Nitrogen Containing Material Patents (Class 429/108)
  • Patent number: 9006457
    Abstract: The invention relates to reactive ionic liquids containing organic cations with groups or substituents which are susceptible to electrochemical reduction and anions obtained from fluoroalkyl phosphates, fluoroalkyl phosphinates, fluoroalkyl phosphonates, acetates, triflates, imides, methides, borates, phosphates and/or aluminates, for use in electrochemical cells, such as lithium ion batteries and double-layer capacitors.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: April 14, 2015
    Assignee: BASF SE
    Inventors: Michael Schmidt, Nikolai (Mykola) Ignatyev, William-Robert Pitner
  • Patent number: 8927130
    Abstract: An electrolyte for a redox flow battery and a redox flow battery including the electrolyte, the electrolyte including a metal-ligand coordination compound as a cation and an anion containing at least four atoms linked to each other by a straight chain in a certain direction.
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: January 6, 2015
    Assignees: Samsung Electronics Co., Ltd., Seoul National University R&DB Foundation
    Inventors: Jun-young Mun, Seung-sik Hwang, Doo-yeon Lee, Hyung-tae Kim, Young-gyu Kim, Oh-min Kwon, Tae-eun Yim
  • Patent number: 8852777
    Abstract: A method for preparing a redox flow battery electrolyte is provided. In some embodiments, the method includes the processing of raw materials containing sources of chromium ions and/or iron ions. The method further comprises the removal of impurities such as metal ions from those raw materials. In some embodiments, a reductant may be used to remove metal impurities from an aqueous electrolyte containing chromium ions and/or nickel ions. In some embodiments, the reductant is an amalgam. In some embodiments, the reductant is a zinc amalgam. Also provided is a method for removing ionic impurities from an aqueous acid solution. Further provided a redox flow battery comprising at least one electrolyte prepared from the above-identified methods.
    Type: Grant
    Filed: December 4, 2009
    Date of Patent: October 7, 2014
    Assignee: Deeya Energy, Inc.
    Inventors: Majid Keshavarz, Aravamuthan Varadarajan
  • Publication number: 20140239906
    Abstract: Flow batteries including one or more metals complexed by one or more redox-active ligands are disclosed herein. In a general embodiment, the flow battery includes an electrochemical cell having an anode portion, a cathode portion and a separator disposed between the anode portion and the cathode portion. Each of the anode portion and the cathode portion includes one or more metals complexed by one or more redox-active ligands. The flow battery further includes an anode electrode disposed in the anode portion and a cathode electrode disposed in the cathode portion.
    Type: Application
    Filed: February 25, 2014
    Publication date: August 28, 2014
    Applicant: Sandia Corporation
    Inventors: Travis Mark Anderson, Mitchell Anstey, Neil C. Tomson
  • Publication number: 20140170460
    Abstract: Provided is a redox flow battery including a positive electrode cell having a positive electrode and a catholyte solution; a negative electrode cell having a negative electrode and an anolyte solution; and an ion-exchange membrane disposed between the positive electrode cell and the negative electrode cell, wherein the catholyte solution and the anolyte solution each includes a non-aqueous solvent, a supporting electrolyte, and an electrolyte, and wherein the electrolyte includes a metal-ligand coordination compound, and at least one of the metal-ligand coordination compounds includes a ligand having an electron donating group.
    Type: Application
    Filed: November 12, 2013
    Publication date: June 19, 2014
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Joung-won PARK, Myung-jin LEE, Basab ROY, Duk-jin OH, Doo-yeon LEE
  • Patent number: 8658304
    Abstract: Li/air battery cells are configurable to achieve very high energy density. The cells include a protected a lithium metal or alloy anode and an aqueous catholyte in a cathode compartment. In addition to the aqueous catholyte, components of the cathode compartment include an air cathode (e.g., oxygen electrode) and a variety of other possible elements.
