Layer Contains Compound(s) Of Plural Metals Patents (Class 428/697)
  • Patent number: 11326252
    Abstract: A surface-coated cutting tool includes a substrate and a coating film that coats the substrate, wherein the coating film includes a hard coating layer constituted of a domain region and a matrix region, the domain region is a region having a plurality of portions divided and distributed in the matrix region, the domain region has a structure in which a first layer composed of a first Alx1Ti(1-x1) compound and a second layer composed of a second Alx2Ti(1-x2) compound are layered on each other, the matrix region has a structure in which a third layer composed of a third Alx3Ti(1-x3) compound and a fourth layer composed of a fourth Alx4Ti(1-x4) compound are layered on each other.
    Type: Grant
    Filed: December 27, 2018
    Date of Patent: May 10, 2022
    Assignee: Sumitomo Electric Hardmetal Corp.
    Inventors: Yasuki Kido, Anongsack Paseuth, Susumu Okuno, Shinya Imamura
  • Patent number: 11313028
    Abstract: A coated cutting tool and a process for the production thereof is provided. The coated cutting tool includes a substrate and a hard material coating, the substrate being selected from cemented carbide, cermet, ceramics, cubic boron nitride, polycrystalline diamond or high-speed steel. The hard material coating includes a (Ti,Al)N layer stack of alternately stacked (Ti,Al)N sub-layers. The layer stack has an overall atomic ratio of Ti:Al within the (Ti,Al)N layer stack within the range from 0.33:0.67 to 0.67:0.33, a total thickness of the (Ti,Al)N layer stack within the range from 1 ?m to 20 ?m, each of the individual (Ti,Al)N sub-layers within the (Ti,Al)N layer stack of alternately stacked (Ti,Al)N sub-layers having a thickness within the range from 0.5 nm to 50 nm, each of the individual (Ti,Al)N sub-layers within the (Ti,Al)N layer stack of alternately stacked (Ti,Al)N sub-layers being different in respect of the atomic ratio Ti:Al than an immediately adjacent (Ti,Al)N sub-layer, and other characteristics.
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: April 26, 2022
    Assignee: Walter AG
    Inventors: Veit Schier, Wolfgang Engelhart
  • Patent number: 11307357
    Abstract: Techniques for overcoating slanted structures and devices obtained using the techniques are disclosed. In some embodiments, a method of forming an overcoat layer on a surface-relief structure on a substrate includes receiving the substrate with the surface-relief structure. The surface-relief structure includes a plurality of ridges slanted with respect to the substrate, and a plurality of grooves each between two adjacent ridges. The method further includes depositing, in each cycle of a plurality of cycles, a uniform layer of an overcoat material on surfaces of the plurality of ridges and bottoms of the plurality of grooves. The deposited layers of the overcoat material and the plurality of ridges collectively form a light-coupling structure on the substrate. A surface of the overcoat layer is planar.
    Type: Grant
    Filed: October 22, 2019
    Date of Patent: April 19, 2022
    Assignee: Facebook Technologies, LLC
    Inventor: Nihar Ranjan Mohanty
  • Patent number: 11293095
    Abstract: A cutting tool comprises a substrate and an AlTiN layer, the AlTiN layer including a first major surface and a second major surface, the AlTiN layer including a first region having a distance of 0 nm or more and 30 nm or less from the first major surface and having a maximum oxygen content ratio of 30 atomic % or more, a second region having a distance of more than 30 nm and 100 nm or less from the first major surface and having a maximum oxygen content ratio of 5 atomic % or more and less than 30 atomic %, and a third region having a distance exceeding 100 nm from the first major surface and having a maximum oxygen content ratio of less than 5 atomic %.
    Type: Grant
    Filed: June 2, 2020
    Date of Patent: April 5, 2022
    Assignee: SUMITOMO ELECTRIC HARDMETAL CORP.
    Inventors: Yasuki Kido, Susumu Okuno, Fumiyoshi Kobayashi
  • Patent number: 11292065
    Abstract: A cutting tool comprises a substrate and an AlTiN layer, the AlTiN layer including a first major surface and a second major surface, the AlTiN layer including a first region having a distance of 0 nm or more and 30 nm or less from the first major surface and having a maximum oxygen content ratio of more than 0 atomic % and less than 5 atomic %, a second region having a distance of more than 30 nm and 100 nm or less from the first major surface and having a maximum oxygen content ratio of 5 atomic % or more and 30 atomic % or less, and a third region having a distance of more than 100 nm and 150 nm or less from the first major surface and having a maximum oxygen content ratio of more than 0 atomic % and less than 5 atomic %.
    Type: Grant
    Filed: June 2, 2020
    Date of Patent: April 5, 2022
    Assignee: SUMITOMO ELECTRIC HARDMETAL CORP.
    Inventors: Yasuki Kido, Susumu Okuno, Fumiyoshi Kobayashi
  • Patent number: 11261520
    Abstract: Disclosed herein is a roll-to-roll long base material surface processing device capable of performing surface processing on a long base material with little occurrence of wrinkling in the long base material at low costs. The surface processing device includes: two can rolls that cool a long resin film transferred in a roll-to-roll manner in a vacuum chamber with a cooling medium circulated therein by wrapping the long resin film around outer circumferences thereof; and surface processing units typified by magnetron sputtering cathodes provided so as to face the outer circumferences of the two can rolls, wherein a second can roll of the two can rolls other than a most upstream first can roll has a gas release mechanism that releases a gas from the outer circumference.
