With Fused Electrolyte, I.e., Molten Patents (Class 429/103)
  • Patent number: 8980459
    Abstract: Cell and batteries containing them employing a transition metal chalcogenide positive electrode (cathode) in combination with a liquid alkali metal haloaluminate. At operating temperatures, the positive electrode (cathode) of the invention comprises a solid matrix comprising electroactive cathode material permeated with and in physical and electrical contact with liquid alkali metal haloaluminate electrolyte. The positive and negative electrodes are separated with a solid alkali metal conducting electrolyte. The transition metal chalcogenide is not in direct physical contact with the solid electrolyte. Electric and ionic conductivity between the solid electrolyte and the positive electrode is mediated by the liquid alkali metal haloaluminate electrolyte. More specifically, the cells are sodium/iron sulfide cells. Batteries of the invention are useful for bulk energy storage, particularly for electric utility grid storage, as well as for electric vehicle propulsion.
    Type: Grant
    Filed: January 2, 2014
    Date of Patent: March 17, 2015
    Assignee: Dynantis Corporation
    Inventor: Anthony F Sammells
  • Patent number: 8974939
    Abstract: An electrochemical device (such as a battery) includes at least one electrode having a fluid surface, which may employ a surface energy effect to maintain a position of the fluid surface and/or to modulate flow within the fluid. Fluid-directing structures may also modulate flow or retain fluid in a predetermined pattern. An electrolyte within the device may also include an ion-transport fluid, for example infiltrated into a porous solid support.
    Type: Grant
    Filed: October 20, 2009
    Date of Patent: March 10, 2015
    Assignee: The Invention Science Fund I, LLC
    Inventors: Geoffrey F. Deane, Bran Ferren, William Gates, W. Daniel Hillis, Roderick A. Hyde, Muriel Y. Ishikawa, Edward K.Y. Jung, Jordin T. Kare, Nathan P. Myhrvold, Clarence T. Tegreene, David B. Tuckerman, Thomas A. Weaver, Charles Whitmer, Lowell L. Wood, Jr., Victoria Y.H. Wood
  • Patent number: 8968902
    Abstract: The present invention provides a molten sodium secondary cell. In some cases, the secondary cell includes a sodium metal negative electrode, a positive electrode compartment that includes a positive electrode disposed in a liquid positive electrode solution, and a sodium ion conductive electrolyte membrane that separates the negative electrode from the positive electrode solution. In such cases, the electrolyte membrane can comprise any suitable material, including, without limitation, a NaSICON membrane. Furthermore, in such cases, the liquid positive electrode solution can comprise any suitable positive electrode solution, including, but not limited to, an aqueous sodium hydroxide solution. Generally, when the cell functions, the sodium negative electrode is molten and in contact with the electrolyte membrane. Additionally, the cell is functional at an operating temperature between about 100° C. and about 170° C. Indeed, in some instances, the molten sodium secondary cell is functional between about 110° C.
    Type: Grant
    Filed: November 7, 2011
    Date of Patent: March 3, 2015
    Assignee: Ceramatec, Inc.
    Inventors: W. Grover Coors, Chett Boxley, Mathew Robins, Alexis Eccleston
  • Patent number: 8968903
    Abstract: An electrochemical device (such as a battery) includes at least one electrode having a fluid surface, which may employ a surface energy effect to maintain a position of the fluid surface and/or to modulate flow within the fluid. Fluid-directing structures may also modulate flow or retain fluid in a predetermined pattern. An electrolyte within the device may also include an ion-transport fluid, for example infiltrated into a porous solid support.
    Type: Grant
    Filed: October 20, 2009
    Date of Patent: March 3, 2015
    Assignee: The Invention Science Fund I, LLC
    Inventors: Geoffrey F. Deane, Bran Ferren, William Gates, W. Daniel Hillis, Roderick A. Hyde, Muriel Y. Ishikawa, Edward K. Y. Jung, Jordin T. Kare, Nathan P. Myhrvold, Clarence T. Tegreene, David B. Tuckerman, Thomas A. Weaver, Charles Whitmer, Lowell L. Wood, Jr., Victoria Y. H. Wood
  • Publication number: 20150015210
    Abstract: The present disclosure provides an energy storage device comprising at least one electrochemical cell comprising a negative current collector, a negative electrode in electrical communication with the negative current collector, an electrolyte in electrical communication with the negative electrode, a positive electrode in electrical communication with the electrolyte and a positive current collector in electrical communication with the positive electrode. The negative electrode comprises an alkali metal. Upon discharge, the electrolyte provides charged species of the alkali metal. The positive electrode can include a Group IIIA, IVA, VA and VIA of the periodic table of the elements, or a transition metal (e.g., Group 12 element).
