Responsive To Light Patents (Class 429/111)
  • Patent number: 10649560
    Abstract: A touch display panel having a display region, a peripheral region surrounding the display region, and a sensing region located between the display region and the peripheral region is provided. The touch display panel includes a pixel array, a touch electrode, an active device, at least one first sensor, at least one second sensor, and a light-shielding layer. The pixel array is located in the display region. The touch electrode located in the sensing region and the pixel array are separated from each other. The active device coupled to the touch electrode is located in the sensing region. The at least one first sensor and the at least one second sensor are located in the sensing region and separated from each other. The light-shielding layer covers the at least one first sensor.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: May 12, 2020
    Assignee: Au Optronics Corporation
    Inventors: Che-Chia Chang, Ming-Hung Chuang
  • Patent number: 10580588
    Abstract: The present invention features a solar-to-electric energy conversion device based on a light absorbing electrode coupled to a one-dimensional nanoparticle based photonic crystal. The function of the latter is to localize the incident light within the electrode thus enhancing the optical absorption and the power conversion efficiency of the so called dye-sensitized and organic (polymer based or hybrids) cell. The photonic crystal comprises alternating layers possessing different index of refraction and can be easily integrated into the cell.
    Type: Grant
    Filed: February 3, 2016
    Date of Patent: March 3, 2020
    Assignee: EXEGER OPERATIONS AB
    Inventors: Hernan Miguez, Silvia Colodrero
  • Patent number: 10396386
    Abstract: Systems and methods are presented for generating and storing electric power in which a microbial solar cell is provided in a sealed container with photosynthetic organisms that generate reactants of the microbial fuel cell and the products of the microbial fuel cell from sunlight received through the container.
    Type: Grant
    Filed: November 10, 2016
    Date of Patent: August 27, 2019
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventor: Leonard M. Tender
  • Patent number: 10388897
    Abstract: The invention provides an optoelectronic device comprising: (i) a porous dielectric scaffold material; and (ii) a semiconductor having a band gap of less than or equal to 3.0 eV, in contact with the scaffold material. Typically the semiconductor, which may be a perovskite, is disposed on the surface of the porous dielectric scaffold material, so that it is supported on the surfaces of pores within the scaffold. In one embodiment, the optoelectronic device is an optoelectronic device which comprises a photoactive layer, wherein the photoactive layer comprises: (a) said porous dielectric scaffold material; (b) said semiconductor; and (c) a charge transporting material. The invention further provides the use, as a photoactive material in an optoelectronic device, of: (i) a porous dielectric scaffold material; and (ii) a semiconductor having a band gap of less than or equal to 3.0 eV, in contact with the scaffold material.
    Type: Grant
    Filed: May 20, 2013
    Date of Patent: August 20, 2019
    Assignee: OXFORD UNIVERSITY INNOVATION LIMITED
    Inventors: Henry Snaith, Michael Lee
  • Patent number: 10050319
    Abstract: A photoelectrochemical secondary cell comprising a photocatalytic anode, or photoanode; an anode; a cathode comprising a metal hydride; electrolyte; separator; and case at least a portion of which is transparent to the electromagnetic radiation required by said photoanode to charge said photoelectrochemical secondary cell.
    Type: Grant
    Filed: May 26, 2015
    Date of Patent: August 14, 2018
    Inventor: John M. Guerra
  • Patent number: 10026560
    Abstract: The solar fuels generator includes an ionically conductive separator between a gaseous first phase and a second phase. A photoanode uses one or more components of the first phase to generate cations during operation of the solar fuels generator. A cation conduit is positioned provides a pathway along which the cations travel from the photoanode to the separator. The separator conducts the cations. A second solid cation conduit conducts the cations from the separator to a photocathode.
    Type: Grant
    Filed: July 22, 2013
    Date of Patent: July 17, 2018
    Assignee: THE CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Nathan S. Lewis, Joshua M. Sprugeon, William C. West, Chengxiang Xiang
  • Patent number: 9825321
    Abstract: A hybrid photoelectrochemical and microbial fuel cell device is provided that includes a single-chamber photoelectrochemical device having an n-type TiO2 photoanode and a Pt counter electrode in an aqueous electrolyte solution, and a dual-chamber microbial fuel cell having an anode chamber and a cathode chamber separated by a cation exchange membrane, where the anode chamber includes a carbon anode and microorganisms and the cathode chamber includes Pt-loaded carbon cathode, the carbon anode is electrically connected to the Pt counter electrode, the carbon cathode is electrically connected to the TiO2 photoanode, a light source creates photoexcited electron-hole pairs at the photoanode, the holes oxidize water into oxygen, where dissolved oxygen in the cathode chamber is reduced, the microorganisms oxidize and produce bioelectrons, where the bioelectrons are transferred to the Pt electrode and reduce protons to form hydrogen gas.