    Type: Grant
    Filed: August 23, 2017
    Date of Patent: March 1, 2022
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventor: Hideharu Okami
  • Patent number: 11220924
    Abstract: A seal assembly for a gas turbine engine includes a seal including a main body extending circumferentially between opposed mate faces. The main body has a sealing portion and an engagement portion extending outwardly from sealing portion along at least one of the mate faces. The main body has a core including one or more core plies arranged to establish an internal cavity. An overwrap has one or more overwrap plies arranged to follow a perimeter of the one or more core plies to establish the engagement portion and the sealing portion. A platform insert extends between portions of the core and the overwrap to establish the sealing portion. A method of fabricating a seal for a gas turbine engine is also disclosed.
    Type: Grant
    Filed: September 26, 2019
    Date of Patent: January 11, 2022
    Assignee: RAYTHEON TECHNOLOGIES CORPORATION
    Inventor: Robin H. Fernandez
  • Patent number: 11201015
    Abstract: A multilayer electronic component having a plurality of laminated dielectric layers and inner electrode layers. The dielectric layers have a plurality of crystal grains including first regions where Re is dissolved in a solid state; and second regions where Re is not dissolved in the solid state. A median size of the crystal grains to an average thickness of the dielectric layers is 0.5?t?0.7. A ratio of a sum of cross sectional areas of the first regions to those of the plurality of crystal grains is 0.7?s?0.9. When a total amount of Ti, Zr, and Hf is 100 molar parts in the dielectric layers, a sum of the Zr and the Hf is 0?a?1.0; an amount b of Si is 0.1?b?1.0; an amount c of Re is 0.5?c?10.0; and a ratio m of a total of Ba and Re to a total of Ti, Zr, and Hf is 0.990?m?1.050.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: December 14, 2021
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Takehisa Sasabayashi, Kenjiro Gomi, Kenji Kimura, Wataru Oshima
  • Patent number: 11173555
    Abstract: To improve the adhesion resistance and wear resistance of a surface-coated cutting tool. The surface-coated cutting tool includes a tool substrate, and a single-component coating layer composed of a composite nitride of Cr (chromium), Al (aluminum), and V (vanadium) and disposed on the surface of the tool substrate. The composite nitride is characterized by being represented by a compositional formula: CraAlbVcN satisfying the following relations: 0.11?a?0.26; 0.73?b?0.85; 0<c?0.04; and a+b+c?1 (wherein a, b, and c each represent an atomic proportion). The single-component coating layer has both a hexagonal phase and a cubic phase.
    Type: Grant
    Filed: May 11, 2018
    Date of Patent: November 16, 2021
    Assignee: NGK SPARK PLUG CO., LTD.
    Inventors: Shota Nozaki, Fumihiro Kikkawa, Atsushi Komura
  • Patent number: 11167356
    Abstract: A coated tool may include a base member and a coating layer located on the base member. The coating layer may include a plurality of AlTi layers including aluminum and titanium as a main component, and a plurality of AlCr layers including aluminum and chromium as a main component. The AlTi layers and the AlCr layers may be located alternately one upon another. The plurality of AlTi layers may include a first AlTi layer and a second AlTi layer located farther away from the base member than the first AlTi layer. Each of the plurality of AlTi layers may further include chromium, and a content ratio of chromium in the second AlTi layer may be higher than a content ratio of chromium in the first AlTi layer.
    Type: Grant
    Filed: September 26, 2018
    Date of Patent: November 9, 2021
    Assignee: Kyocera Corporation
    Inventors: Dan He, Tsuyoshi Yamasaki
  • Patent number: 11149692
    Abstract: A combustion section for a gas turbine engine including an inner casing comprising a first material defining an inner diameter of a pressure vessel and a first heat transfer coefficient. A second material is extended at least partially over an outer diameter of the first material. The second material is disposed radially between the first material and a combustor liner. The second material defines a second heat transfer coefficient less than the first heat transfer coefficient.
    Type: Grant
    Filed: June 12, 2018
    Date of Patent: October 19, 2021
    Assignee: General Electric Company
    Inventors: Anthony Joseph Venzon, Jeremy Kevin Payne, Narendra Kumar Patel
  • Patent number: 11091367
    Abstract: A vanadium silicon carbonitride film includes vanadium, silicon, carbon, and nitrogen, wherein when vanadium element concentration/(vanadium element concentration+silicon element concentration+carbon element concentration+nitrogen element concentration) in the film is defined as a, and silicon element concentration/(vanadium element concentration+silicon element concentration+carbon element concentration+nitrogen element concentration) in the film is defined as b, 0.30?a/b?1.3 and 0.30?a+b?0.70 are satisfied, and a total of the vanadium element concentration, the silicon element concentration, the carbon element concentration, and the nitrogen element concentration in the film is 90 [at %] or more.
    Type: Grant
    Filed: August 8, 2018
    Date of Patent: August 17, 2021
    Assignee: DOWA THERMOTECH CO., LTD.