    Type: Application
    Filed: May 23, 2014
    Publication date: January 15, 2015
    Applicant: Ambri, Inc.
    Inventors: David J. Bradwell, Xingwen Yu, Greg A. Thompson, Jianyi Cui, Alex Elliott, Chia-Ying Lee, Denis Tite
  • Publication number: 20150010792
    Abstract: The present invention provides rechargeable electrochemical cells comprising a molten anode, a cathode, and a non-aqueous electrolyte salt, wherein the electrolyte salt is situated between the molten anode and the cathode during the operation of the electrochemical cell, and the molten anode comprises an aluminum material; also provided are batteries comprising a plurality of such rechargeable electrochemical cells and processes for manufacturing such rechargeable electrochemical cells.
    Type: Application
    Filed: July 7, 2014
    Publication date: January 8, 2015
    Inventors: Steven Amendola, Stefanie Sharp-Goldman
  • Publication number: 20150004455
    Abstract: Pressure relief mechanisms can provide an outlet for cathode pressure buildup during battery operation. Mechanical cathode modifications can control cathode interfaces during battery operation. Pressure relief mechanisms and mechanical modifications can be utilized to improve performance, longevity and/or to prevent failure of batteries, such as during cycling of liquid metal batteries.
    Type: Application
    Filed: February 12, 2014
    Publication date: January 1, 2015
    Applicant: Ambri Inc.
    Inventors: David J. Bradwell, Alex T. Vai, Tom Kinney, Sean Theriault, Garrett Lau
  • Publication number: 20140349159
    Abstract: An electrochemical cell is presented. The electrochemical cell includes an ion-conducting separator having a first surface that defines at least a portion of a first compartment and a second surface that defines at least a portion of a second compartment, and a positive electrode composition disposed in the first compartment, the positive electrode composition comprising an electroactive metal, an alkali metal halide, and an electrolyte. The electroactive metal includes metal flakes of an average aspect ratio greater than about 5. An energy storage battery including a plurality of electrochemical cells is also presented.
    Type: Application
    Filed: May 21, 2013
    Publication date: November 27, 2014
    Inventors: Brandon Alan Bartling, Michael Alan Vallance, Richard Louis Hart
  • Patent number: 8859140
    Abstract: An electrode for a molten salt battery includes a current collector connectable to an electrode terminal of the molten salt battery and an active material. The current collector has an internal space in which small spaces are mutually coupled. The internal space of the current collector is filled with the active material.
    Type: Grant
    Filed: December 16, 2011
    Date of Patent: October 14, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Syoichiro Sakai, Shinji Inazawa, Masatoshi Majima, Koji Nitta, Atsushi Fukunaga
  • Publication number: 20140285153
    Abstract: Provided is a method for operating a molten salt battery having a sodium compound (NaCrO2) in a positive electrode and tin (Sn) in a negative electrode with a molten salt as an electrolytic solution. Although the operating temperature range of the molten salt battery is originally from 57° C. to 190° C., the molten salt battery is operated with an internal temperature thereof (temperature of electrodes and molten salt) set at from 98° C. to 190° C. to cause sodium to turn to a liquid phase. The sodium penetrates into a Sn—Na alloy micronized in the negative electrode, so that separation of the Sn—Na alloy is suppressed.
