Halogen Containing Patents (Class 429/199)
  • Patent number: 11456452
    Abstract: A positive electrode for a non-aqueous electrolyte secondary battery contains a first particle and a second particle. The first particle contains an electrochemically active positive-electrode active material, and the positive-electrode active material contains a lithium transition metal oxide. The second particle contains an electrochemically inactive metal oxide. An electrochemically inactive phosphate adheres to the surface of the second particle.
    Type: Grant
    Filed: December 14, 2017
    Date of Patent: September 27, 2022
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Takaya Tochio, Kaoru Nagata, Takeshi Ogasawara
  • Patent number: 11456484
    Abstract: Electrolytes and electrolyte additives for energy storage devices comprising linear carbonate compounds.
    Type: Grant
    Filed: December 7, 2018
    Date of Patent: September 27, 2022
    Assignee: Enevate Corporation
    Inventors: Liwen Ji, Benjamin Yong Park, Sung Won Choi, Heidi Anderson
  • Patent number: 11444328
    Abstract: A non-aqueous electrolyte for secondary battery, secondary battery having the same and a method of manufacturing the same are provided. The non-aqueous electrolyte includes an electrolytic salt having an electrolytic salt concentration of about 0.5 M (mol/L) to about 3.8 M (mol/L) in the non-aqueous electrolyte, a first solvent having a solubility of the electrolytic salt in a range from about 100 g to about 400 g, and a second solvent having a solubility of the electrolytic salt of less than or equal to about 1 g. The first solvent includes a coordination solvent coordinated with an ionized ion from the electrolytic salt and a free solvent that is not coordinated with an ionized ion from the electrolytic salt, and a peak area ratio of the free solvent determined by a Raman spectrum is less than about 20%.
    Type: Grant
    Filed: February 19, 2019
    Date of Patent: September 13, 2022
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Hidekazu Yamamoto, Tomonobu Mizumo, Kenichi Kawase
  • Patent number: 11437646
    Abstract: The present invention provides a lithium secondary battery comprising a non-aqueous liquid electrolyte comprising lithium bis(fluorosulfonyl)imide (LiFSI) and a fluorinated benzene-based compound as additives, a positive electrode comprising a lithium-nickel-manganese-cobalt-based oxide as a positive electrode active material, a negative electrode, and a separator. With the non-aqueous liquid electrolyte for a lithium secondary battery of the present invention, a solid SEI film is formed on a negative electrode when initially charging a lithium secondary battery comprising the non-aqueous liquid electrolyte, and an output property of the lithium secondary battery is improved, and an output property and stability after high temperature storage are capable of being enhanced as well.
    Type: Grant
    Filed: March 11, 2019
    Date of Patent: September 6, 2022
    Inventors: Chui Haeng Lee, Shul Kee Kim, Gwang Yeon Kim, Doo Kyung Yang
  • Patent number: 11411216
    Abstract: A flow battery field, an electrode slurry, a slurry electrode, a flow battery, and a stack are disclosed. The electrode slurry comprising electrode particles and electrolyte that contains active substance. Based on 100 pbw active substance, the electrode particles are 10-1,000 pbw. The slurry electrode comprises: a bipolar plate, a current collector, and a slurry electrode reservoir configured to store electrode slurry. In the two opposite sides of the bipolar plate, one side is adjacent to the current collector, and the other side is arranged with a slurry electrode cavity, and flow channels are arranged and extended between the bipolar plate and the slurry electrode cavity, so that the electrode slurry is circulated between the slurry electrode cavity and the slurry electrode reservoir. A flow battery that employs the electrode slurry can provide higher and more stable power output under the same current condition and is lower in cost.
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: August 9, 2022
    Assignees: China Energy Investment Corporation Limited, National Institute of Clean-and-Low-Carbon Energy
    Inventors: Qinghua Liu, John P. Lemmon, Chang Wei, Wenqiang Xu, Yonglong Li, Wenbin Liang
  • Patent number: 11402547
    Abstract: A method of depositing a film comprising a monolayer of particles. The method includes providing a dispersion comprising particles and at least two liquids and depositing drops of the dispersion onto a substrate and evaporating the at least two liquids resulting in a film of a monolayer of the particles. One embodiment of the method includes a coating on the outer surface of particles such that the coating makes the particles substantially non-dispersible, substantially non-soluble and substantially non-suspendable in one of the liquids. A particulate film containing at least one layer of particles, wherein the at least one layer is substantially made of particles of a chemical composition and has uniform thickness. Optical devices containing a particulate film containing at least one layer of particles, wherein the at least one layer is substantially made of particles of a chemical composition and has uniform thickness.
