zhiyue Xu, Deepak Kumar
  • Patent number: 8999518
    Abstract: The present invention discloses a hierarchical composite material comprising a ferrous alloy reinforced with titanium carbides according to a defined geometry, in which said reinforced portion comprises an alternating macro-microstructure of millimetric areas concentrated with micrometric globular particles of titanium carbide separated by millimetric areas essentially free of micrometric globular particles of titanium carbide, said areas concentrated with micrometric globular particles of titanium carbide forming a microstructure in which the micrometric interstices between said globular particles are also filled by said ferrous alloy.
    Type: Grant
    Filed: August 26, 2009
    Date of Patent: April 7, 2015
    Assignee: Magotteaux International S.A.
    Inventor: Francesco Vescera
  • Publication number: 20150093523
    Abstract: Coatings and heatable coatings containing electrically conductive nanomaterial; methods for making such a coating; items with such a coating; and methods for applying such a coating. In one aspect, such a coating is a deicing coating. This abstract is provided to comply with the rules requiring an abstract which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure and is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims, 37 C.F.R. 1.72(b).
    Type: Application
    Filed: September 30, 2013
    Publication date: April 2, 2015
    Inventors: Kyle Ryan Kissell, James BruceSinclair Sifton, William Doyle Stringfellow, John Bready Stuart
  • Patent number: 8993132
    Abstract: A cubic boron nitride sintered body tool has, at least at a cutting edge, a cubic boron nitride sintered body composed of a cubic boron nitride particle and a binder phase. The binder phase contains at least Al2O3 and a Zr compound. On any straight line in the sintered body, the mean value of a continuous distance occupied by Al2O3 is 0.1-1.0 ?m, and the standard deviation of the continuous distance occupied by Al2O3 is not more than 0.8. On the straight line, X/Y is 0.1-1 where X represents the number of points of contact between Al2O3 and the Zr compound, and Y represents the sum of the number of points of contact between Al2O3 and cBN and the number of points of contact between Al2O3 and binder phase component(s) other than Al2O3 and the Zr compound.
    Type: Grant
    Filed: July 25, 2011
    Date of Patent: March 31, 2015
    Assignee: Sumitomo Electric Hardmetal Corp.
    Inventors: Katsumi Okamura, Machiko Abe, Satoru Kukino
  • Publication number: 20150086734
    Abstract: The use of an aqueous Solution comprising at least one polyanion and at least one high molecular weight polyethyleneimine is described, for providing oxygen barrier properties to a polymer film. The polyanion is a polymer comprising acid groups neutralized with a base selected from the group consisting of inorganic bases and monovalent organic bases and having a weight average molecular weight of at least 10000 g/mol.
    Type: Application
    Filed: May 27, 2013
    Publication date: March 26, 2015
    Applicant: BASF SE
    Inventors: Ines Pietsch, Axel Weiss, Peter Preishuber-Pfluegl, Patrick Bippus, Klaus Huenerfauth
  • Patent number: 8986841
    Abstract: A process for reinforcing a glass-ceramic article, into which a maximum tension is introduced beneath the surface of the glass-ceramic, advantageously in proximity to said surface. The invention also relates to an enamel that can be used for this reinforcement, this enamel being formed from a glass frit having the following composition, the proportions being expressed as weight percentages: SiO2 50-66% MgO 3-8% Na2O ?7-15% K2O 0-3% Li2O ?0-12% CaO ?0-10% BaO ?0-15% Al2O3 0-3% ZrO2 0-3% ZnO 0-5% B2O3 0-8% the sum of the alkaline-earth metal oxides CaO+BaO moreover being between 8 and 15%, and the sum of the alkali metal oxides Na2O+K2O+Li2O moreover being between 7 and 20%. The reinforced glass-ceramics obtained by the process.
    Type: Grant
    Filed: January 10, 2014
    Date of Patent: March 24, 2015
    Assignee: Eurokera S.N.C.
    Inventors: Stephanie Pelletier, Marie-Helene Chopinet, Caroline Faillat, Marie-Helene Rouillon, Pablo Vilato
  • Patent number: 8986818
    Abstract: Described is a recording material for electrophotographic printing methods, which contains a carrier material and a toner-receiving layer containing a gloss pigment, and which is suitable for producing photo-like images with use of both dry toners and liquid toners.