    Inventors: Satoru Habuka, Hiroyuki Matsuoka, Wataru Sakakibara
  • Patent number: 11015239
    Abstract: A coated cutting tool comprising a substrate and a coating layer formed on the substrate, wherein: the coating layer includes a first composite nitride layer containing a compound having a composition represented by (AlxCr1-x)N, and a second composite nitride layer containing a compound having a composition represented by (AlyCr1-y)N; an average particle size of particles which constitute of the first composite nitride layer is less than 100 nm; the second composite nitride layer comprises a cubic crystal system, and a ratio I(111)/I(200) of a peak intensity I(111) for a (111) plane to a peak intensity I(200) for a (200) plane in the second composite nitride layer is 1.0 or more; an average particle size of particles which constitute of the second composite nitride layer is 100 nm or more; and a residual stress of the second composite nitride layer is from ?10.0 GPa or higher to ?2.0 GPa or lower.
    Type: Grant
    Filed: September 9, 2019
    Date of Patent: May 25, 2021
    Assignee: TUNGALOY CORPORATION
    Inventor: Takao Katagiri
  • Patent number: 10851656
    Abstract: An article includes a substrate, a bond coat on the substrate, and a multilayer environmental barrier coating (EBC) on the bond coat. The multilayer EBC includes a first EBC layer defining a first thickness and a second EBC layer defining a second thickness. The first EBC layer includes a first rare earth disilicate and a first concentration of a sintering aid that includes alumina. The second EBC layer includes a second rare earth disilicate and a second concentration of the sintering aid that includes alumina, less than the first concentration of the sintering aid.
    Type: Grant
    Filed: September 25, 2018
    Date of Patent: December 1, 2020
    Assignees: Rolls-Royce Corporation, Rolls-Royce PLC
    Inventors: Stephanie Gong, Taylor K. Blair, Ngunjoh Lawrence Ndamka, Li Li, Sunny Chang, Ann Bolcavage
  • Patent number: 10720644
    Abstract: The present disclosure is directed to compositions comprising at least one layer having first and second surfaces, each layer comprising: a substantially two-dimensional array of crystal cells, each crystal cell having an empirical formula of M?2M?nXn+1, such that each X is positioned within an octahedral array of M? and M?; wherein M? and M? each comprise different Group IIIB, IVB, VB, or VIB metals; each X is C, N, or a combination thereof; n=1 or 2; and wherein the M? atoms are substantially present as two-dimensional outer arrays of atoms within the two-dimensional array of crystal cells; the M? atoms are substantially present as two-dimensional inner arrays of atoms within the two-dimensional array of crystal cells; and the two dimensional inner arrays of M? atoms are sandwiched between the two-dimensional outer arrays of M? atoms within the two-dimensional array of crystal cells.
    Type: Grant
    Filed: April 20, 2016
    Date of Patent: July 21, 2020
    Assignee: Drexel University
    Inventors: Michel W. Barsoum, Babak Anasori, Yury Gogotsi
  • Patent number: 10618114
    Abstract: A surface-coated cutting tool includes: a tool body made of any one of tungsten carbide-based cemented carbide, TiCN-based cermet, a cubic boron nitride sintered material, and high-speed tool steel; and a hard coating layer provided on a surface of the tool body. The hard coating layer includes at least a complex nitride layer of Al, Cr, Si, and Cu with an average layer thickness of 0.5 to 8.0 ?m. The complex nitride layer of (Al1-a-b-cCraSibCuc)N satisfies 0.15?a?0.40, 0.05?b?0.20, and 0.005?c?0.05 (here, each of a, b, and c is in atomic ratio). The complex nitride layer has a hexagonal crystal structure. A half width of a diffraction peak of a (110) plane present in a range of 2?=55° to 65° by performing X-ray diffraction on the complex nitride layer is 1.0° to 3.5°.
    Type: Grant
    Filed: October 27, 2016
    Date of Patent: April 14, 2020
    Assignee: MITSUBISHI MATERIALS CORPORATION
    Inventors: Tsuyoshi Ogami, Tatsuo Hashimoto, Natsuki Ichimiya
  • Patent number: 10596636
    Abstract: A coated cutting tool comprising a substrate and a coating layer formed on a surface of the substrate is provided, the coating layer including an alternating laminate structure in which two or more compound layers of each of two or three or more kinds, each kind having a different composition, are laminated in an alternating manner, wherein: the alternating laminate structure is constituted by: a compound layer containing a compound having a composition represented by (TixM1-x)N [wherein M denotes an element of at least one kind selected from the group consisting of Zr, Hf, V, Nb, Ta, Cr, Mo, W, Al and Si, x denotes an atomic ratio of Ti based on a total of Ti and an element denoted by M, and x satisfies 0.57?x?0.