    Type: Application
    Filed: September 28, 2012
    Publication date: September 25, 2014
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Atsushi Fukunaga, Shinji Inazawa, Koji Nitta, Shoichiro Sakai, Koma Numata, Toshiyuki Nohira, Rika Hagiwara, Takayuki Yamamoto
  • Publication number: 20140272481
    Abstract: An electrochemical cell includes a negative electrode comprising a first active metal, a positive electrode comprising a second active metal, and an electrolyte comprising salts of the two active metals, a salt of the cathodic metal and a salt of the anodic metal. In operation, the electrolyte composition varies such that in a charging mode the salt of the anodic salt decreases, while the salt of the cathodic salt increases, and in a discharging mode the salt of the anodic salt increases, while the salt of the cathodic salt decreases. The cell is operational for both storing electrical energy and as a source of electrical energy as part of an uninterruptible power system. The cell is particularly suited to store electrical energy produced by an intermittent renewable energy source.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 18, 2014
    Applicant: Total Marketing Services
    Inventors: Brice H.V. Chung, Donald R. Sadoway
  • Patent number: 8816635
    Abstract: An electrochemical cell includes an anode connectable to a current tap and a charging medium in electrical contact with the anode. A switching device is configured to stop a charging operation of the electrochemical cell upon activation by the charging medium.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: August 26, 2014
    Assignee: General Electric Company
    Inventors: Chandra Sekher Yerramalli, Badri Narayan Ramamurthi, Reza Sarrafi-Nour, Andrew Philip Shapiro, Anil Raj Duggal
  • Publication number: 20140212707
    Abstract: The present invention provides a molten sodium secondary cell. In some cases, the secondary cell includes a sodium metal negative electrode, a positive electrode compartment that includes a positive electrode disposed in a molten positive electrolyte comprising Na—FSA (sodium-bis(fluorosulonyl)amide), and a sodium ion conductive electrolyte membrane that separates the negative electrode from the positive electrolyte. One disclosed example of electrolyte membrane material includes, without limitation, a NaSICON-type membrane. The positive electrode includes a sodium intercalation electrode. Non-limiting examples of the sodium intercalation electrode include NaxMnO2, NaxCrO2, NaxNiO, and NaxFey(PO4)z. The cell is functional at an operating temperature between about 100° C. and about 150° C., and preferably between about 110° C. and about 130° C.
    Type: Application
    Filed: March 11, 2014
    Publication date: July 31, 2014
    Applicant: Ceramatec, Inc.
    Inventors: Sai Bhavaraju, Mathew Robins
  • Publication number: 20140210422
    Abstract: The present invention provides a molten sodium secondary cell. In some cases, the secondary cell includes a sodium metal negative electrode, a positive electrode compartment that includes a positive electrode disposed in a molten positive electrolyte comprising Na-FSA (sodium-bis(fluorosulonyl)amide), and a sodium ion conductive electrolyte membrane that separates the negative electrode from the positive electrolyte. One disclosed example of electrolyte membrane material includes, without limitation, a NaSICON-type membrane. Non-limiting examples of the positive electrode include Ni, Zn, Cu, or Fe. The cell is functional at an operating temperature between about 100° C. and about 150° C., and preferably between about 110° C. and about 130° C.
    Type: Application
    Filed: March 12, 2014
    Publication date: July 31, 2014
    Applicant: Ceramatec, Inc.
    Inventors: Sai Bhavaraju, Mathew Robins
  • Publication number: 20140170458
    Abstract: A separator (3) of a molten salt battery is impregnated with a molten salt that serves as the electrolyte. The molten salt contains, as cations, at least one kind of ions selected from among quaternary ammonium ions, imidazolium ions, imidazolinium ions, pyridinium ions, pyrrolidinium ions, piperidinium ions, morpholinium ions, phosphonium ions, piperazinium ions and sulfonium ions in addition to sodium ions. These cations do not have adverse effects on a positive electrode (1). In addition, the melting point of the molten salt, which contains sodium ions and the above-mentioned cations, is significantly lower than the operating temperature of sodium-sulfur batteries, said operating temperature being 280-360 DEG C. Consequently, the molten salt battery is capable of operating at lower temperatures than sodium-sulfur batteries.
    Type: Application
    Filed: November 7, 2011
    Publication date: June 19, 2014
    Applicants: KYOTO UNIVERSITY, SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Koji Nitta, Shinji Inazawa, Masatoshi Majima, Atsushi Yamaguchi, Shoichiro Sakai, Atsushi Fukunaga, Rika Hagiwara, Toshiyuki Nohira, Kazuhiko Matsumoto
  • Publication number: 20140147720
    Abstract: An electrochemical cell 10 includes a case 12 serving as an insulating tube, an inner container 13 disposed on the inside wall of the case 12, a separator 14 separating the inside of the case 12 into a positive electrode chamber 20 and a negative electrode chamber 30, a mixed molten liquid 22 which is stored in the positive electrode chamber 20 and which contains a positive electrode active material and a supporting electrolyte, and a negative electrode active material 32 stored in the negative electrode chamber 30. The mixed molten liquid is a liquid obtained by mixing a radical compound having a nitroxyl radical site and serving as an active material and a metal salt having a fluoroalkylsulfonyl site and serving as a supporting electrolyte.