    Type: Grant
    Filed: April 26, 2013
    Date of Patent: March 24, 2015
    Assignee: Schoeller Technocell GmbH & Co. KG
    Inventors: Christoph Kozlowski, Andreas Overberg
  • Patent number: 8980431
    Abstract: A primer coating composition is provided for an optical article capable of forming a coating layer having excellent impact resistance, abrasion resistance, adhesion and high refractive index to an optical base material, having high refractive index, specifically a plastic lens without occurrence of poor appearance such as ununiformity, cloudiness, etc. and regardless of the materials of the plastic lens. A primer composition for an optical article may comprises urethane resin having a polycarbonate-derived skeleton, polyester resin, inorganic oxide fine particles and water, and water-soluble organic solvent, if necessary.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: March 17, 2015
    Assignee: Tokuyama Corporation
    Inventors: Katsuhiro Mori, Shunichiro Nakatsukasa
  • Publication number: 20150072119
    Abstract: A multi-layer structure including an interlayer to relieve stress in the structure, a device including the structure, and a method of forming the device and structure are disclosed. The structure includes a substrate having a first coefficient of thermal expansion, an interlayer, and a coating having a second coefficient of thermal expansion. The interlayer reduces stress in the structure that would otherwise exist in the structure as a result of the difference in coefficients of thermal expansion of the substrate and the coating.
    Type: Application
    Filed: April 12, 2013
    Publication date: March 12, 2015
    Inventors: Steven George, Shih-Hui Jen, Peter Carcia, Robert McLean
  • Publication number: 20150072124
    Abstract: A transparent substrate for optical elements which is capable of suppressing cracking is provided, and a transparent substrate for optical elements which is capable of extending the life of optical elements such as organic EL elements used in organic EL illumination devices or polarizer plates used in liquid crystal display devices is provided. This transparent substrate for optical elements is characterized by having an inorganic layer and a hydrophilic layer laminated sequentially on a transparent resin film. For this reason, this transparent substrate for optical elements can have excellent gas barrier properties, inhibits degeneration of optical elements due to water vapor, suppresses cracking, is transparent and flexible, is easy to handle, can be efficiently and economically manufactured, and has excellent design properties.
    Type: Application
    Filed: March 25, 2013
    Publication date: March 12, 2015
    Applicant: NEC Lighting, LTF.
    Inventor: Yoshikazu Sakaguchi
  • Patent number: 8974924
    Abstract: A component comprises a substrate having an alumina base layer, a transition layer, and a surface coating. The transition layer comprises alumina and silica, and the surface coating preferentially bonds to the silica as compared to the alumina.
    Type: Grant
    Filed: September 23, 2013
    Date of Patent: March 10, 2015
    Assignee: Apple Inc.
    Inventors: Douglas Weber, Naoto Matsuyuki
  • Publication number: 20150064458
    Abstract: The disclosed concept relates to methods for the manufacture of molded parts having composite nanofibers deposited on a surface of the molded parts. The molded parts are manufactured by utilizing injection molding techniques. The nanofibers are capable of imparting to the molded part functionality, such as but not limited to electrical conductivity, magnetic properties, thermal conductivity, hydrophobicity and superhydrophobicity. The methods include depositing the nanofibers at least partially on an interior surface of a mold, injecting a polymer-containing composition into the mold and extracting a molded part from the mold. A surface of the molded part includes a layer or coating of nanofibers deposited thereon and/or therein. The nanofibers are transferred from the interior surface of the mold to the surface of the molded part. The mold and molded part can include three-dimensional shapes as well as two-dimensional shapes.
    Type: Application
    Filed: August 28, 2013
    Publication date: March 5, 2015
    Applicant: EATON CORPORATION
    Inventors: SOUMAYAJIT SARKAR, JAVED MAPKAR, JOHN TRUBLOWSKI, ADRI LAMMERS
  • Publication number: 20150064498
    Abstract: A method of bonding includes using a bonding layer having a fluorinated oxide. Fluorine may be introduced into the bonding layer by exposure to a fluorine-containing solution, vapor or gas or by implantation. The bonding layer may also be formed using a method where fluorine is introduced into the layer during its formation. The surface of the bonding layer is terminated with a desired species, preferably an NH2 species. This may be accomplished by exposing the bonding layer to an NH4OH solution. High bonding strength is obtained at room temperature. The method may also include bonding two bonding layers together and creating a fluorine distribution having a peak in the vicinity of the interface between the bonding layers. One of the bonding layers may include two oxide layers formed on each other. The fluorine concentration may also have a second peak at the interface between the two oxide layers.
    Type: Application
    Filed: September 2, 2014
    Publication date: March 5, 2015
    Applicant: Ziptronix, Inc.