    Type: Grant
    Filed: October 29, 2012
    Date of Patent: February 25, 2014
    Assignee: PolyPlus Battery Company
    Inventors: Steven J. Visco, Lutgard C. De Jonghe, Yevgeniy S. Nimon, Alexei Petrov, Kirill Pridatko
  • Patent number: 8642202
    Abstract: An organic electrolyte solution for use in a redox flow battery and the redox flow battery including the organic electrolyte solution has a high energy density because re-precipitation is prevented in the organic electrolyte solution or eduction is prevented in an electrode during reduction of a metal ion used as an electrolyte.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: February 4, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hee-young Sun, Joung-won Park, Doo-yeon Lee, Seung-uk Son
  • Publication number: 20140030571
    Abstract: The present invention provides a secondary cell having a negative electrode compartment and a positive electrode compartment, which are separated by an alkali ion conductive electrolyte membrane. An alkali metal negative electrode disposed in the negative electrode compartment oxidizes to release alkali ions as the cell discharges and reduces the alkali ions to alkali metal during recharge. The positive electrode compartment includes a positive electrode contacting a positive electrode solution that includes an alkali metal compound and a metal halide. The alkali metal compound can be selected from an alkali halide and an alkali pseudo-halide. During discharge, the metal ion reduces to form metal plating on the positive electrode. As the cell charges, the metal plating oxidizes to strip the metal plating to form metal halide or pseudo halide or corresponding metal complex.
    Type: Application
    Filed: September 27, 2013
    Publication date: January 30, 2014
    Applicant: Ceramatec, Inc.
    Inventors: Sai Bhavaraju, Mathew Robins, Chett Boxley
  • Patent number: 8481192
    Abstract: A redox flow battery has a high energy density and an excellent charge and discharge efficiency because re-precipitation is prevented in an electrolyte solution or eduction is prevented in an electrode during reduction of a metal ion used as an electrolyte.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: July 9, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hee-young Sun, Joung-won Park, Seung-sik Hwang, Doo-yeon Lee, Myung-jin Lee
  • Publication number: 20130045400
    Abstract: Provided are a redox flow battery (RF battery) in which a positive electrode electrolyte and a negative electrode electrolyte are supplied to a battery cell including a positive electrode, a negative electrode, and a membrane, to charge and discharge the battery, and a method of operating the RF battery. The positive electrode electrolyte contains a manganese ion, or both of a manganese ion and a titanium ion. The negative electrode electrolyte contains at least one type of metal ion selected from a titanium ion, a vanadium ion, a chromium ion, a zinc ion, and a tin ion. The RF battery can have a high electromotive force and can suppress generation of a precipitation of MnO2 by containing a titanium ion in the positive electrode electrolyte, or by being operated such that the positive electrode electrolyte has an SOC of not more than 90%.
    Type: Application
    Filed: March 8, 2011
    Publication date: February 21, 2013
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Yongrong Dong, Toshio Shigematsu, Takahiro Kumamoto, Michiru Kubata
  • Publication number: 20130004819
    Abstract: An electrolyte for a redox flow battery and a redox flow battery including the electrolyte, the electrolyte including a metal-ligand coordination compound as a cation and an anion containing at least four atoms linked to each other by a straight chain in a certain direction.
    Type: Application
    Filed: February 16, 2012
    Publication date: January 3, 2013
    Applicants: Seoul National University R&DB Foundation, Samsung Electronics Co., Ltd.
    Inventors: Jun-young Mun, Seung-sik Hwang, Doo-yeon Lee, Hyung-tae Kim, Young-gyu Kim, Oh-min Kwon, Tae-eun Yim
  • Publication number: 20120244406
    Abstract: Iron-sulfide redox flow battery (RFB) systems can be advantageous for energy storage, particularly when the electrolytes have pH values greater than 6. Such systems can exhibit excellent energy conversion efficiency and stability and can utilize low-cost materials that are relatively safer and more environmentally friendly. One example of an iron-sulfide RFB is characterized by a positive electrolyte that comprises Fe(III) and/or Fe(II) in a positive electrolyte supporting solution, a negative electrolyte that comprises S2? and/or S in a negative electrolyte supporting solution, and a membrane, or a separator, that separates the positive electrolyte and electrode from the negative electrolyte and electrode.