    Type: Application
    Filed: November 13, 2013
    Publication date: May 29, 2014
    Applicant: KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHO
    Inventors: Kensuke TAKECHI, Yoko HASE, Emi ITO
  • Patent number: 8697279
    Abstract: In one embodiment, a cathode composition comprises a transition metal and/or a transition metal salt, wherein the transition metal is selected from the group consisting of nickel, iron, cobalt, chromium, manganese, molybdenum, zinc, and antimony, and a combination comprising at least one of the foregoing; an alkali metal halide; an electrolyte salt comprising an alkali metal halide and a metal halide; and a sulfide compound selected from the group consisting of gallium sulfide, antimony sulfide, and a combination comprising at least one of the foregoing. An energy storage device comprising the electrode composition is also provided.
    Type: Grant
    Filed: January 14, 2011
    Date of Patent: April 15, 2014
    Assignee: General Electric Company
    Inventors: Sergei Kniajanski, Andrey Ivanovich Meshkov, Grigorii Lev Soloveichik, Michael Alan Vallance
  • Patent number: 8697271
    Abstract: The present invention provides a molten salt containing at least two salts, and having a melting point of 350° C. or more and 430° C. or less and an electric conductivity at 500° C. of 2.2 S/cm or more. The present invention also provides a thermal battery including the molten salt as an electrolyte.
    Type: Grant
    Filed: April 29, 2013
    Date of Patent: April 15, 2014
    Assignee: Panasonic Corporation
    Inventor: Syozo Fujiwara
  • Patent number: 8679668
    Abstract: The invention relates to an improved industrial apparatus for the large-scale storage of energy and a process for storing and transporting electric energy by means of this apparatus.
    Type: Grant
    Filed: June 22, 2011
    Date of Patent: March 25, 2014
    Assignee: BASF SE
    Inventors: Christoph Übler, Dietmar Bender, Günther Huber, Andreas Fischer, Bernd Schube, Glyn Atherton, Francis Michael Stackpool, Cord-Henrich Dustmann
  • Publication number: 20140037999
    Abstract: A battery is provided with an associated method for transporting metal-ions in the battery using a low temperature molten salt (LTMS). The battery comprises an anode, a cathode formed from a LTMS having a liquid phase at a temperature of less than 150° C., a current collector submerged in the LTMS, and a metal-ion permeable separator interposed between the LTMS and the anode. The method transports metal-ions from the separator to the current collector in response to the LTMS acting simultaneously as a cathode and an electrolyte. More explicitly, metal-ions are transported from the separator to the current collector by creating a liquid flow of LTMS interacting with the current collector and separator.
    Type: Application
    Filed: August 1, 2012
    Publication date: February 6, 2014
    Inventors: Yuhao Lu, Sean Andrew Vail, Gregory M. Stecker, Jong-Jan Lee
  • Publication number: 20140038000
    Abstract: A metal flow-through battery is provided, with ion exchange membrane. The flow-through battery is primarily made up of an anode slurry, a cathode slurry, and a hydroxide (OH?) anion exchange membrane interposed between the anode slurry and the cathode slurry, The anode and cathode slurries are both aqueous slurries. The anode slurry includes a metal, and associated oxides, such as magnesium (Mg), aluminum (Al), iron (Fe), copper (Cu), or zinc (Zn). The cathode slurry includes a chemical agent such as nickel oxyhydroxide (NiOOH), nickel (II) hydroxide (Ni(OH)2), manganese oxide (MnO2), manganese (II) oxide (Mn2O3), iron (III) oxide (Fe2O3), iron (III) oxide (FeO), iron (III) hydroxide (Fe(OH)), or combinations of the above-referenced materials. A method is also provided for forming a voltage potential across a flow-through battery.
    Type: Application
    Filed: September 30, 2013
    Publication date: February 6, 2014
    Applicant: Sharp Laboratories of America, Inc.
    Inventors: Yuhao Lu, Jong-Jan Lee, Hidayat Kisdarjono
  • Patent number: 8642201
    Abstract: One embodiment includes a liquid-metal alloy negative electrode for a lithium-ion battery. The electrode may also include a porous matrix that comprises a polymer matrix material, a hydrogel material, or a ceramic material.
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: February 4, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Yang T. Cheng, Stephen J. Harris, Adam T Timmons
  • Publication number: 20140023903
    Abstract: Sodium energy storage devices employing aspects of both ZEBRA batteries and traditional Na—S batteries can perform better than either battery alone. The hybrid energy storage devices described herein can include a sodium anode, a molten sodium salt catholyte, and a positive electrode that has active species containing sulfur. Additional active species can include a transition metal source and NaCl. As a product of the energy discharge process, Na2Sx forms in which x is less than three.