    Type: Grant
    Filed: September 10, 2020
    Date of Patent: August 2, 2022
    Assignee: Purdue Research Foundation
    Inventors: John William Boley, Rebecca Kramer Bottiglio
  • Patent number: 11380886
    Abstract: Disclosed herein are multiphase metal anodes useful in non-aqueous batteries. The anodes include at least one active metal and at least one conductive metal.
    Type: Grant
    Filed: April 30, 2018
    Date of Patent: July 5, 2022
    Assignee: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Arumugam Manthiram, Karl Joseph Kreder, III, Brian Theodore Heligman
  • Patent number: 11374260
    Abstract: Disclosed herein are electrolyte compositions comprising a fluorinated solvent, a fluorinated sulfone, at least one component selected from a borate salt, and/or an oxalate salt, and/or a fluorinated cyclic carbonate, and at least one electrolyte salt. The fluorinated solvent may be a fluorinated acyclic carboxylic acid ester, a fluorinated acyclic carbonate, a fluorinated acyclic ether, or combinations thereof. The electrolyte compositions are useful in electrochemical cells, such as lithium ion batteries.
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: June 28, 2022
    Inventors: Stephen E. Burkhardt, Kostantinos Kourtakis, Mark Gerrit Roelofs
  • Patent number: 11367902
    Abstract: A lithium secondary battery including a cathode; an anode; and an electrolyte disposed between the cathode and the anode, wherein the cathode includes a cathode active material represented by Formula 1, the electrolyte includes a lithium salt; a non-aqueous solvent; and a monofluorosilane compound represented by Formula 2, wherein an amount of the monofluorosilane compound is in a range of about 0.1 percent by weight (wt %) to about 5 wt % based on the total weight of the electrolyte wherein, in Formula 1, 0.9?x?1.2, 0.85<y?0.95, and 0?z<0.2; M is aluminum, magnesium, manganese, cobalt, iron, chromium, vanadium, titanium, copper, boron, calcium, zinc, zirconium, niobium, molybdenum, strontium, antimony, tungsten, bismuth, or a combination thereof; A is an element having an oxidation number of ?1 or ?2, and R1 is a substituted or unsubstituted linear or branched C2-C30 alkyl group or a substituted or unsubstituted C6-C60 aryl group.
    Type: Grant
    Filed: December 11, 2019
    Date of Patent: June 21, 2022
    Assignees: SAMSUNG ELECTRONICS CO., LTD., SAMSUNG SDI CO., LTD.
    Inventors: Basab Roy, Myongchun Koh, Dongyoung Kim, Eunha Park
  • Patent number: 11316191
    Abstract: An electrochemical cell for a secondary battery, preferably for use in an electric vehicle, is provided. The cell includes a solid metallic anode, which is deposited over a suitable current collector substrate during the cell charging process. Several variations of compatible electrolyte are disclosed, along with suitable cathode materials for building the complete cell.
    Type: Grant
    Filed: March 4, 2016
    Date of Patent: April 26, 2022
    Assignee: Broadbit Batteries Oy
    Inventors: Andras Kovacs, Tapani Alasaarela, David Brown, Débora Ruiz-Martinez, José Manuel Orts-Mateo, Roberto Gomez-Torregrosa
  • Patent number: 11316200
    Abstract: A method for drying and purifying a lithium bis(fluorosulfonyl)imide salt. Also, a method for producing a lithium bis(fluorosulfonyl)imide salt which is then dried and purified by the method. Further, a composition containing lithium bis(fluorosulfonyl)imide salt having a water content by mass of between 5 and 45 ppm. And, the use of the composition C in Li-ion batteries.