    Type: Application
    Filed: March 25, 2011
    Publication date: September 27, 2012
    Applicant: Battelle Memorial Institute
    Inventors: Guanguang Xia, Zhenguo Yang, Liyu Li, Soowhan Kim, Jun Liu, Gordon L. Graff
  • Publication number: 20120171531
    Abstract: A metal-ligand coordination compound containing an aliphatic ligand useful as a catholyte and/or an anolyte that enables the provision of a redox flow battery having high energy efficiency and charge/discharge efficiency.
    Type: Application
    Filed: October 5, 2011
    Publication date: July 5, 2012
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Joung-won Park, Myung-jin Lee, Doo-yeon Lee, Seung-sik Hwang, Duk-jin Oh, Seung Uk Son
  • Publication number: 20120171541
    Abstract: A redox flow battery. A metal-ligand coordination compound including an aromatic ligand that contains an electron withdrawing group is used as the catholyte and/or the anolyte so that a redox flow battery having high energy density and excellent charge/discharge efficiency may be provided.
    Type: Application
    Filed: October 6, 2011
    Publication date: July 5, 2012
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Joung-won Park, Myung-jin Lee, Seung-sik Hwang, Doo-yeon Lee, Duk-jin Oh
  • Publication number: 20120171530
    Abstract: Provided are redox flow batteries employing supporting electrolyte of a ring- or spiro-type structure and having high energy efficiencies and energy densities.
    Type: Application
    Filed: July 18, 2011
    Publication date: July 5, 2012
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Myung-jin LEE, Duk-jin Oh, Seung-sik Hwang
  • Patent number: 8114538
    Abstract: An electrocatalyst for an electrochemical cell of the present invention includes a metal catalyst containing metal that has a metal oxidation potential of 0.5V or higher to 1.5V or lower, and is directly involved in an electrode reaction. Further, the electrocatalyst includes an aromatic heterocyclic compound having a six-membered cyclic structure containing a heteroatom, wherein the heteroatom has a metal coordination capacity that is not directly involved in the electrode reaction. The aromatic heterocyclic compound is heterogeneously adsorbed and coordinated on a surface of the metal catalyst while interposing the heteroatom therebetween.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: February 14, 2012
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Toshihiro Takekawa, Hiroshi Ogawa, Hidenobu Shiroishi
  • Patent number: 8080327
    Abstract: An electrical storage device utilizing a pyrazine-based cyanoazacarbon or pyrazine-based cyanoazacarbon polymer as a redox active material which can undergo both oxidation and reduction. The device has an ion selective barrier with a cathode side and an anode side; a cathode compartment which is functionally attached to the cathode side of the ion selective barrier and contains a mixture of pyrazine-based cyanoazacarbons, solvent, and positive ions of pyrazine-based cyanoazacarbons; an anode compartment which is functionally attached to the anode side of the ion selective barrier and contains a mixture of pyrazine-based cyanoazacarbons, solvent, and negative ions of pyrazine-based cyanoazacarbons; a cathode which is electrically connected to the cathode compartment; and an anode which is electrically connected to the anode compartment.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: December 20, 2011
    Assignee: Vinazene, Inc.
    Inventor: Paul George Rasmussen
  • Patent number: 8026339
    Abstract: A polysulfone is provided with a nitrogen-containing functional group having an affinity to an acid, an electrolyte membrane using the polysulfone, and a fuel cell including the electrolyte membrane. In particular, the polysulfone includes a nitrogen-containing functional group that has an affinity to an acid, such as a phosphoric acid, thereby having an excellent acid retaining ability. In an electrolyte membrane including the polysulfone and an acid, the amount of the retained acid can be controlled. Therefore, the electrolyte membrane has a high ionic conductivity and a high mechanical strength. A polysulfone blend of polysulfone and a thermoplastic resin prevents the dissolution of polysulfone by phosphoric acid, so that an electrolyte membrane using the polysulfone blend has an improved durability. A cross-linked reaction product of polysulfone, a cross-linking agent and a polymerization product of polysulfone, a thermoplastic resin, and a cross-linking agent strongly resist a phosphoric acid.