    Type: Application
    Filed: July 23, 2013
    Publication date: January 23, 2014
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Xiaochuan Lu, Jin Yong Kim, Guosheng Li, John P. Lemmon, Vincent L. Sprenkle
  • Patent number: 8586220
    Abstract: An accumulator with an accumulator housing, having at least one cell changer, with several electrodes and liquid electrolyte in each cell chamber with at least one wall element in the cell chambers to divide the cell chambers into at least two intercommunicating volume chambers. In the lower region of the volume chambers is a communicating connection for the liquid electrolyte between the volume chambers and a pressure equalization connection between the volume chambers is arranged in the upper region of the volume chambers to assure an equivalent air pressure in the intercommunicating volume chambers.
    Type: Grant
    Filed: October 2, 2008
    Date of Patent: November 19, 2013
    Assignee: Johnson Controls Autobatterie GmbH & Co. KGaA
    Inventors: Ingo Koch, Amo Koerber, Dirk Bremer
  • Patent number: 8460814
    Abstract: An electrochemical device (such as a battery) includes at least one electrode having a fluid surface, which may employ a surface energy effect to maintain a position of the fluid surface and/or to modulate flow within the fluid. Fluid-directing structures may also modulate flow or retain fluid in a predetermined pattern. An electrolyte within the device may also include an ion-transport fluid, for example infiltrated into a porous solid support.
    Type: Grant
    Filed: July 29, 2009
    Date of Patent: June 11, 2013
    Assignee: The Invention Science Fund I, LLC
    Inventors: Geoffrey F. Deane, Bran Ferren, William Gates, W. Daniel Hillis, Roderick A. Hyde, Muriel Y. Ishikawa, Edward K. Y. Jung, Jordin T. Kare, Nathan P. Myhrvold, Clarence T. Tegreene, David B. Tuckerman, Thomas A. Weaver, Charles Whitmer, Lowell L. Wood, Jr., Victoria Y. H. Wood
  • Patent number: 8450005
    Abstract: The present invention provides a molten salt containing at least two salts, and having a melting point of 350° C. or more and 430° C. or less and an electric conductivity at 500° C. of 2.2 S/cm or more. The present invention also provides a thermal battery including the molten salt as an electrolyte.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: May 28, 2013
    Assignee: Panasonic Corporation
    Inventor: Syozo Fujiwara
  • Publication number: 20130045408
    Abstract: An electrochemical method and apparatus for high-amperage electrical energy storage features a high-temperature, all-liquid chemistry. The reaction products created during charging remain part of the electrodes during storage for discharge on demand. In a simultaneous ambipolar electrodeposition cell, a reaction compound is electrolyzed to effect transfer from an external power source; the electrode elements are electrodissolved during discharge.
    Type: Application
    Filed: August 17, 2012
    Publication date: February 21, 2013
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Donald Sadoway, Gerbrand Ceder, David Bradwell
  • Publication number: 20130040171
    Abstract: An energy storage device is provided that includes a reservoir in operative communication with a positive electrode such that the positive electrode remains fully flooded, even at the top of the charge cycle. The device more particularly includes a housing receiving therein, in a coaxial manner, an ion conducting member, and a current collector member received coaxially within the ion conducting member. In this device, a first region is provided in the space between the housing and the ion conducting member and a second region is provided in the space between the ion conducting member and the current collector member. The interior of the current collector member defines a reservoir having a certain volume at least equal to the volume of the void space created in the second region during charging of the device.
    Type: Application
    Filed: August 11, 2011
    Publication date: February 14, 2013
    Inventor: Robert Christie Galloway
  • Patent number: 8323816
    Abstract: Electrochemical cells having molten electrodes comprising an alkaline earth metal provide receipt and delivery of power by transporting atoms of the alkaline earth metal between electrode environments of disparate alkaline earth metal chemical potentials.
    Type: Grant
    Filed: July 20, 2009
    Date of Patent: December 4, 2012
    Assignee: Massachusetts Institute of Technology
    Inventors: David Bradwell, Donald R. Sadoway
  • Patent number: 8268471
    Abstract: An electrochemical method and apparatus for high-amperage electrical energy storage features a high-temperature, all-liquid chemistry. The reaction products created during charging remain part of the electrodes during storage for discharge on demand. In a simultaneous ambipolar electrodeposition cell, a reaction compound is electrolyzed to effect transfer from an external power source; the electrode elements are electrodissolved during discharge.