    Type: Grant
    Filed: December 7, 2017
    Date of Patent: April 26, 2022
    Assignee: ARKEMA FRANCE
    Inventors: Grégory Schmidt, Rémy Teissier
  • Patent number: 11316204
    Abstract: Methods and articles relating to separation of electrolyte compositions within lithium batteries are provided. The lithium batteries described herein may include an anode having lithium as the active anode species and a cathode having sulfur as the active cathode species. Suitable electrolytes for the lithium batteries can comprise a heterogeneous electrolyte including a first electrolyte solvent (e.g., dioxolane (DOL)) that partitions towards the anode and is favorable towards the anode (referred to herein as an “anode-side electrolyte solvent”) and a second electrolyte solvent (e.g., 1,2-dimethoxyethane (DME)) that partitions towards the cathode and is favorable towards the cathode (and referred to herein as an “cathode-side electrolyte solvent”).
    Type: Grant
    Filed: April 17, 2020
    Date of Patent: April 26, 2022
    Assignee: Sion Power Corporation
    Inventors: Yuriy V. Mikhaylik, Chariclea Scordilis-Kelley, Igor P. Kovalev, Cathie Burgess
  • Patent number: 11309720
    Abstract: A lithium ion battery control device includes an acquirer configured to acquire a determination index related to the degree of occlusion of a lithium ion battery in which a degree of occlusion of lithium ions occluded in graphite of a negative electrode changes in accordance with an amount of stored power, and a controller configured to perform control for causing the lithium ion battery to be charged with power or causing power of the lithium ion battery to be discharged so that the degree of occlusion is close to a degree of occlusion associated with a specific region when a region associated with the degree of occlusion is determined not to be the specific region associated with the degree of occlusion which includes LiC12 having a degree of occlusion represented by a stoichiometric ratio and does not include LiC6 having a degree of occlusion represented by a stoichiometric ratio.
    Type: Grant
    Filed: September 13, 2019
    Date of Patent: April 19, 2022
    Assignee: HONDA MOTOR CO., LTD.
    Inventors: Yuki Ito, Atsushi Tamai, Kenji Sato, Kazuhito Nakao, Hajime Abe
  • Patent number: 11264638
    Abstract: A sodium-ion battery includes an electrode having a crystalline active material represented by formula units that intercalate and/or deintercalate more than two charge carriers during operation of the battery. In some instances, the active material that experiences a volume change of less than 6.0%, 4.0%, or even 2.0% when the active material intercalates more than two charge carriers during operation of the battery.
    Type: Grant
    Filed: February 5, 2018
    Date of Patent: March 1, 2022
    Assignee: The Regents of the University of California
    Inventors: Matteo Bianchini, Gerbrand Ceder
  • Patent number: 11211607
    Abstract: Bipolar electrodes comprising a carbon felt loaded with a polymer material and a nanocarbon material are described herein. The bipolar electrodes are useful in electrochemical cells. In particular, the loaded carbon felt can be used in bipolar electrodes of zinc-halide electrolyte batteries. Processes for manufacturing the loaded carbon felt are also described, involving contacting (e.g., dipping) a carbon felt in a mixture of solvent, polymer material and nanocarbon material.
    Type: Grant
    Filed: November 27, 2018
    Date of Patent: December 28, 2021
    Assignee: Eos Energy Storage LLC
    Inventor: Francis W. Richey
  • Patent number: 11211608
    Abstract: The present disclosure provides the use of a biomolecule, flavin, appended to a polymerizable unit that can then be polymerized to form an electroactive active polymer. The polymer and the flavin unit are comprised of an organic material containing C, H, N, and O atoms. The electroactive functionality is related to the double bonds that are present in the flavin unit that are appended to a non-electroactive backbone. This appended unit is rendered insoluble in the electrolyte of the discussed secondary battery unit. Several different molecular structures are disclosed exhibiting efficacy as energy storage medium in energy storage devices. Compounds have also been synthesized from which these different energy storage molecular structures are produced.
    Type: Grant
    Filed: February 1, 2017
    Date of Patent: December 28, 2021
    Assignee: THE GOVERNING COUNCIL OF THE UNIVERSITY OF TORONTO
    Inventors: Dwight Seferos, Tyler Brian Schon, Colin Richard Bridges
  • Patent number: 11196087
    Abstract: A nonaqueous electrolyte includes a nonaqueous solvent and an alkali metal salt dissolved in the nonaqueous solvent. The nonaqueous solvent contains a perfluoropolyether and a nitrile compound represented by a formula Rf—CN, where Rf represents a hydrocarbon group which has a carbon number of 2 to 4 and in which at least one hydrogen atom is substituted with fluorine.