    Type: Grant
    Filed: June 1, 2007
    Date of Patent: September 27, 2011
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Chung-kun Cho, Myung-jin Lee, Myeong-soon Kang
  • Patent number: 6623301
    Abstract: A plug connector, especially for SMD plugs having plug-connector elements provided with shield plates which shield the electric contacts. The shield plates, in turn, in the coupled condition, bear against one another over substantially their entire area and are fixed with snap fastenings on the respective plug-connector elements. Soldering tabs extend beyond the plug-connector elements and are provided for electrically contacting the shield plates. Preferably SMD leads are formed on the shield plates.
    Type: Grant
    Filed: April 22, 2002
    Date of Patent: September 23, 2003
    Assignee: Erni Elektroapparate GmbH
    Inventor: Juergen Lappoehn
  • Patent number: 6492057
    Abstract: An alkaline electrochemical cell having a hydrogen absorbing alloy negative electrode. The electrochemical cell comprises an alkaline electrolyte comprising an additive material which reduces cell pressure by decreasing hydrogen gas evolution.
    Type: Grant
    Filed: April 14, 1999
    Date of Patent: December 10, 2002
    Assignee: Ovonic Battery Company, Inc.
    Inventors: Stanford R. Ovshinsky, Srinivasan Venkatesan, Boyko Alajov, Kevin Fok, Thomas J. Hopper, James L. Strebe
  • Publication number: 20020004164
    Abstract: The invention relates to a galvanosorptive reaction cell with closed substance circulation for the conversion of low temperature heat, preferably of waste heat into useful electrical work. The reaction cell and the accompanying isobaric substance circuit are presented. The galvanosorptive reaction process inside the cell is carried out polytropically with an electrostatic auxiliary voltage, which is superimposed onto the inherent voltage of the cell. In this way, not only free but, with cooling of the reaction system, also substance-bound reaction work can be extracted from the reaction system. The electrical energy yield and the power density of galvanosorptive reaction cell are thereby increased many times over.
    Type: Application
    Filed: October 31, 1997
    Publication date: January 10, 2002
    Inventor: PETER VINZ
  • Patent number: 6013192
    Abstract: The present invention relates to a dry composition of materials to be used n a battery system. The dry composition comprises a mixture consisting of sodium hydroxide and sodium oxide. In a first reservoir in the battery system, the mixture is present in an amount sufficient to form with water a heated sodium hydroxide electrolyte solution having a 15% by weight concentration of sodium hydroxide. In a second reservoir in the battery system, the mixture is present in an amount sufficient to form with water a heated sodium hydroxide electrolyte solution having to up to about 75% by weight concentration of sodium hydroxide. The present invention also relates to a battery system and a method for generating electrical power which utilize the aforementioned dry composition of materials.
    Type: Grant
    Filed: September 16, 1997
    Date of Patent: January 11, 2000
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Steven P. Tucker, Raymond W. Roberts, Eric G. Dow, James R. Moden
  • Patent number: 5496662
    Abstract: The present invention concerns an electrode for an electrochemical primary cell, the electrode comprising a first electron conducting compound and a second ion conducting compound which consists of a sulfur-containing polymer with a repeating unit which contains a polyether, and which can contain an ionizable salt, characterized in that the backbone of said polymer contains bonds which render it capable of reversible oxidation and reduction. Preferably, said repeating unit is a polyether of the following type, containing two sulfur-containing ternary amine terminal groups: ##STR1## where R is a polyether selected from polyethylene oxide, polypropylene oxide, and their statistical, alternating, block and graft polyether copolymers.
    Type: Grant
    Filed: October 20, 1994
    Date of Patent: March 5, 1996
    Assignee: Alcatel Alsthom Compagnie Generale D'Electricite
    Inventors: Xavier Andrieu, Be/ atrice Rambla
  • Patent number: 5317105
    Abstract: An EMI/RFI gasket provides a barrier to EMI and RFI radiation transmission to and from electronic circuits within an electronic system chassis having receptacles that receive electrical connectors and an electrically grounded cover plate that connects the chassis to an electrical ground. The EMI/RFI gasket helps to provide a 360.degree. EMI/RFI barrier for the electronic system chassis. The EMI/RFI gasket is a flexible, electrically-conductive material with sufficient surface area to adhere and electrically connect to the cover plate. The EMI/RFI gasket has a receiving slot that is symmetrical about a longitudinal axis and a latitudinal axis of the gasket plate. A plurality of deflected teeth formed from the gasket plate are positioned around the receiving slot and deflected from the gasket plate to contact the connector at points separated by not greater than a predetermined distance. The predetermined distance is at least in part a function of the expected EMI and RFI radiation wavelengths.