    Type: Grant
    Filed: July 21, 2016
    Date of Patent: March 24, 2020
    Assignee: TUNGALOY CORPORATION
    Inventors: Yusuke Hirano, Shigeki Tanaka
  • Patent number: 10456841
    Abstract: A coated tool includes a hard coating layer that is formed with a (Ti,Al)(C,N) layer on its surface, the layer including an upper layer where a periodic compositional variation in Ti and Al is present in crystal grains having an NaCl type face-centered cubic structure, and a lower layer where a periodic compositional variation in Ti and Al is not present. The upper layer has a high Al amount, while the lower layer has a low Al amount. A value of I(200)/I(111) of the upper layer is greater than 10 and that of the lower layer is less than 3. The lower layer has a composition inclined structure where the Al amount increases from a tool body side towards an upper layer side. The lower layer contains multiple layers, where the Al amount of each layer can increase from the tool body side towards the upper layer side.
    Type: Grant
    Filed: March 11, 2016
    Date of Patent: October 29, 2019
    Assignee: MITSUBISHI MATERIALS CORPORATION
    Inventors: Kenichi Sato, Sho Tatsuoka, Kenji Yamaguchi
  • Patent number: 10385459
    Abstract: Disclosed herein are methods for fabricating layered ceramic materials via field assisted sintering technology. A method includes forming a ceramic green body on a surface of a substrate, and sintering the ceramic green body using a field-assisted sintering process to form a ceramic layer joined to the substrate.
    Type: Grant
    Filed: May 14, 2015
    Date of Patent: August 20, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Jennifer Y. Sun, Yikai Chen, Biraja Prasad Kanungo
  • Patent number: 10358712
    Abstract: This surface-coated cutting tool includes a cutting tool body made of tungsten carbide-based cemented carbide and a hard coating layer deposited on a surface of the cutting tool body, in which the hard coating layer has at least one (Ti1-xAlx)N layer (0.4?X?0.7, X is an atomic ratio) with an average layer thickness of 0.5 to 10 ?m, the (Ti, Al)N layer has a cubic crystal structure, and Ia?Ib<5 is satisfied when Ia (%) is an average absorptance of the hard coating layer at a wavelength of 400 to 500 nm and Ib (%) is an average absorptance of the hard coating layer at a wavelength of 600 to 700 nm.
    Type: Grant
    Filed: September 3, 2015
    Date of Patent: July 23, 2019
    Assignee: MITSUBISHI MATERIALS CORPORATION
    Inventors: Takashi Kimura, Masakuni Takahashi, Kazuaki Senbokuya, Tatsuo Hashimoto
  • Patent number: 10309017
    Abstract: A laminated hard coating comprising a layer A and a layer B, wherein the layer A and the layer B differ in composition and are laminated. Layer A contains (MaAlbCrcTad)(BxCyNz) and satisfies 0?a?0.35, 0.05?d?0.35, 0?x?0.15, 0?y?0.50, a+b+c+d=1, and x+y+z=1. M is at least one element selected from the group consisting of V, Nb, Mo, and W; a, b, c and d represent the atomic ratios of M, Al, Cr, and Ta, respectively; and x, y, and z represent the atomic ratios of B, C and N, respectively. The layer B comprises (Ti?Si?)(BxCyNz) and satisfies 0.05???0.35, 0?x?0.15, 0?y?0.50, ?+?=1, and x+y+z=1. ? and ? represent the atomic ratios of Ti and Si, respectively, and x, y, and z represent the atomic ratios of B, C, and N, respectively. One or more layers of each of these layers have been alternately laminated.
    Type: Grant
    Filed: June 23, 2015
    Date of Patent: June 4, 2019
    Assignee: Kobe Steel, Ltd.
    Inventors: Maiko Abe, Kenji Yamamoto, Hiroaki Nii
  • Patent number: 10287672
    Abstract: An arc-ion-plated hard coating having a composition represented by (AlxTiyWz)aN(1-a-b)Ob, wherein x, y, z, a and b are numbers meeting by atomic ratio 0.6?x?0.8, 0.05?y?0.38, 0.02?z?0.2, x+y+z=1, 0.2?a?0.8, and 0.02?b?0.10), and having W—O bonds with substantially no Al—O bonds when identified by X-ray photoelectron spectroscopy, and having only a NaCl-type structure in an X-ray diffraction pattern.
    Type: Grant
    Filed: March 26, 2015
    Date of Patent: May 14, 2019
    Assignee: Mitsubishi Hitachi Tool Engineering, Ltd.
    Inventors: Ryoutarou Fuwa, Kazuyuki Kubota, Yuuzoh Fukunaga
  • Patent number: 10214810
    Abstract: A tool has a main part of hard metal, cermet, ceramic, steel, high-speed steel, and a single or multilayer wear protection coating applied onto the main part by CVD and which has a thickness from 3 ?m to 25 ?m. The wear protection coating has at least one Ti1?xAlxCyNz layer with stoichiometric coefficients 0.70?x<1.0?y<0.25 and 0.75?z<1.15 and a thickness from 1.5 ?m to 17 ?m. The T1?xAlxCyNz layer has a lamellar structure with lamellae with thickness of no more than 150 nm, preferably no more than 100 nm, particularly preferably no more than 50 nm. Lamellae are made of periodically alternating regions of the Ti1?xAlxCyNz layer with alternatingly different stoichiometric proportions of Ti and Al, having the same crystal structure (crystallographic phase), and the Ti1?xAlxCyNz layer has at least 90% vol. % of face centered cubic (fcc) crystal structure.