    Type: Grant
    Filed: March 27, 2018
    Date of Patent: December 7, 2021
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Hirotetsu Suzuki, Nobuhiko Hojo
  • Patent number: 11183679
    Abstract: Provided are: a negative electrode material for nonaqueous secondary batteries, which has a high capacity and exhibits excellent low-temperature input-output characteristics, charge-discharge rate characteristics, cycle characteristics, and the like; and a negative electrode for nonaqueous secondary batteries and a nonaqueous secondary battery, which include the negative electrode material. The negative electrode material for nonaqueous secondary batteries includes silicon oxide particles (A) and a carbon material (B), wherein the silicon oxide particles (A) contain zero-valent silicon atoms, and the carbon material (B) has a volume resistivity of less than 0.14 ?·cm at a powder density of 1.1 g/cm3.
    Type: Grant
    Filed: May 22, 2019
    Date of Patent: November 23, 2021
    Assignee: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Nobuyuki Ishiwatari, Shunsuke Yamada, Naoto Maru, Koji Fukamizu
  • Patent number: 11171326
    Abstract: Provided is a method for producing a positive electrode active material for nonaqueous electrolyte secondary batteries, the method including: a mixing step of obtaining a W-containing mixture of Li metal composite oxide particles represented by the formula: LizNi1-x-yCOxMyO2 and composed of primary particles and secondary particles formed by aggregation of the primary particles, 2 mass % or more of water with respect to the oxide particles, and a W compound or a W compound and a Li compound, the W-containing mixture having a molar ratio of the total amount of Li contained in water and the solid W compound or the W compound and the Li compound of 3 to 5 with respect to the amount of W contained therein; and a heat treatment step of heating the W-containing mixture to form lithium tungstate on the surface of the primary particles of the Li metal composite oxide particles.
    Type: Grant
    Filed: November 27, 2015
    Date of Patent: November 9, 2021
    Inventors: Takashi Ozaki, Yuki Furuichi, Jun Yokoyama, Tetsufumi Komukai
  • Patent number: 11139506
    Abstract: The present invention relates to a non-aqueous electrolyte solution for a lithium secondary battery and a lithium secondary battery including the same, and particularly, to a non-aqueous electrolyte solution for a lithium secondary battery which includes a fluorine-containing compound capable of forming a stable film on the surface of an electrode as an additive, and a lithium secondary battery including the same.
    Type: Grant
    Filed: February 1, 2018
    Date of Patent: October 5, 2021
    Inventors: Sung Hoon Yu, Yoo Sun Kang
  • Patent number: 11078565
    Abstract: A method for manufacturing a solid-state battery device. The method can include providing a substrate within a process region of an apparatus. A cathode source and an anode source can be subjected to one or more energy sources to transfer thermal energy into a portion of the source materials to evaporate into a vapor phase. An ionic species from an ion source can be introduced and a thickness of solid-state battery materials can be formed overlying the surface region by interacting the gaseous species derived from the plurality of electrons and the ionic species. During formation of the thickness of the solid-state battery materials, the surface region can be maintained in a vacuum environment from about 10?6 to 10?4 Torr. Active materials comprising cathode, electrolyte, and anode with non-reactive species can be deposited for the formation of modified modulus layers, such a void or voided porous like materials.
    Type: Grant
    Filed: April 24, 2017
    Date of Patent: August 3, 2021
    Assignee: Sakti3, Inc.
    Inventors: Myoungdo Chung, HyonCheol Kim, Ann Marie Sastry, Marc Langlois
  • Patent number: 11081721
    Abstract: A secondary electrochemical cell comprises an anode, a cathode including electrochemically active cathode material, a separator between the anode and the cathode, and an electrolyte. The electrolyte comprises at least one salt dissolved in at least one organic solvent. The separator in combination with the electrolyte has an area-specific resistance of less than about 2 ohm-cm2.
    Type: Grant
    Filed: May 29, 2012
    Date of Patent: August 3, 2021
    Assignee: DURACELL U.S. OPERATIONS, INC.
    Inventors: Nikolai Nikolaevich Issaev, Alexander Kaplan, Junan Kao, Kirakodu S. Nanjundaswamy, Michael Pozin, Fan Zhang
  • Patent number: 10991940
    Abstract: A graphite-based material for a lithium ion secondary battery, the graphite-based material comprising a coating film on at least a part of the surface of a graphite particle, the coating film comprising a lithium fluorophosphate compound having a specific composition.