    Type: Grant
    Filed: August 15, 2007
    Date of Patent: September 18, 2012
    Assignee: Massachusetts Institute of Technology
    Inventors: Donald Sadoway, Gerbrand Ceder, David Bradwell
  • Publication number: 20120183829
    Abstract: In one embodiment, a cathode composition comprises a transition metal and/or a transition metal salt, wherein the transition metal is selected from the group consisting of nickel, iron, cobalt, chromium, manganese, molybdenum, zinc, and antimony, and a combination comprising at least one of the foregoing; an alkali metal halide; an electrolyte salt comprising an alkali metal halide and a metal halide; and a sulfide compound selected from the group consisting of gallium sulfide, antimony sulfide, and a combination comprising at least one of the foregoing. An energy storage device comprising the electrode composition is also provided.
    Type: Application
    Filed: January 14, 2011
    Publication date: July 19, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Sergei Kniajanski, Andrey Ivanovich Meshkov, Grigorii Lev Soloveichik, Michael Alan Vallance
  • Patent number: 8221912
    Abstract: The present invention provides a molten salt containing at least two salts, and having a melting point of 350° C. or more and 430° C. or less and an electric conductivity at 500° C. of 2.2 S/cm or more. The present invention also provides a thermal battery including the molten salt as an electrolyte.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: July 17, 2012
    Assignee: Panasonic Corporation
    Inventor: Syozo Fujiwara
  • Publication number: 20120171537
    Abstract: Provided is a molten salt battery which can be stably charged and discharged. A separator 3 composed of a rectangular plate-shaped glass cloth and containing a molten salt is interposed between a positive electrode 1 and a negative electrode 2 having a rectangular plate shape to form a power generating element X. A battery container 5 is configured to be substantially rectangular parallelepiped-shaped. A non-flexible presser plate 4b pressed by a spring 4a arranged at a negative electrode 2 side in the battery container 5 substantially evenly disperses pressing force from the spring 4a and presses the negative electrode 2 downward. As a result of the reaction, a bottom wall 52 of the battery container presses the positive electrode 1 upward so that no dead space is generated even when a plurality of batteries are combined.
    Type: Application
    Filed: March 14, 2012
    Publication date: July 5, 2012
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Shoichiro Sakai, Masatoshi Majima, Koji Nitta, Chihiro Hiraiwa, Atsushi Fukunaga, Shinji Inazawa
  • Patent number: 8178231
    Abstract: In accordance with one aspect of the present invention, a cathode composition is provided that includes at least one transition metal or a transition metal salt, wherein the transition metal is at least one selected from the group consisting of nickel, iron, cobalt, chromium, manganese, molybdenum, and antimony; an alkali metal halide; a salt comprising an alkali metal halide and a metal halide; and a metal polysulfide compound MSn wherein M is a metal and n is an integer equal to or greater than 2. The salt comprising an alkali metal halide and a metal halide has a melting point of less than about 300° C. An energy storage device comprising the electrode composition is also provided.
    Type: Grant
    Filed: September 24, 2009
    Date of Patent: May 15, 2012
    Assignee: General Electric Company
    Inventors: Grigorii Lev Soloveichik, Richard Louis Hart, Roy Christie Galloway
  • Publication number: 20120115002
    Abstract: To provide a molten salt battery which is highly safe and has long charge/discharge cycle life. The molten salt battery of the present invention includes a negative electrode 1 in which a negative electrode active material 12 is predominantly composed of carbon such as hard carbon. The negative electrode active material 12 is surface-treated for imparting hydrophilicity to the negative electrode active material 12 to improve the affinity for the molten salt. Further, a transition metal such as iron is added to the negative electrode active material 12 predominantly composed of hard carbon in order to enhance the affinity for the active material. The molten salt battery has higher safety in production and use and longer charge/discharge cycle life than conventional molten salt batteries using metallic sodium as an electrode.
    Type: Application
    Filed: October 4, 2011
    Publication date: May 10, 2012
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Atsushi Fukunaga, Shoichiro Sakai, Chihiro Hiraiwa, Koji Nitta, Masatoshi Majima, Shinji Inazawa
  • Publication number: 20120088139
    Abstract: An electrode for a molten salt battery includes a current collector connectable to an electrode terminal of the molten salt battery and an active material. The current collector has an internal space in which small spaces are mutually coupled. The internal space of the current collector is filled with the active material.