    Type: Grant
    Filed: March 3, 2015
    Date of Patent: February 26, 2019
    Assignee: Walter AG
    Inventors: Dirk Stiens, Thorsten Manns, Sakari Ruppi
  • Patent number: 10183466
    Abstract: A transparent electroconductive film with a protective film includes: a transparent electroconductive film including a film substrate, an optical adjustment layer formed on one main surface of the film substrate, and a transparent conductive layer formed on the optical adjustment layer; and a protective film bonded to a main surface of the film substrate on a side opposite to the transparent conductive layer, wherein the transparent electroconductive film and the protective film are thermally shrinkable in at least one direction in a main surface, and the absolute value of the maximum thermal shrinkage ratio (%) of the transparent electroconductive film in a main surface is smaller than the absolute value of the maximum thermal shrinkage ratio (%) of the protective film in a main surface, and the difference between the absolute values is 0.05% to 0.6%.
    Type: Grant
    Filed: November 10, 2015
    Date of Patent: January 22, 2019
    Assignee: NITTO DENKO CORPORATION
    Inventors: Nozomi Fujino, Daiki Kato, Tomotake Nashiki
  • Patent number: 9950406
    Abstract: A coated product having coating that includes a layer of hard material having a defined multi-ply layer structure, thereby significantly minimizing or preventing heat input into the coated substrate resulting from the effect of thermal hot spots.
    Type: Grant
    Filed: November 24, 2014
    Date of Patent: April 24, 2018
    Assignee: OERLIKON SURFACE SOLUTIONS AG, PFÄFFIKON
    Inventors: Matthias Lukas Sobiech, Sebastian Stein, Valery Shklover, Paul Heinrich Michael Boettger, Joerg Patscheider
  • Patent number: 9910547
    Abstract: An anti-interference touch sensing structure includes a first substrate, a plurality of touch sensing units and at least a first anti-interference spot. The touch sensing units are coplanarly disposed on the first substrate, and a first interval region is formed between the adjacent touch sensing units. The first anti-interference spot is disposed within the first interval region.
    Type: Grant
    Filed: May 14, 2015
    Date of Patent: March 6, 2018
    Assignees: HANNSTAR DISPLAY (NANJING) CORPORATION, HANNSTAR DISPLAY CORPORATION
    Inventors: Hsing-Ying Lee, Da-Ching Tang
  • Patent number: 9885106
    Abstract: A hard coating containing at least one layer including chromium, aluminum, tantalum and nitrogen as main components and a chemical composition (AlaCrbTac)N in which the following conditions are satisfied: a=x, (1?c), b=(1?x)·(1?c), 0.60?x?0.70, and 0.01?c?0.5. The layer has an X-ray diffraction peak intensity ratio of I200/(I200+I111)?0.25. The application also relates to a reactive arc ion plating PVD process for making the hard coating.
    Type: Grant
    Filed: November 10, 2014
    Date of Patent: February 6, 2018
    Assignee: OERLIKON SURFACE SOLUTIONS AG, PFÄFFIKON
    Inventors: Richard Rachbauer, Robert Hollerweger, Paul Heinz Mayrhofer
  • Patent number: 9873850
    Abstract: A coated body includes a body (1) with a body surface (3) and a coating system (20) deposited on at least a portion of the body surface (3). The coating system (20) includes at least one hard friction reducing coating deposited as an outermost layer (9) which exhibits droplets (10) at its surface. The outermost layer (9) includes molybdenum copper nitride and/or molybdenum nitride and copper nitride, and at least some of the droplets (10) consist mainly of copper. Preferably most of the largest droplets (10) consist mainly of copper.
    Type: Grant
    Filed: July 25, 2013
    Date of Patent: January 23, 2018
    Assignee: OERLIKON SURFACE SOLUTIONS AG, PFÄFFIKON
    Inventors: Jurgen Ramm, Matthias Lukas Sobiech, Florian Seibert, Beno Widrig
  • Patent number: 9864189
    Abstract: In a mirror drive device, a first and second actuator sections are arranged on both sides of a mirror supporting section that supports a mirror section so as to sandwich the mirror supporting section. Division of an upper and lower electrodes of each of the first and second actuator sections is performed correspondingly to stress distribution of principal stresses in a piezoelectric body in resonant mode vibration, and a piezoelectric body portion corresponding to positions of a first and third upper electrode sections, and a piezoelectric body portion corresponding to positions of a second and fourth upper electrode sections have stresses in opposite directions to each other. Division of the lower electrodes is performed similar to the upper electrodes, and drive voltages having the same phase can be respectively applied to the upper and lower electrode sections of the piezoelectric body portions that are different due to a division arrangement.
    Type: Grant
    Filed: July 14, 2014
    Date of Patent: January 9, 2018
    Assignee: FUJIFILM Corporation
    Inventor: Takayuki Naono
  • Patent number: 9840768
    Abstract: A workpiece having a coating, said coating comprising at least one TiXSi1-xN layer, characterized in that x?0.85 and the TixSi1-xN layer contains nanocrystals, the nanocrystals present having an average grain size of not more than 15 nm and having a (200) texture. The invention also relates to a process for producing the aforementioned layer, characterized in that the layer is produced using a sputtering process, in which current densities of greater than 0.2 A/cm2 arise on the target surface of the sputtering target, and the target is a TiXSi1-xN target, where x?0.85. An intermediate layer containing TiAlN or CrAlN is preferably provided between the TixSi1-xN layer and the substrate body of the workpiece.