    Type: Grant
    Filed: October 5, 2017
    Date of Patent: April 27, 2021
    Assignee: NEC CORPORATION
    Inventor: Katsumi Maeda
  • Patent number: 10971757
    Abstract: The present invention discloses a Lithium ion battery and an electrolyte thereof, the electrolyte comprising an organic solvent, a lithium salt and an additive. The additive comprises a cyclic fluoro carbonate (A), a cyclic phosphazene (B), a cyclic sulfate and a lithium fluoro oxalate borate (D). The lithium fluoro oxalate borate (D) has following formula: Compared with the prior art, the electrolyte of the present invention may form a stable CEI and SEI film on the surface of positive and negative electrodes, protect the interface between positive and negative electrodes, improve the acidic atmosphere of Lithium ion battery electrolyte, and reduce the damage effect of HF on the interface between positive and negative electrodes, while reducing low temperature resistance of lithium-ion battery, improving cycle life, high temperature storage performance, safety performance and rate capability of lithium-ion battery.
    Type: Grant
    Filed: August 24, 2017
    Date of Patent: April 6, 2021
    Assignee: Contemporary Amperex Technology Co., Limited
    Inventors: Jiqiong Liu, Changlong Han, Xiaomei Wang, Jianwei Zhu, Yan Zhou, Feng Huan, Kun Yu
  • Patent number: 10964975
    Abstract: An electrochemic device includes an electrolyte that includes a compound according to Formula (I):
    Type: Grant
    Filed: January 17, 2019
    Date of Patent: March 30, 2021
    Assignee: UCHICAGO ARGONNE, LLC
    Inventors: Chi Cheung Su, Khalil Amine, Meinan He
  • Patent number: 10950848
    Abstract: A positive electrode for an alkaline secondary battery includes a positive electrode substrate and a positive electrode composite material that is provided on at least one surface of the positive electrode substrate. The positive electrode substrate contains a Ni foil or a Ni-plated steel foil. The positive electrode composite material contains a positive electrode active material. The positive electrode active material contains nickel hydroxide coated with cobalt oxyhydroxide. A weight per unit area of the positive electrode composite material with respect to the one surface of the positive electrode substrate is 0.02 g/cm2 to 0.035 g/cm2.
    Type: Grant
    Filed: October 5, 2018
    Date of Patent: March 16, 2021
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takuro Kikuchi, Motoyoshi Okumura
  • Patent number: 10868306
    Abstract: Articles and methods involving electrochemical cells and/or electrochemical cell preproducts comprising passivating agents are generally provided. In certain embodiments, an electrochemical cell includes first and second passivating agents. In some embodiments, an electrochemical cell may include a first electrode comprising a first surface, a second electrode (e.g., a counter electrode with respect to the first electrode) comprising a second surface, a first passivating agent configured and arranged to passivate the first surface, and a second passivating agent configured and arranged to passivate the second surface.
    Type: Grant
    Filed: May 18, 2018
    Date of Patent: December 15, 2020
    Assignee: Sion Power Corporation
    Inventors: Akmeemana Anoma Mudalige, Chariclea Scordilis-Kelley, Zhaohui Liao, Marina Safont-Sempere, Igor P. Kovalev
  • Patent number: 10847838
    Abstract: The present invention provides an electrolyte solution for a non-aqueous electrolyte solution battery capable of exhibiting excellent high-temperature cycle characteristics and excellent high-temperature storage characteristics at high temperature of 60° C. or above, and a non-aqueous electrolyte solution battery using the same. The electrolyte solution for a non-aqueous electrolyte solution battery of the present invention comprises at least: a non-aqueous solvent; a solute; at least one first compound represented by the following general formula (1); and at least one second compound represented by the following general formula (2).
    Type: Grant
    Filed: July 10, 2015
    Date of Patent: November 24, 2020
    Assignee: Central Glass Co., Ltd.
    Inventors: Takayoshi Morinaka, Makoto Kubo, Wataru Kawabata, Kenta Yamamoto, Mikihiro Takahashi
  • Patent number: 10847783
    Abstract: The present invention provides a type of cost-effective sulfur-based transition metal composite as the negative electrode active material for lithium ion batteries with high capacity. Moreover, a non-aqueous secondary battery using this negative electrode with long cycle life and high capacity is provided. The battery contains a positive electrode, negative electrode, separator, and non-aqueous electrolytes. The negative electrode contains at least one kind of sulfur-based transition metal composites provided in the present invention.