    Inventor: Qin-Yi TONG
  • Publication number: 20150061457
    Abstract: An object of this invention is to create an actuator in which the amount of deformation is maintained and no displacement in the reverse direction occurs, even when a constant voltage is continuously applied for a long period of time. As a means for achieving the above object, the invention provides a conductive thin film comprising a polymer gel containing at least one organic molecule selected from the group consisting of electron-donating organic molecules and electron-withdrawing organic molecules, a nano-carbon material, an ionic liquid, and a polymer.
    Type: Application
    Filed: March 28, 2013
    Publication date: March 5, 2015
    Applicants: NATIONAL INSTITUTE OF ADVANCE INDUSTRIAL SCIENCE AND TECHNOLOGY, ALPS ELECTRIC CO., LTD.
    Inventors: Takushi Sugino, Kinji Asaka, Isao Takahashi, Tomomasa Takatsuka, Kenichi Mitsumori, Nobuaki Haga
  • Patent number: 8962749
    Abstract: The invention provides a ceramic green sheet having plasticity, punching property, and sinterability of satisfactory levels as well as a low percent (heat) shrinkage. In the production of a ceramic slurry serving as a raw material of the sheet, ingredients thereof are mixed under such conditions that the functional group ratio (polyol to isocyanate) is 1.5/11.5 to 11.5/11.5; the urethane resin formed from isocyanate and polyol has a repeating-unit-based molecular weight of 290 to 988; and the ratio by weight of the urethane resin to a ceramic powder falls within a range of 4.5 to 10 parts by weight of the urethane resin with respect to 100 parts by weight of the ceramic powder. A ceramic green sheet having, in well balance, all of the properties (i.e., plasticity, punching property, sinterability, and (heat) shrinkage) required for facilitating subsequent processes such as mechanical working and firing can be provided.
    Type: Grant
    Filed: February 6, 2009
    Date of Patent: February 24, 2015
    Assignee: NGK Insulators, Ltd.
    Inventors: Koji Kimura, Takuji Kimura, Tetsuya Onogi, Hidemi Nakagawa
  • Patent number: 8959770
    Abstract: A process for manufacturing a laminated glazing unit so that it withstands a predetermined load, in which the unit includes at least one substrate having a glass function and at least one layer of polymeric interlayer. The process: obtains viscoelastic behavior of constituent material of the interlayer; calculates maximum value of at least one quantity representative of the loading resistance of the laminated glazing unit subjected to the predetermined load; adjusts dimensions of the unit such that the calculated maximum value of the quantity representative of the loading resistance of the unit is less than or equal to a permissible maximum value; and the or each substrate and the or each layer of interlayer are prepared and assembled to the adjusted dimensions.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: February 24, 2015
    Assignee: Saint-Gobain Glass France
    Inventors: Jean-Clement Nugue, Fabien Levasseur, Romain Decourcelle
  • Patent number: 8962162
    Abstract: A composition that upon firing, forms a non-stick enamel layer is disclosed. The composition can be applied to a metal substrate to provide a non-stick, durable coating for cooking surfaces. Also disclosed are methods of forming enamel layers and corresponding coated substrates. Various ground coats and related methods are also described. Furthermore, various multilayer coatings and structures are disclosed that include an enamel layer and a ground coat layer.
    Type: Grant
    Filed: June 18, 2014
    Date of Patent: February 24, 2015
    Assignee: Ferro Corporation
    Inventors: Albert L. Benford, Jr., Andrew Gorecki, Louis J. Gazo, Charles A. Baldwin
  • Publication number: 20150037568
    Abstract: A film is formed under vacuum by a step of purifying and/or flattening the base material (13) by irradiating the base material (13) with a gas cluster ion beam (4a); by a step of forming an intermediate layer film by evaporating/vaporizing an intermediate layer film forming material, allowing the evaporated/vaporized material to adhere to the surface of the base material (13), and irradiating the intermediate layer film forming material with a gas cluster ion beam (4a); and by evaporating/vaporizing a carbon film forming material containing a carbonaceous material containing substantially no hydrogen, and a boron material, allowing the evaporated/vaporized material to adhere to the surface of the intermediate layer film, and irradiating the carbon film forming material with a gas cluster ion beam (4a).
    Type: Application
    Filed: November 28, 2011
    Publication date: February 5, 2015
    Applicant: NOMURA PLATING CO., LTD.
    Inventors: Teruyuki Kitagawa, Shuhei Nomura