    Type: Grant
    Filed: December 18, 1992
    Date of Patent: May 31, 1994
    Assignee: Alcatel Network Systems, Inc.
    Inventor: William F. Weber
  • Patent number: 4481266
    Abstract: An improved porous cathode structure for use in a battery having a reactive metal electrode and flowed electrolyte. The cathode is preferably formed of an electrically conducting porous material with categorically active surface at an interface with the electrolyte. Alternatively, the cathode may be of an electrochemically reducible porous material and defines an active surface.Structure is provided for delivering electrochemically reducible cathode reactant material continuously through the cathode to the cathode active surface during operation of the battery. The reactant material is delivered in an amount required to be reduced at the active surface to maintain high energy discharge rate with minimum amount of reactant material being utilized. The reactant material, in the illustrated embodiment, is provided from a storage supply and delivered to the porous cathode as needed during operation of the battery.
    Type: Grant
    Filed: March 25, 1983
    Date of Patent: November 6, 1984
    Inventors: Ernest L. Littauer, William R. Momyer
  • Patent number: 4439503
    Abstract: An organic cathode depolarizer for a non-aqueous electrochemical cell system having an active metal anode, a cathode and a non-aqueous electrolyte is disclosed which is represented by the formula ##STR1## where R is a group selected from those consisting of alkyl, alkoxy, phenyl or phenoxy groups and where X.sub.1 and X.sub.2 are halogens.
    Type: Grant
    Filed: June 21, 1983
    Date of Patent: March 27, 1984
    Assignee: Honeywell Inc.
    Inventor: Narayan Doddapaneni
  • Patent number: 4410606
    Abstract: A thermally regenerative electrochemical system including an electrochemical cell with two water-based electrolytes separated by an ion exchange membrane, at least one of the electrolytes containing a complexing agent and a salt of a multivalent metal whose respective order of potentials for a pair of its redox couples is reversible by a change in the amount of the complexing agent in the electrolyte, the complexing agent being removable by distillation to cause the reversal.
    Type: Grant
    Filed: April 21, 1982
    Date of Patent: October 18, 1983
    Inventors: Raouf O. Loutfy, Alan P. Brown, Neng-Ping Yao
  • Patent number: H1544
    Abstract: The addition of cathode materials comprising Cu.sup.++, Fe.sup.+++, Cr.sup.+++ or Au.sup.+++, in the form of salts such as the nitrate or halide, e.g. Fe(NO.sub.3).sub.3 or CuCl.sub.2, to low melting nitrate electrolyte cells increases cell potential. Other ions such as Co.sup.++, Eu.sup.+++, La.sup.+++, Ni.sup.++, Mn.sup.++, Ce.sup.+++, Pr.sup.+++, Nd.sup.+++, Gd.sup.+++, Sm.sup.+++ and Tb.sup.+++, in the form of salts thereof, can also be used, but yield smaller cell potentials. Such cathodic materials in the form of a suitable salt, such as a nitrate or halide, e.g. Fe(NO.sub.3).sub.3 or CuCl.sub.2, are added to low melting fused nitrate electrolytes, e.g. a LiNO.sub.3, KNO.sub.3 mixture, in a concentration sufficient to increase cell potential, using Li or Ca anodes. A suitable metal current collector such as a Ni screen can be used as a cathode. The above cathodic materials can be used in conjunction with other cathodic materials such as AgNO.sub.3, which undergoes reduction to the free metal.
    Type: Grant
    Filed: August 6, 1990
    Date of Patent: June 4, 1996
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: Melvin H. Miles