    Type: Grant
    Filed: April 21, 2014
    Date of Patent: November 24, 2020
    Assignee: XIAMEN UNIVERSITY
    Inventors: JinBao Zhao, Bo Liu, XuXiang Wang
  • Patent number: 10784507
    Abstract: Provided is a method for producing a positive electrode active material for nonaqueous electrolyte secondary batteries, the method including: a mixing step of obtaining a W-containing mixture of Li-metal composite oxide particles represented by the formula: LizNi1-x-yCoxMyO2 and composed of primary particles and secondary particles formed by aggregation of the primary particles, 2 mass % or more of water with respect to the oxide particles, and a W compound or a W compound and a Li compound, the W-containing mixture having a molar ratio of the total amount of Li contained in the water and the solid W compound, or the W compound and the Li compound of 1.5 or more and less than 3.0 with respect to the amount of W contained therein; and a heat treatment step of heating the W-containing mixture to form lithium tungstate on the surface of the primary particles.
    Type: Grant
    Filed: November 27, 2015
    Date of Patent: September 22, 2020
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventors: Yuki Furuichi, Tetsufumi Komukai
  • Patent number: 10756384
    Abstract: The present invention provides an electrolytic solution capable of providing an electrochemical device (e.g., a lithium ion secondary battery) or a module that is less likely to generate gas even in high-temperature storage and has high capacity retention even after high-temperature storage. The present invention relates to an electrolytic solution which may contain a compound represented by Y21R21C—CY22R22 wherein R21 and R22 may be the same as or different from each other, and are each H, an alkyl group, or a halogenated alkyl group; Y21 and Y22 may be the same as or different from each other, and are each —OR23 or a halogen atom; and R23 is H, an alkyl group, or a halogenated alkyl group.
    Type: Grant
    Filed: October 14, 2016
    Date of Patent: August 25, 2020
    Assignee: DAIKIN INDUSTRIES, LTD.
    Inventors: Tomoya Hidaka, Hideo Sakata, Kenzou Takahashi, Hiroyuki Arima, Shigeaki Yamazaki, Yoshiko Kuwajima, Shinichi Kinoshita
  • Patent number: 10749215
    Abstract: The purpose of the present invention is to provide a lithium secondary battery which has improved service life characteristics by suppressing a decomposition reaction of the electrolyte solution in the field of batteries that operate at high voltages or are assumed to be used at high temperatures for a long period of time. The present invention relates to an electrolyte solution for a secondary, which is characterized by containing a sulfone compound, a fluorine-containing cyclic acetal compound and a cyclic carbonate in a specific composition; and a secondary battery which uses this electrolyte solution for a secondary battery.
    Type: Grant
    Filed: March 3, 2017
    Date of Patent: August 18, 2020
    Assignee: NEC Corporation
    Inventors: Takehiro Noguchi, Shin Serizawa, Takuya Hasegawa
  • Patent number: 10734639
    Abstract: Provided herein are electrochemical systems and related methods of making and using electrochemical systems. Electrochemical systems of the invention implement novel cell geometries and composite carbon nanomaterials based design strategies useful for achieving enhanced electrical power source performance, particularly high specific energies, useful discharge rate capabilities and good cycle life. Electrochemical systems of the invention are versatile and include secondary lithium ion cells, such as silicon-sulfur lithium ion batteries, useful for a range of important applications including use in portable electronic devices.
    Type: Grant
    Filed: July 2, 2014
    Date of Patent: August 4, 2020
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Adrianus I. Aria, Morteza Gharib
  • Patent number: 10727516
    Abstract: The present specification relates to a novel compound, a polymer electrolyte membrane including the same, a membrane-electrode assembly including the polymer electrolyte membrane, a fuel cell including the membrane-electrode assembly, and a redox flow battery including the polymer electrolyte membrane.
    Type: Grant
    Filed: December 2, 2015
    Date of Patent: July 28, 2020
    Assignee: LG CHEM, LTD.