    Type: Grant
    Filed: June 12, 2014
    Date of Patent: November 21, 2017
    Assignee: The Regents of the University of California
    Inventors: Yat Li, Hanyu Wang, Gongming Wang
  • Patent number: 9799841
    Abstract: According to one embodiment, a photoelectric conversion element includes a first electrode, a second electrode, a photoelectric conversion layer, and a first layer. The second electrode includes a base member and a first material portion. The base member includes a plurality of structure bodies including carbon. The first material portion includes a carrier transport material and is provided between the structure bodies. The photoelectric conversion layer is provided between the first electrode and the second electrode. The photoelectric conversion layer includes a material having a perovskite structure. The first layer is provided between the photoelectric conversion layer and the second electrode. The first layer includes the carrier transport material.
    Type: Grant
    Filed: March 9, 2016
    Date of Patent: October 24, 2017
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takeshi Gotanda, Yoshihiko Nakano, Katsuyuki Naito
  • Patent number: 9774059
    Abstract: A lithium-ion battery cell includes at least two working electrodes, each including an active material, an inert material, an electrolyte and a current collector, a first separator region arranged between the at least two working electrodes to separate the at least two working electrodes so that none of the working electrodes are electronically connected within the cell, an auxiliary electrode including a lithium reservoir, and a second separator region arranged between the auxiliary electrode and the at least two working electrodes to separate the auxiliary electrode from the working electrodes so that none of the working electrodes is electronically connected to the auxiliary electrode within the cell.
    Type: Grant
    Filed: September 16, 2014
    Date of Patent: September 26, 2017
    Assignee: ROBERT BOSCH GMBH
    Inventors: John F. Christensen, Jasim Ahmed, Sungbae Park, Aleksander Kojic
  • Patent number: 9735306
    Abstract: A photoelectrode, photovoltaic device and photoelectrochemical cell and methods of making are disclosed. The photoelectrode includes an electrode at least partially formed of FeO combined with at least one of lithium, hydrogen, sodium, magnesium, manganese, zinc, and nickel. The electrode may be doped with at least one of lithium, hydrogen, and sodium. The electrode may be alloyed with at least one of magnesium, manganese, zinc, and nickel.
    Type: Grant
    Filed: May 21, 2013
    Date of Patent: August 15, 2017
    Assignees: THE TRUSTEES OF PRINCETON UNIVERSITY, TECHNION RESEARCH & DEVELOPMENT FOUNDATION, LTD
    Inventors: Emily Ann Carter, Maytal Caspary Toroker
  • Patent number: 9670299
    Abstract: A method for preparing a functionalized polymer, the method comprising the steps of: (i) polymerizing monomer with a coordination catalyst to form a reactive polymer; and (ii) reacting the reactive polymer with a nitroso compound.
    Type: Grant
    Filed: August 6, 2015
    Date of Patent: June 6, 2017
    Assignee: Bridgestone Corporation
    Inventor: Steven Luo
  • Patent number: 9564274
    Abstract: A photoelectric conversion element, having: an electrically-conductive support; a photoconductor layer having a semiconductor fine-particle layer adsorbed a dye; a charge transfer layer containing an electrolyte; and a counter electrode; which are provided on one side of the support in this order, in which the dye has at least one terdentate ligand having at least one acidic group; at least one ligand coordinating to a metal atom M has an sp2 carbon atom; a cyclic group binds to the sp2 carbon atom; a specific substituent R is substituted at an atom of ?- or ?-position to the atom of the cyclic group directly binding to the sp2 carbon atom; and with the metal atom M, an atom G1 of the ?- or ?-position, and an atom G2 of the substituent R, an angle ? (?MG1G2) is 150° or less.
    Type: Grant
    Filed: June 11, 2014
    Date of Patent: February 7, 2017
    Assignee: FUJIFILM Corporation
    Inventors: Yukio Tani, Katsumi Kobayashi, Kimiatsu Nomura
  • Patent number: 9520441
    Abstract: A method for fabricating a back-illuminated imager which has a pinned back surface is disclosed. A first insulator layer is formed overlying a mechanical substrate. A conductive layer is deposited overlying the first insulator layer. A second insulator layer is formed overlying the conductive layer to form a first structure, an interface being formed between the conductive layer and the second insulator layer, the conductive layer causing band bending proximal to the interface such that the interface is electrically pinned. Hydrogen is implanted in a separate device wafer to form a bubble layer. A final insulator layer is formed overlying the device wafer to form a second structure. The first structure and the second structure are bonded to form a combined wafer. A portion of the combined wafer is removed underlying the bubble layer to expose a seed layer comprising the semiconductor material substantially overlying the second insulator layer.