    Type: Application
    Filed: December 16, 2011
    Publication date: April 12, 2012
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Syoichiro SAKAI, Shinji INAZAWA, Masatoshi MAJIMA, Koji NITTA, Atsushi FUKUNAGA
  • Publication number: 20110300422
    Abstract: A liquid sodium battery in which two electrode members sandwiching a partition wall formed of a Na-ion conducting solid substance are constructed by a metal having a work function whose absolute value is smaller than that of a work function of sodium and a metal having a work function whose absolute value is greater than that of the work function of sodium.
    Type: Application
    Filed: February 15, 2010
    Publication date: December 8, 2011
    Inventors: Tadahiro Ohmi, Tetsuya Goto, Masafumi Kitano
  • Patent number: 8039138
    Abstract: Thermal batteries using molten nitrate electrolytes offer significantly higher cell voltages and improvements in energy and power density. A problem concerning gas-evolution reactions is solved by eliminating chloride ions, sodium ions, and moisture contaminants. One step is to avoid any chlorine-containing substances in any battery component. The decomposition of such substances into chloride ions results in passivating-film breakdown and gas-producing reactions with the electrolyte. Sodium ions also react with the anode and lead to decreased stability. Thus, the use of sodium ions in components of the battery is avoided. The effect of water in the melt relates to both the reactivity and out-gassing problem. Water in the melt will react with, and breach the insoluble and protective oxide film and can produce hydrogen gas. A method to measure water in the nitrate electrolyte melt via cyclic voltammetry, as well as means of eliminate water from the melt is presented.
    Type: Grant
    Filed: December 8, 2009
    Date of Patent: October 18, 2011
    Assignee: Millennium Engineering and Integration Company
    Inventors: Melvin H. Miles, Adam A. Grumet, Kurt W. Solomon
  • Patent number: 7883797
    Abstract: A non-aqueous electrolyte battery that contains a molten salt electrolyte and has the enhanced output performances and cycle performances can be provided. The electrolyte has a molar ratio of lithium salt to molten salt of from 0.3 to 0.5, and the non-aqueous electrolyte battery has a positive electrode having a discharge capacity of 1.05 or more times that of a negative electrode thereof.
    Type: Grant
    Filed: July 13, 2005
    Date of Patent: February 8, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takashi Kishi, Takashi Kuboki, Hidesato Saruwatari, Norio Takami
  • Publication number: 20090212743
    Abstract: A molten salt composition is disclosed containing two or more types of molten salt MTFSI whose anion is an imide anion TFSI and whose cation is an alkali metal M exhibits a lower electrolyte melting point and a wider operating temperature range than a simple salt does. This brings about various advantages such as a wider range of materials that are chosen for use in batteries and the like.
    Type: Application
    Filed: March 22, 2006
    Publication date: August 27, 2009
    Inventors: Rika Hagiwara, Kazuhiko Matsumoto, Kenichiro Tamaki, Toshiyuki Nohira, Takuya Goto
  • Publication number: 20080299447
    Abstract: The present invention provides a molten salt containing at least two salts, and having a melting point of 350° C. or more and 430° C. or less and an electric conductivity at 500° C. of 2.2 S/cm or more. The present invention also provides a thermal battery including the molten salt as an electrolyte.
    Type: Application
    Filed: May 23, 2008
    Publication date: December 4, 2008
    Inventor: Syozo FUJIWARA
  • Patent number: 7455702
    Abstract: A manufacturing method of the present invention includes ejecting a melt 61 of a solid electrolyte onto at least one electrode plate selected from a positive electrode plate 20 and a negative electrode plate 30, thereby depositing the melt 61 onto the at least one electrode plate, and compressing the positive electrode plate 20 and the negative electrode plate 30 while sandwiching the melt 61, thereby forming a layered body including the positive electrode plate 20, an electrolyte layer 62 including the solid electrolyte, and the negative electrode plate 30. In accordance with this manufacturing method, a thin lithium secondary battery having excellent characteristics can be manufactured in a highly productive manner.
    Type: Grant
    Filed: August 28, 2002
    Date of Patent: November 25, 2008
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Kazuyoshi Honda, Yoriko Takai, Sadayuki Okazaki, Syuji Ito, Junichi Inaba, Hiroshi Higuchi
  • Patent number: 7033674
    Abstract: Compositions of biomolecules such as nucleic acids that form molten salts are provided. These compositions molten compositions that have useful electrical properties. Such compositions include a salt of (i) an organic polymer ion such as a polynucleic acid anion, and (ii) a polyether or polysiloxane couterion. Methods of making and using such compositions, along with electrical devices such as memory devices, are also provided.