    Type: Grant
    Filed: July 1, 2014
    Date of Patent: December 12, 2017
    Assignee: Oerlikon Surface Solutions AG, Pfäffikon
    Inventors: Denis Kurapov, Siegfried Krassnitzer
  • Patent number: 9777367
    Abstract: A surface coated member having improved stability and a longer service life is provided. The surface coated member of the present invention includes a base member and a hard coating formed on a surface thereof. The hard coating is constituted of one or more layers. At least one of the layers is formed by a CVD method and includes a multilayer structure having a first unit layer and a second unit layer being layered alternately. The first unit layer includes a first compound containing Ti and one or more kind of element selected from the group consisting of B, C, N, and O. The second unit layer includes a second compound containing Al and one or more kind of element selected from the group consisting of B, C, N, and O.
    Type: Grant
    Filed: November 1, 2013
    Date of Patent: October 3, 2017
    Assignee: Sumitomo Electric Hardmetal Corp.
    Inventors: Anongsack Paseuth, Kazuo Yamagata, Susumu Okuno, Hideaki Kanaoka, Hiroyuki Morimoto, Minoru Itoh
  • Patent number: 9492872
    Abstract: The ion bombardment of Cr, etc. onto a surface of a WC-based cemented carbide substrate in a nitrogen-based gas forms a modified phase having a bcc structure on the substrate surface, and a hard coating containing at least Cr formed thereon has high adhesion to the substrate by the modified phase.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: November 15, 2016
    Assignee: Hitachi Tool Engineering, Ltd.
    Inventors: Masakazu Isaka, Fumihiro Fujii
  • Patent number: 9496073
    Abstract: A method, system, and apparatus for fabricating a high-strength Superconducting cable comprises pre-oxidizing at least one high-strength alloy wire, coating at least one Superconducting wire with a protective layer, and winding the high-strength alloy wire and the Superconducting wire to form a high-strength Superconducting cable.
    Type: Grant
    Filed: April 2, 2013
    Date of Patent: November 15, 2016
    Assignee: Fermi Research Alliance, LLC
    Inventor: Tengming Shen
  • Patent number: 9349907
    Abstract: Provided are a method of manufacturing a metal oxide and a substrate for a solar cell. The method of manufacturing the metal oxide according to the inventive concept includes mixing a metal precursor material, a basic material, amphiphilic molecules and distilled water to prepare a metal precursor solution, performing a first heat treatment with the metal precursor solution to form a metal oxide, and performing a second heat treatment with the metal oxide to form a pair of metal oxide disks having a single crystalline structure. A pair of zinc oxide disks includes a first disk, and a second disk separated from the first disk in a perpendicular direction to the first disk.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: May 24, 2016
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Mi Hee Jung, Moo Jung Chu
  • Patent number: 9322111
    Abstract: A bismuth-substituted rare-earth iron garnet crystal film (RIG) which has an insertion loss of less than 0.60 dB and which can be produced in a high yield, as well as an optical isolator, which is grown by liquid phase epitaxy on a non-magnetic garnet substrate represented by a chemical formula of Gd3(ScGa)5O12, wherein the bismuth-substituted rare-earth iron garnet crystal film is represented by a chemical formula of La3-x-yGdxBiyFe5O12 (provided that 0<x<3 and 0<y<3), and a composition ratio between the La, Gd, and Bi falls within a numeric value range corresponding to the inside of a quadrilateral having composition points A, B, C, and D as vertices in a La—Gd—Bi ternary composition diagram: composition point A (La: 0.15, Gd: 1.66, Bi: 1.19), composition point B (La: 0.32, Gd: 1.88, Bi: 0.80), composition point C (La: 0.52, Gd: 1.68, Bi: 0.80), and composition point D (La: 0.35, Gd: 1.46, Bi: 1.19).
    Type: Grant
    Filed: November 10, 2011
    Date of Patent: April 26, 2016
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Shuuji Oosumi, Yasutaka Nomi, Nobuo Nakamura, Hiroshi Hatanaka, Tomio Kajigaya
  • Patent number: 9228258
    Abstract: A hard-coated member comprising a substrate made of cemented carbide or high-speed steel and a titanium carbonitride layer formed on the substrate by a chemical vapor deposition method, the titanium carbonitride layer comprising first to third layers each having a columnar crystal structure in this order from the side of the substrate, the second layer being smaller than the first layer in carbon concentration, and the third layer being smaller than the second layer in carbon concentration, and an indexable rotary tool comprising it. The first layer is formed by using a starting material gas comprising a TiCl4 gas, an N2 gas, a C2-C5 hydrocarbon gas and an H2 gas, the second layer is formed by using a starting material gas comprising a TiCl4 gas, an N2 gas, an organic cyanide gas, a C2-C5 hydrocarbon gas, and an H2 gas, and the third layer is formed by using a starting material gas comprising a TiCl4 gas, an N2 gas, an organic cyanide gas, whose amount is smaller than in the second layer, and an H2 gas.