    Type: Grant
    Filed: May 15, 2009
    Date of Patent: December 13, 2016
    Assignee: SRI INTERNATIONAL
    Inventors: Pradyumna Kumar Swain, David Jay Cheskis, Mahalingam Bhaskaran
  • Patent number: 9509029
    Abstract: A mediator-type photocell system is provided. The mediator-type photocell system includes a galvanic cell having a galvanic cell anode and a galvanic cell cathode; and a light capturing portion, including a light capturing cathode corresponding to the galvanic cell anode; and a light capturing anode electrically connected to the light capturing cathode via a conductive element, and corresponding to the galvanic cell cathode, wherein the galvanic cell cathode and the light capturing anode have a first mediator therebetween, the galvanic cell anode and the light capturing cathode have a second mediator therebetween, an oxide is generated to be provided to the galvanic cell cathode when the first mediator is illuminated, and a reducing substance is generated to be provided to the galvanic cell anode when the second mediator is illuminated.
    Type: Grant
    Filed: October 15, 2013
    Date of Patent: November 29, 2016
    Assignee: NATIONAL TAIWAN UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: Bing-Joe Hwang, Wei-Nien Su, Chun-Jern Pan, Hung Ming Chen, Chia Feng Lee, Delele Worku, Wen-Ching Huang
  • Patent number: 9509013
    Abstract: According to one embodiment, there is provided a non-aqueous electrolyte secondary battery including a positive electrode including a positive electrode active material layer, a negative electrode including a negative electrode active material layer, and a non-aqueous electrolyte. At least one of the positive electrode active material layer and the negative electrode active material layer contains carbon dioxide and releases the carbon dioxide in the range of 0.1 ml to 10 ml per 1 g when heated at 350° C. for 1 minute.
    Type: Grant
    Filed: June 29, 2015
    Date of Patent: November 29, 2016
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Shinsuke Matsuno, Hiromichi Kuriyama, Hideki Satake, Takashi Kuboki
  • Patent number: 9469906
    Abstract: The invention provides a method for effecting a photocatalytic or photoelectrocatalytic reaction of a reactant comprising contacting a metallic material having an electrical conductivity of 105 to 106 S/m with the reactant and exposing the metallic material and the reactant to visible light so as to catalyze the reaction of the reactant.
    Type: Grant
    Filed: April 25, 2014
    Date of Patent: October 18, 2016
    Assignee: UNIVERSITY COURT OF THE UNIVERSITY OF ST ANDREWS
    Inventors: John Thomas Sirr Irvine, Xiaoxiang Xu, Chamnan Randorn
  • Patent number: 9359776
    Abstract: Walkable photovoltaic floor, constituted of pieces of laminated glass composed of at least two layers of glass (1 and 2), joined together by an encapsulant (6), by an intermediate layer of photovoltaic material (3), and by a peripheral sealed frame (4).
    Type: Grant
    Filed: April 25, 2013
    Date of Patent: June 7, 2016
    Assignee: ONYX SOLAR ENERGY S.L.
    Inventors: Alvaro Felix Beltran Albarran, Teodosio Del Cano Gonzalez, Daniel Valencia Caballero, Jose Maria Jimenez Lopez, Leonardo Casado Delgado
  • Patent number: 9347141
    Abstract: This disclosure provides systems, methods, and apparatus related to a nanowire mesh solar fuels generator. In one aspect, a nanowire mesh solar fuels generator includes (1) a photoanode configured to perform water oxidation and (2) a photocathode configured to perform water reduction. The photocathode is in electrical contact with the photoanode. The photoanode may include a high surface area network of photoanode nanowires. The photocathode may include a high surface area network of photocathode nanowires. In some embodiments, the nanowire mesh solar fuels generator may include an ion conductive polymer infiltrating the photoanode and the photocathode in the region where the photocathode is in electrical contact with the photoanode.
    Type: Grant
    Filed: October 23, 2012
    Date of Patent: May 24, 2016
    Assignee: The Regents of the University of California
    Inventors: Peidong Yang, Candace Chan, Jianwei Sun, Bin Liu
  • Patent number: 9331217
    Abstract: Various systems and methods are provided for Schottky junction solar cells. In one embodiment, a solar cell includes a mesh layer formed on a semiconductor layer and an ionic layer formed on the mesh layer. The ionic layer seeps through the mesh layer and directly contacts the semiconductor layer. In another embodiment, a solar cell includes a first mesh layer formed on a semiconductor layer, a first metallization layer coupled to the first mesh layer, a second high surface area electrically conducting electrode coupled to the first metallization layer by a gate voltage, and an ionic layer in electrical communication with the first mesh layer and the second high surface area electrically conducting electrode. In another embodiment, a solar cell includes a grid layer formed on a semiconductor layer and an ionic layer in electrical communication with the grid layer and the semiconductor layer.