    Type: Grant
    Filed: August 17, 2001
    Date of Patent: April 25, 2006
    Assignee: The University of North Carolina at Chapel Hill
    Inventors: H. Holden Thorp, Royce W. Murray, Anthony M. Leone, Mary Elizabeth Williams
  • Patent number: 7029793
    Abstract: A nonaqueous electrolyte lithium secondary cell comprising a positive electrode (1), a negative electrode (2) and a nonaqueous electrolyte containing a lithium salt is characterized by that the nonaqueous electrolyte contains a room temperature molten salt as a main component, a material wherein a working potential of the negative electrode (2) is nobler by above 1V than a potential of a metallic lithium is used for a negative active material of the negative electrode. This nonaqueous electrolyte lithium secondary cell has excellent safety and cell performance.
    Type: Grant
    Filed: May 10, 2001
    Date of Patent: April 18, 2006
    Assignees: GS Yuasa Corporation, The Kansai Electric Power Co., Inc.
    Inventors: Hiroe Nakagawa, Syuichi Izuchi, Takaaki Iguchi, Shigeru Sano, Kenichi Takeuchi, Keiichi Yamamoto, Hiroo Arai
  • Patent number: 6878479
    Abstract: Bipolar, tilted embodiments of high temperature, molten electrolyte electrochemical cells capable of directly converting carbon fuel to electrical energy are disclosed herein. The bipolar, tilted configurations minimize the electrical resistance between one cell and others connected in electrical series. The tilted configuration also allows continuous refueling of carbon fuel.
    Type: Grant
    Filed: June 12, 2002
    Date of Patent: April 12, 2005
    Assignee: The Regents of the University of California
    Inventors: John F. Cooper, Nerine Cherepy, Roger L. Krueger
  • Patent number: 6841300
    Abstract: An electrolyte containing calcium bistrifluoromethanesulfonimide [Ca((CF3SO2)2N)2] for a nonaqueous battery. The calcium bistrifluoromethanesulfonimide is soluble in an organic solvent and a molten salt having a melting point of not greater than 60° C.
    Type: Grant
    Filed: December 18, 2003
    Date of Patent: January 11, 2005
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Masaharu Itaya, Masahide Miyake, Masahisa Fujimoto
  • Patent number: 6824914
    Abstract: A fuel cell/battery uses amine-based liquid complexes as a direct oxidation fuel in an alkaline fuel cell/battery. Oxidant solutions are used on the cathode side to improve power density.
    Type: Grant
    Filed: August 20, 2002
    Date of Patent: November 30, 2004
    Assignee: Energetics, Inc.
    Inventor: Subramanian T. M. Iyer
  • Patent number: 6824702
    Abstract: The invention relates to an apparatus and a process for the preparation of salt melts, and mixtures thereof, by means of a stirred reactor and a tubular reactor, in which the starting materials are melted and brought to reaction, and the reaction products are subsequently passed through columns or towers for purification.
    Type: Grant
    Filed: September 20, 2001
    Date of Patent: November 30, 2004
    Assignee: BASF Aktiengesellschaft
    Inventors: Hans Leonhard Ohrem, Susanne Brzezinski
  • Patent number: 6818344
    Abstract: A thermal battery is housed in a chamber that utilizes micro-electromechanical systems (MEMS)-based technology to offer superior chemical stability and advantageous mechanical and thermal properties. The thermal battery of the present invention is activated by heat, for example heat generated by a pyrotechnic charge, for example thermite, for immediate and thorough activation of the electrolyte. The anode, cathode and electrolyte of the battery are formed of pellets having a curved interface for increased current density. The electrolyte preferably comprises a three-component eutectic salt mixture. In this manner, the thermal battery of the present invention is well suited for applications that require highly integrated thermal batteries that are relatively small in physical size, yet are capable of reliable performance over a wide range of operating conditions.
    Type: Grant
    Filed: April 12, 2002
    Date of Patent: November 16, 2004
    Assignee: Textron Systems
    Inventor: Sami Daoud
  • Patent number: 6815105
    Abstract: Highly efficient carbon fuels, exemplary embodiments of a high temperature, molten electrolyte electrochemical cell are capable of directly converting ash-free carbon fuel to electrical energy. Ash-free, turbostratic carbon particles perform at high efficiencies in certain direct carbon conversion cells.
    Type: Grant
    Filed: September 27, 2001
    Date of Patent: November 9, 2004
    Assignee: The Regents of the University of California
    Inventors: John F. Cooper, Roger Krueger, Nerine Cherepy