    Type: Grant
    Filed: March 27, 2012
    Date of Patent: January 5, 2016
    Assignee: Hitachi Tool Engineering, Ltd.
    Inventors: Yuuzoh Fukunaga, Kazuyuki Kubota
  • Patent number: 9212099
    Abstract: A ceramic article having a ceramic substrate and a ceramic coating with an initial porosity and an initial amount of cracking is provided. The ceramic article is heated to a temperature range between about 1000° C. and about 1800° C. at a ramping rate of about 0.1° C. per minute to about 20° C. per minute. The ceramic article is heat treated at one or more temperatures within the temperature range for a duration of up to about 24 hours. The ceramic article is then cooled at the ramping rate, wherein after the heat treatment the ceramic coating has a reduced porosity and a reduced amount of cracking.
    Type: Grant
    Filed: January 18, 2013
    Date of Patent: December 15, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Jennifer Y. Sun, Ren-Guan Duan, Biraja P. Kanungo, Dmitry Lubomirsky
  • Patent number: 9190601
    Abstract: A piezoelectric material contains a first component that is a rhombohedral crystal that is configured to have a complex oxide with a perovskite structure and Curie temperature Tc1 and a second component that is a crystal other than a rhombohedral crystal that is configured to have a complex oxide with the perovskite structure and Curie temperature Tc2, in which |Tc1?Tc2| is equal to or less than 50° C.
    Type: Grant
    Filed: March 26, 2014
    Date of Patent: November 17, 2015
    Assignee: Seiko Epson Corporation
    Inventors: Koji Sumi, Kazuya Kitada, Tomohiro Sakai, Yasuaki Hamada, Tetsuya Isshiki, Satoshi Kimura, Akio Ito, Tsuneo Handa
  • Patent number: 9175568
    Abstract: A method is provided for manufacturing a turbine component. The method includes forming a first intermediate turbine article with an additive manufacturing process; encapsulating the first intermediate turbine article with an encapsulation layer to form a second intermediate turbine article; and consolidating the second intermediate turbine article to produce the turbine component.
    Type: Grant
    Filed: June 22, 2010
    Date of Patent: November 3, 2015
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Daniel Ryan, Mark C. Morris, Donald G. Godfrey, Steve Starr
  • Patent number: 9145607
    Abstract: A method includes flowing reactant gases into a process chamber. Plasma having a first power level is supplied using a plasma source. The process chamber is dosed with the precursor. The first power level is sufficient to enhance adsorption of the precursor on a surface of the substrate and is insufficient to decompose the precursor that is adsorbed. After a first predetermined period, the method includes removing a portion of the precursor that does not adsorb onto the substrate. The precursor that is adsorbed is activated using plasma having a second power level using the plasma source. The second power level is greater than the first power level and is sufficient to decompose the precursor.
    Type: Grant
    Filed: October 22, 2013
    Date of Patent: September 29, 2015
    Assignee: LAM RESEARCH CORPORATION
    Inventors: Adrien LaVoie, Hu Kang, Karl Leeser
  • Patent number: 9148961
    Abstract: A solar cell panel is discussed. The solar cell panel includes a plurality of solar cells each including a substrate and an electrode part positioned on a surface of the substrate, an interconnector for electrically connecting at least one of the plurality of solar cells to another of the plurality of solar cells, and a conductive adhesive film including a resin and a plurality of conductive particles dispersed in the resin. The conductive adhesive film is positioned between the electrode part of the at least one of the plurality of solar cells and the interconnector to electrically connect the electrode part of the at least one of the plurality of solar cells to the interconnector. A width of the interconnector is equal to or greater than a width of the conductive adhesive film.
    Type: Grant
    Filed: November 8, 2010
    Date of Patent: September 29, 2015
    Assignee: LG ELECTRONICS INC.
    Inventors: Jongkyoung Hong, Jongdae Kim
  • Patent number: 9079800
    Abstract: A composite ceramic body which includes three phases consisting of a MgO phase, a YAP (YAlO3) phase and a spinel (MgAl2O4) phase. This composite ceramic body has a plasma resistance greater than that of alumina and approximately equal to that of MgO. Mechanical properties, such as hardness and bending strength, of the composite ceramic body, are approximately equal or superior to those of Al2O3. A raw material cost and a manufacturing cost thereof are lower than those of a rare-earth oxide. Further, electric conductive particles may be added thereto to lower an electrical resistivity. The composite ceramic body is suitably usable as component parts for a semiconductor manufacturing equipment.
    Type: Grant
    Filed: April 17, 2013
    Date of Patent: July 14, 2015
    Assignee: NIPPON TUNGSTEN CO., LTD
    Inventors: Kouta Tsutsumi, Ryou Matsuo, Mitsuyoshi Nagano
  • Patent number: 9048094
    Abstract: It is an object to provide a thin film transistor having favorable electric characteristics and high reliability and a semiconductor device which includes the thin film transistor as a switching element. An In—Ga—Zn—O-based film having an incubation state that shows an electron diffraction pattern, which is different from a conventionally known amorphous state where a halo shape pattern appears and from a conventionally known crystal state where a spot appears clearly, is formed. The In—Ga—Zn—O-based film having an incubation state is used for a channel formation region of a channel etched thin film transistor.