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: May 3, 2016
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Andrew Gabriel Rinzler, Pooja Wadhwa, Jing Guo, Gyungseon Seol
  • Patent number: 9208956
    Abstract: A light transmitting substrate having at least a light receiving surface, a first electrode located on the light transmitting substrate, a collector electrode located on at least a part of the first electrode and formed from a metal thin film, a photoelectric conversion portion located on an upper surface of the first electrode or the collector electrode, carrying a photosensitizer, and immersed in a carrier transport material, an insulating frame portion surrounding sides of the photoelectric conversion portion, and a second electrode located to be opposed to the first electrode above the photoelectric conversion portion are provided. Relation of Isc×Rh<0.05×Voc is satisfied, where Isc represents a short-circuit current value of a dye-sensitized solar cell, Rh represents a total value of electrical resistance values of the collector electrode, the first electrode, and the second electrode, and Voc represents an open circuit voltage value of the dye-sensitized solar cell.
    Type: Grant
    Filed: April 6, 2012
    Date of Patent: December 8, 2015
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Atsushi Fukui, Ryoichi Komiya, Ryosuke Yamanaka
  • Patent number: 9205369
    Abstract: An object of the present invention is to provide a carbon dioxide adsorption and release device, which has high adsorptivity, and also consumes low energy upon adsorption and desorption.
    Type: Grant
    Filed: April 16, 2012
    Date of Patent: December 8, 2015
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Michio Suzuka, Takeyuki Yamaki, Takashi Sekiguchi, Ryo Kamai
  • Patent number: 9142358
    Abstract: Provided is a power storage device having a high discharge capacitance and a light-transmitting property. The power storage device includes a first current collector having a net-like planar shape; a first active material layer over the first current collector; a solid electrolyte layer over the first active material layer; a second active material layer over the solid electrolyte layer; and a second current collector over the second active material layer.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: September 22, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Kazutaka Kuriki
  • Patent number: 9068941
    Abstract: This disclosure relates to a dye solution monitoring device and a dye solution controlling device for a dye-sensitized solar cell, more particularly, to a dye solution monitoring device for a dye-sensitized solar cell comprising a light-absorption device for measuring absorbance of a dye solution for a dye-sensitized solar cell, and a pH measuring device for measuring pH of a dye solution for a dye-sensitized solar cell; and, a dye solution controlling device for a dye-sensitized solar cell further comprising a dye supply device supplying dye of high concentration, and an acid or base supply device for pH control, in addition to the monitoring device. According to the present invention, a dye adsorption process may be optimized in real time to manufacture a solar cell of high quality with high productivity, maximize utilization of expensive dye, and minimize the waste, thereby reducing production cost.
    Type: Grant
    Filed: March 8, 2010
    Date of Patent: June 30, 2015
    Assignee: DONGJIN SEMICHEM CO., LTD
    Inventors: Chong-chan Lee, Yoon-Gil Yim
  • Patent number: 9056275
    Abstract: Carbon dioxide capture and release includes contacting a gas comprising carbon dioxide with a mixture comprising a precursor and a solvent and reducing the precursor to form a capture agent. The capture agent is reacted with the carbon dioxide to form a non-volatile species containing carbon dioxide. The non-volatile species is oxidized to regenerate the precursor and to release carbon dioxide. The mixture may be formed by combining the precursor and the solvent.
    Type: Grant
    Filed: August 17, 2012
    Date of Patent: June 16, 2015
    Assignee: ARIZONA BOARD OF REGENTS, A BODY CORPORATE OF THE STATE OF ARIZONA ACTING FOR AN ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventor: Daniel A. Buttry
  • Patent number: 8969593
    Abstract: Organic dyes and photoelectric conversion devices are provided. The Organic dye has the structure represented by formula (I), wherein, n is an integral of 2-11; the plurality of X is independent and elected from the group consisting of and combinations thereof; R, R1, and R2 comprise hydrogen, halogen, C1-18 alkyl group, C1-18 alkoxy group, C3-18 heteroalkyl group, C3-20 aryl group, C3-20 heteroaryl group, C3-20 cycloaliphatic group or C3-20 cycloalkyl group, or R1 is connected to R2 to form a ring having 5-14 members; R3 comprise hydrogen, halogen, nitro group, amino group, C1-18 alkyl group, C1-18 alkoxy group, C1-18 sulfanyl group, C3-18 heteroalkyl group, C3-20 aryl group, C3-20 heteroaryl group, C3-20 cycloaliphatic group or C3-20 cycloalkyl group; and Z is hydrogen, alkali metal, or quaternary ammonium salt.
    Type: Grant
    Filed: December 31, 2009
    Date of Patent: March 3, 2015
    Assignee: Industrial Technology Research Institute
    Inventors: Yung-Liang Tung, Jia-Yin Wu, Jen-An Chen, Hsin-Yi Hsu, Chun-Guey Wu, Min-Fong Jhong, Song-Yeu Tsai
  • Publication number: 20150044524
    Abstract: A solar power generation method involves generating power by irradiating ionized hydrogen water, in which ortho hydrogen molecules or hydrogenated hydrogen with ion binding properties has been dissolved, with light that includes at least waves with a wavelength of 193 nm, and then generating a potential difference between the ionized hydrogen water and water containing cations.
    Type: Application
    Filed: March 28, 2013
    Publication date: February 12, 2015
    Inventor: Taneaki Oikawa
  • Publication number: 20140170461
    Abstract: A mediator-type photocell system is provided. The mediator-type photocell system includes a galvanic cell having a galvanic cell anode and a galvanic cell cathode; and a light capturing portion, including a light capturing cathode corresponding to the galvanic cell anode; and a light capturing anode electrically connected to the light capturing cathode via a conductive element, and corresponding to the galvanic cell cathode, wherein the galvanic cell cathode and the light capturing anode have a first mediator therebetween, the galvanic cell anode and the light capturing cathode have a second mediator therebetween, an oxide is generated to be provided to the galvanic cell cathode when the first mediator is illuminated, and a reducing substance is generated to be provided to the galvanic cell anode when the second mediator is illuminated.
    Type: Application
    Filed: October 15, 2013
    Publication date: June 19, 2014
    Inventors: Bing-Joe Hwang, Wei-Nien Su
  • Patent number: 8609974
    Abstract: A system and method is presented that uses solar power driven expansion of an electrolytic solution to force the electrolytic solution from a container through at least one pore of an insulator having a fixed surface charge of one polarity into a collection receptacle. The velocities of the cations and anions flowing through the pore differ because of the fixed surface charge of the pore and this produces an electrical charge separation, the streaming potential, as a source of electrical power. Energy absorption spans the full solar spectrum including infrared, visible and near ultraviolet wavelengths.
    Type: Grant
    Filed: August 22, 2008
    Date of Patent: December 17, 2013
    Inventor: Michael E. Starzak
  • Patent number: 8586861
    Abstract: A photovoltaic cell including: (a) a housing including an at least partially transparent cell wall having an interior surface; (b) an electrolyte, disposed within the cell wall, and containing an iodide based species; (c) a transparent electrically conductive coating disposed on the interior surface; (d) an anode disposed on the conductive coating, the anode including: (i) a porous film containing titania, the porous film adapted to make intimate contact with the iodide based species, and (ii) a dye, absorbed on a surface of the porous film, the dye and the porous film adapted to convert photons to electrons; (e) a cathode disposed on an interior surface of the housing, and disposed substantially opposite the anode; (f) electrically-conductive metallic wires, disposed at least partially within the cell, the wires electrically contacting the anode and the electrically conductive coating, and (g) a second electrically conductive coating including an inorganic binder and an inorganic electrically conductive fill
    Type: Grant
    Filed: June 14, 2010
    Date of Patent: November 19, 2013
    Assignee: 3GSolar Photovoltaics Ltd.
    Inventor: Jonathan Goldstein
  • Patent number: 8486551
    Abstract: The present invention provides a fuel cell unit, fuel cell unit array, fuel cell module and fuel cell system that can achieve a reduction in size and costs.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: July 16, 2013
    Assignee: Micro Silitron Inc.
    Inventors: Kenneth Ejike Okoye, Emenike Chinedozi Ejiogu, Sachio Matsui
  • Patent number: 8414758
    Abstract: A device for reducing carbon dioxide includes a cathode chamber including a cathode electrolyte solution and a cathode electrode, an anode chamber including an anode electrolyte solution and an anode electrode, and a solid electrolyte membrane. The anode electrode includes a nitride semiconductor region on which a metal layer is formed. The metal layer includes at least one of nickel and titanium. A method for reducing carbon dioxide by using a device for reducing carbon dioxide includes steps of providing carbon dioxide into the cathode solution, and irradiating at least part of the nitride semiconductor region and the metal layer with a light having a wavelength of 250 nanometers to 400 nanometers, thereby reducing the carbon dioxide contained in the cathode electrolyte solution.
    Type: Grant
    Filed: April 23, 2012
    Date of Patent: April 9, 2013
    Assignee: Panasonic Corporation
    Inventors: Masahiro Deguchi, Satoshi Yotsuhashi, Yuka Yamada
  • Patent number: 8354584
    Abstract: An object of the present invention is to provide an enlarged dye sensitized solar cell which has a short-circuit preventing structure while a distance between a transparent conductive oxide and a counter electrode, that is, a cell gap is shortened. The dye sensitized solar cell includes a transparent conductive oxide which includes a transparent substrate and a conductive metal oxide having a light transmission property; a metal grid which is formed on the transparent conductive oxide; a protective film with which the metal grid is coated; a dye-adsorbed semiconductor thin film which is formed on the transparent conductive oxide in which the metal grid is not formed; and a counter electrode substrate, wherein a short-circuit preventing layer is provided in the counter electrode substrate facing the metal grid, and a width formed by a short side of the short-circuit preventing layer is larger than a width formed by the metal grid and protective layer.