    Type: Grant
    Filed: July 18, 2013
    Date of Patent: June 2, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Akiharu Miyanaga, Junichiro Sakata, Masayuki Sakakura, Shunpei Yamazaki
  • Publication number: 20150138692
    Abstract: Disclosed is a method of coating a structured surface comprising the steps of providing nanoparticles of a first coating material, and depositing the nanoparticles onto a structured surface using electrophoretic deposition. The structured surface may comprise one or more carbon nanotubes which maybe an array. The coating material may be a dielectric material such as barium titanate which may have a particle size of approximately 20 nm diameter. Following the deposition step a second coating may be provided. The second coating may be hafnium oxide. Also disclosed is a capacitor comprising a first electrode of a structured material, a second electrode of conducting material, and a dielectric layer formed between the first and second electrode.
    Type: Application
    Filed: April 25, 2013
    Publication date: May 21, 2015
    Applicant: Dyson Technology Limited
    Inventors: Gehan Anjil Joseph Amaratunga, Youngjin Choi, Sai Giridhar Shivareddy, Nathan Charles Brown, Charles Anthony Neild Collis
  • Patent number: 9034488
    Abstract: The present invention relates generally to jewelry articles comprising a substrate and a metallic, external coating.
    Type: Grant
    Filed: January 27, 2014
    Date of Patent: May 19, 2015
    Assignee: Frederick Goldman, Inc.
    Inventor: Andrew Derrig
  • Publication number: 20150132606
    Abstract: The present invention relates to an information recording medium that has good enough recording characteristics even without containing Pd. The information recording medium has a recording layer including an oxide of Mn in which Mn atoms are partially or fully present as Mn with a valence of +4.
    Type: Application
    Filed: June 3, 2013
    Publication date: May 14, 2015
    Applicant: Sony Corporation
    Inventors: Kotaro Kurokawa, Yo Ota
  • Patent number: 9028960
    Abstract: A wear resistant coating suitable to be deposited on cutting tool inserts for chip forming metal machining, includes at least two layers with different grain size, but with essentially the same composition. The coating is deposited by Physical Vapor Deposition (PVD).
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: May 12, 2015
    Assignee: Seco Tools AB
    Inventors: Jacob Sjölén, Jon Andersson, Jörg Vetter, Jürgen Müller
  • Patent number: 9028954
    Abstract: The invention relates to a cutting tool comprising a main part and a multilayer coating applied thereon. A first layer A made of a hard material is applied on the main part, said hard material being selected from titanium aluminum nitride (TiAlN), titanium aluminum silicon nitride (TiAlSiN), chromium nitride (CrN), aluminum chromium nitride (AlCrN), aluminum chromium silicon nitride (AlCrSiN), and zirconium nitride (ZrN), and a second layer B made of silicon nitride (Si3N4) is applied directly over the first layer A.
    Type: Grant
    Filed: August 1, 2011
    Date of Patent: May 12, 2015
    Assignee: Walter AG
    Inventor: Veit Schier
  • Patent number: 9028956
    Abstract: A coated article is provided, having a coating supported by a glass substrate where the coating includes at least one color and/or reflectivity-adjusting absorber layer. The absorber layer(s) allows color tuning, and reduces the glass side reflection of the coated article and/or allows sheet resistance of the coating to be reduced without degrading glass side reflection. In certain example embodiments the absorber layer is provided between first and second dielectric layers which may be of substantially the same material and/or composition. In certain example embodiments, the coated article is capable of achieving desirable transmission, together with desired color, low reflectivity, and low selectivity, when having only one infrared (IR) reflecting layer of silver and/or gold. Coated articles according to certain example embodiments of this invention may be used in the context of insulating glass (IG) window units, monolithic windows, or the like.
    Type: Grant
    Filed: April 22, 2010
    Date of Patent: May 12, 2015
    Assignees: Centre Luxembourgeois de Recherches pour le Verre et la Ceramique S.A. (C.R.V.C.), Guardian Industries Corp.
    Inventors: Hartmut Knoll, Jochen Butz, Uwe Kriltz, Bernd Disteldorf, Jose Ferreira, Pierrot Pallotta
  • Publication number: 20150125677
    Abstract: Provided is a hard film for a cutting tool formed on a surface of a base material, the hard film being comprised of a nano multi-layered structure comprising a thin layer A, a thin layer B, a thin layer C and a thin layer D or a structure in which the nano multi-layered structure is repeatedly stacked at least twice, wherein the thin layer A is comprised of Ti1-xAlxN (0.5?x?0.7); the thin layer B is comprised of Al1-y-zTiyCrzN (0.3?y?0.6 and 0<z?0.3); the thin layer B is comprised of MeN (where Me is Nb or V); and the thin layer D is comprised of Al1-a-bTiaSibN (0.3?a?0.7 and 0<b<0.1).
    Type: Application
    Filed: March 18, 2013
    Publication date: May 7, 2015
    Inventors: Je-Hun Park, Jae-Hoon Kang, Seung-Su Ahn, Sung-Hyun Kim, Sung-Gu Lee, Jung-Wook Kim, Sun-Yong Ahn, Dong-Bok Park