    Type: Grant
    Filed: June 25, 2008
    Date of Patent: January 15, 2013
    Assignee: Hitachi, Ltd.
    Inventors: Naoki Yoshimoto, Hiroto Naito
  • Publication number: 20130008495
    Abstract: In exemplary implementations of this invention, a photoelectrode includes a semiconductor for photocarrier generation, and a catalyst layer for altering the reaction rate in an adjacent electrolyte. The catalyst layer covers part of the semiconductor. The thickness of the catalyst layer is less than 60% of its minority carrier diffusion distance. If the photoelectrode is a photoanode, it has an OEP that is more than the potential of the valance band edge but less than the potential of the Fermi level of the semiconductor. If it is a photocathode, it has an RHE potential that is less than the potential of the conduction band edge but more than the potential of the Fermi level of the semiconductor. The absolute value of difference (OEP minus potential of valence band edge, or RHE potential minus potential of conduction band edge) is greater than zero and less than or equal to 0.2V.
    Type: Application
    Filed: July 9, 2012
    Publication date: January 10, 2013
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Kimin Jun, Joseph Jacobson
  • Patent number: 8299270
    Abstract: A gel-like or solid electrolyte containing (i) an electrolyte solution containing an electrolyte dissolved in an organic solvent, (ii) a lamellar clay mineral and/or an organically modified lamellar clay mineral and (iii) a polyvalent onium salt compound and a photoelectric transducer element and a dye-sensitized solar cell using the same.
    Type: Grant
    Filed: August 14, 2007
    Date of Patent: October 30, 2012
    Assignee: The Yokohama Rubber Co., Ltd.
    Inventor: Tsukasa Maruyama
  • Patent number: 8268270
    Abstract: A coating solution for forming a light-absorbing layer of a chalcopyrite solar cell, including a hydrazine-coordinated Cu chalcogenide complex, a hydrazine-coordinated In chalcogenide complex and hydrazine-coordinated Ga chalcogenide complex dissolved in dimethylsulfoxide, the hydrazine-coordinated Cu chalcogenide complex being obtained by dissolving Cu or Cu2Se and a chalcogen in dimethylsulfoxide having hydrazine added, and adding a poor solvent to the resulting solution.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: September 18, 2012
    Assignee: Tokyo Ohka Kogyo Co., Ltd.
    Inventors: Masaru Kuwahara, Koichi Misumi, Hidenori Miyamoto
  • Patent number: 8263428
    Abstract: This disclosure provides polymer electrolytes for dye-sensitized solar cells that can not only prevent electrolytes from leaking, but also exhibit a higher solar conversion efficiency when compared with conventional polymer electrolytes, whereby the polymer electrolytes are applicable to a process for manufacturing dye-sensitized solar cells with a large surface area or flexible dye-sensitized solar cells, and methods for manufacturing modules of dye-sensitized solar cells using the same.
    Type: Grant
    Filed: March 22, 2010
    Date of Patent: September 11, 2012
    Assignee: Toray Advanced Materials Korea Inc.
    Inventors: Chang-Hoon Sim, Sang-Pil Kim, Ki-Jeong Moon
  • Patent number: 8247687
    Abstract: Provided are a newly developed dye-sensitizing type photoelectric conversion element employing a highly durable sensitizing dye, exhibiting high photoelectric conversion efficiency, and a solar cell fitted with the photoelectric conversion element. Also disclosed is a photoelectric conversion element comprising a compound represented by Formula (1) between a pair of facing electrodes.
    Type: Grant
    Filed: April 2, 2009
    Date of Patent: August 21, 2012
    Assignee: Konica Minolta Business Technologies, Inc.
    Inventors: Hideya Miwa, Akihiko Itami, Kazuya Isobe, Kazukuni Nishimura, Hidekazu Kawasaki, Mayuko Ushiro
  • Patent number: 8242355
    Abstract: A photoelectric conversion element having a pair of electrodes, and a semiconductor layer comprising a semiconductor carrying a dye and an electrolyte layer is disclosed.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: August 14, 2012
    Assignee: Konica Minolta Business Technologies, Inc.
    Inventors: Kazukuni Nishimura, Akihiko Itami, Fumitaka Mochizuki, Hideya Miwa, Hidekazu Kawasaki
  • Patent number: 8232471
    Abstract: A squarylium dye represented by formula (1): wherein A1 and B1 each independently represents a ring structure, and R1 and R2 each independently represents a substituent having a carbon number of 1 to 12.
    Type: Grant
    Filed: June 2, 2008
    Date of Patent: July 31, 2012
    Assignee: FUJIFILM Corporation
    Inventors: Kimiatsu Nomura, Tetsu Kitamura, Tetsuro Mitsui
  • Patent number: 8227127
    Abstract: A carbon dioxide negative method of manufacturing renewable hydrogen and trapping carbon dioxide from the air or gas streams is described. Direct current renewable electricity is provided to a water electrolysis apparatus with sufficient voltage to generate hydrogen and hydroxide ions at the cathode, and protons and oxygen at the anode. These products are separated and sequestered and the base is used to trap carbon dioxide from the air or gas streams as bicarbonate or carbonate salts. These carbonate salts, hydrogen, and trapped carbon dioxide in turn can be combined in a variety of chemical and electrochemical processes to create valuable carbon-based materials made from atmospheric carbon dioxide. The net effect of all processes is the generation of renewable hydrogen from water and a reduction of carbon dioxide in the atmosphere or in gas destined to enter the atmosphere.
    Type: Grant
    Filed: April 3, 2008
    Date of Patent: July 24, 2012
    Assignee: New Sky Energy, Inc.
    Inventors: C. Deane Little, Timothy C. Heffernan, Joseph V. Kosmoski, C. Gordon Little
  • Patent number: 8158879
    Abstract: An electrochemical cell and a method of manufacturing the same are provided. The electrochemical cell comprising: a first conductive layer; a metal oxide layer formed on the first conductive layer, the metal oxide layer comprising a plurality of adjacent metal oxide cells, spaced from one another; a functional dye layer formed on the metal oxide layer; a second conductive layer; and an electrolyte between the functional dye layer and the second conductive layer, wherein at least one of the first and second conductive layers is transparent, and wherein the metal oxide layer is formed from a metal oxide particle dispersion liquid.
    Type: Grant
    Filed: November 14, 2006
    Date of Patent: April 17, 2012
    Assignee: Seiko Epson Corporation
    Inventors: Barry McGregor, Masaya Ishida
  • Patent number: 8022294
    Abstract: The present invention relates to a photoelectric conversion device sensitized by supporting a methine based dye represented by the following formula (1): (in the above formula, n represents an integer of 0 to 7; X and Y each represent a hydrogen atom, an optionally substituted aromatic residue, an optionally substituted aliphatic hydrocarbon residue and the like. In addition, X and Y may combine together to form an optionally substituted ring. A1, A2 and A3 represent each independently an optionally substituted aromatic residue, an optionally substituted aliphatic hydrocarbon residue and the like. In addition, when n is other than 0, a plural number of A1 and/or A2 and/or A3 may form an optionally substituted ring.
    Type: Grant
    Filed: June 13, 2006
    Date of Patent: September 20, 2011
    Assignee: Nippon Kayaku Kabushiki Kaisha
    Inventors: Koichiro Shigaki, Masayoshi Kaneko, Akira Maenosono, Takayuki Hoshi, Teruhisa Inoue
  • Patent number: 8022293
    Abstract: The present invention relates to photoelectric conversion devices, characterized by using oxide semiconductor particles sensitized with a methine dye represented by the Formula (1): (KA 1) (in the Formula (1), m represents 1 to 4; n1 represents 1 to 7; p1 represents 1 to 4; X1 represents an optionally substituted aromatic residue, an optionally substituted aliphatic hydrocarbon residue, a cyano group, a phosphoric acid group, a sulfonic acid group, or a carboxyl group, a carbonamide group, and the like; L1 represents an optionally substituted aromatic residue and the like; A1 and A2 each independently represent an optionally substituted aromatic residue, a hydroxyl group, a phosphoric acid group, a cyano group, a hydrogen atom, a halogen atom and the like; the ring a1 has 1 or a plurality of halogen atoms, amide groups, hydroxyl groups, cyano groups, nitro groups, alkoxy groups, acyl groups and the like.), and solar cells made by using the same.
    Type: Grant
    Filed: September 6, 2005
    Date of Patent: September 20, 2011
    Assignee: Nippon Kayaku Kabushiki Kaisha
    Inventors: Koichiro Shigaki, Teruhisa Inoue
  • Patent number: 7994422
    Abstract: A particulate structure containing a carbon nanotube thus exhibiting improved electron-transferring property, a semiconductor electrode for a photoelectrochemical cell containing a carbon nanotube thus exhibiting improved electron-transferring property, an electrolytic solution for a photoelectrochemical cell containing a carbon nanotube thus exhibiting improved oxidation-reduction property, a reduction electrode for a photoelectrochemical cell containing a carbon nanotube thus exhibiting improved reduction property; and a photoelectrochemical cell applying at least one aspect above.
    Type: Grant
    Filed: February 2, 2005
    Date of Patent: August 9, 2011
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Yong-Wan Jin, Jong-Min Kim
  • Patent number: 7989694
    Abstract: The invention provides a photoelectric conversion element and a solar battery having the photoelectric conversion element each of which has a structure with a high carrier generating rate. Further, the invention provides a photoelectric conversion element and a solar battery having the photoelectric conversion element of which high energy converting efficiency. According to the invention, the photoelectric conversion element and the solar battery having the photoelectric conversion element are characterized in that a pair of electrodes sandwich a mixed layer including a charge generating layer and a charge acceptor layer. The charge generating layer is formed of a first organic compound and an inorganic compound. The charge acceptor layer is formed of a second organic compound.
    Type: Grant
    Filed: December 1, 2005
    Date of Patent: August 2, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Yuji Iwaki
  • Patent number: 7977570
    Abstract: The invention relates to a photoelectric conversion device, using oxide semiconductor fine particles sensitized with a methine dye represented by the following formula (1) and a solar cell using the same, and a solar cell high in conversion efficiency can be obtained at low cost: in the formula (1), n represents an integer of 0 to 7; R1 represents an optionally-substituted aromatic residue or optionally-substituted aliphatic hydrocarbon residue, or an acyl group; X represents an optionally-substituted hydrocarbon residue which has 2 to 4 carbon atoms; Y represents a hydrogen atom, an optionally-substituted aromatic residue or aliphatic hydrocarbon residue, a carboxyl group or the like, and preferably represents a carboxyl group; Z represents an optionally-substituted aromatic residue or aliphatic hydrocarbon residue, or an acyl group; A1, A2 and A3 each independently represent a hydrogen atom, an optionally-substituted aromatic residue or aliphatic hydrocarbon residue or the like, and preferably represent
    Type: Grant
    Filed: May 23, 2006
    Date of Patent: July 12, 2011
    Assignee: Nippon Kayaku Kabushiki Kaisha
    Inventors: Koichiro Shigaki, Masayoshi Kaneko, Akira Maenosono, Takayuki Hoshi, Teruhisa Inoue
  • Patent number: 7976975
    Abstract: A battery device includes a photoelectric conversion device and a secondary battery. The photoelectric conversion device includes a first positive electrode, a first negative electrode, and a photoelectric conversion layer provided between the first positive electrode and the first negative electrode, the photoelectric conversion layer including an inorganic semiconductor and a pigment. The secondary battery includes a second positive electrode, a second negative electrode, and an electrolyte layer provided between the second positive electrode and the second negative electrode. Here, one of a first electrode pair and a second electrode pair is adhered directly, the first electrode pair including the first and the second positive electrodes, and the second electrode pair including the first and the second negative electrodes.
    Type: Grant
    Filed: August 21, 2007
    Date of Patent: July 12, 2011
    Assignee: Seiko Epson Corporation
    Inventor: Yoshiharu Ajiki
  • Patent number: 7961452
    Abstract: The semiconductor photoelectrode of the present invention includes a metallic substrate having irregularities in a surface and a semiconductor layer which is formed on the surface of the metallic substrate and composed of a photocatalytic material. This can increase the light absorption efficiency and, furthermore, prevent recombination of charges.
    Type: Grant
    Filed: March 29, 2006
    Date of Patent: June 14, 2011
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Takashi Oi, Yasukazu Iwasaki, Kazuhiro Sayama
  • Publication number: 20110129714
    Abstract: A structure comprising an array of semiconductor structures, an infill material between the semiconductor materials, and one or more light-trapping elements is described. Photoconverters and photoelectrochemical devices based on such structure also described.
    Type: Application
    Filed: November 30, 2010
    Publication date: June 2, 2011
    Inventors: Michael D. KELZENBERG, Harry A. Atwater, Ryan M. Biggs, Shannon W. Boettcher, Nathan S. Lewis, Jan A. Petykiewicz
  • Patent number: 7947898
    Abstract: A photoelectric conversion element is disclosed, comprising a compound represented by the following formula between a pair of opposed electrodes: wherein Ar1, AR2 and Ar3 are each a substituted or unsubstituted aryl or a substituted or unsubstituted heterocyclic group, x is an organic residue having an acidic group and n is an integer of 2 to 8. A solar cell comprising the photoelectric conversion element is also disclosed.
    Type: Grant
    Filed: January 11, 2008
    Date of Patent: May 24, 2011
    Assignee: Konica Minolta Business Technologies, Inc.
    Inventors: Akihiko Itami, Tomoko Sakimura, Fumitaka Mochizuki, Hideya Miwa