    Inventors: Yong Jin Jang, Joong Jin Han, Sehee Jung, Youngjea Kim, Esder Kang, Hyun Woog Ryu
  • Patent number: 10707521
    Abstract: Electrolyte solutions including additives or combinations of additives that provide low temperature performance and high temperature stability in lithium ion battery cells.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: July 7, 2020
    Assignees: Wildcat Discovery Technologies, Inc., Johnson Controls Technology Company
    Inventors: Gang Cheng, Ye Zhu, Deidre Strand, Boutros Hallac, Bernhard M. Metz
  • Patent number: 10707486
    Abstract: The present invention is directed towards a process for making a particulate material according to the general formula (I): NiaCObMncMd(O)x(OH)y, wherein M is selected from Al and Ti, x is in the range of from 0.01 to 0.9, y is in the range of from 1.1 to 1.99, a is in the range of from 0.3 to 0.85, b is in the range of from 0.05 to 0.4, c is in the range of from 0.1 to 0.5, d is in the range of from 0.001 to 0.03, with a+b+c+d=1 said process comprising the following steps: (a) providing an aqueous slurry of particles of aluminum hydroxide or titanium dioxide, (b) adding an aqueous solution of water-soluble salts of nickel, cobalt and manganese and a solution of alkali metal hydroxide to the slurry according to step (a), thereby co-precipitating a layer of a mixed hydroxide of nickel and cobalt and manganese hydroxide on the particles according to step (a), (c) removing particles of (NiaCObMncAld)(OH)2+d or (NiaCObMncTid)(OH)2+2d so obtained and drying them in the presence of oxygen.
    Type: Grant
    Filed: August 10, 2016
    Date of Patent: July 7, 2020
    Assignee: BASF SE
    Inventors: Simon Schroedle, Thomas Michael Ryll, Aleksei Volkov, Ji-Yong Shin, Jordan K. Lampert
  • Patent number: 10665857
    Abstract: The present invention relates to a positive electrode active material for a lithium secondary battery and a method of preparing the same, and more particularly, to a positive electrode active material for a lithium secondary battery comprising a lithium-nickel-based transition metal oxide; and a coating layer formed on the lithium-nickel-based transition metal oxide, the coating layer comprising a metal oxalate compound, and a method of preparing the same.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: May 26, 2020
    Assignee: LG Chem, Ltd.
    Inventors: Jun Seok Nho, Seung Beom Cho, Hyun Ah Park, Jun Seong Ahn
  • Patent number: 10644352
    Abstract: A lithium-ion battery non-aqueous electrolyte solution, and a lithium-ion battery using the electrolyte solution. The electrolyte solution comprises one, two, or more of a compound as represented by structural formula I. R1, R2, R3, R4, R5, and R6 are independently selected from hydrogen, halogen atom, or a group comprising 1-5 carbon atoms. Presence of the compound as represented by structural formula I provides excellent performance at a high temperature and at a low temperature to the non-aqueous lithium-ion battery electrolyte solution.
    Type: Grant
    Filed: December 29, 2016
    Date of Patent: May 5, 2020
    Assignee: SHENZHEN CAPCHEM TECHNOLOGY CO., LTD.
    Inventors: Zhongtian Zheng, Qiao Shi, Ling Zhong, Shiguang Hu, Changchun Chen, Xionggui Lin
  • Patent number: 10601069
    Abstract: The present invention relates to a non-aqueous electrolyte additive, and a non-aqueous electrolyte for a lithium secondary battery including the same and a lithium secondary battery, and particularly, to a non-aqueous electrolyte additive having a nitrile group and a propargyl group, and a non-aqueous electrolyte for a lithium secondary battery and a lithium secondary battery, which include the non-aqueous electrolyte additive so that capacity and cycle lifespan characteristics at high temperature can be improved.
    Type: Grant
    Filed: March 21, 2017
    Date of Patent: March 24, 2020
    Assignee: LG Chem, Ltd.
    Inventors: Sung Hoon Yu, Kyung Mi Lee
  • Patent number: 10547085
    Abstract: A lithium secondary battery including a cathode; an anode; and an electrolyte disposed between the cathode and the anode, wherein the cathode includes a cathode active material represented by Formula 1, the electrolyte includes a lithium salt; a non-aqueous solvent; and a monofluorosilane compound represented by Formula 2, wherein an amount of the monofluorosilane compound is in a range of about 0.1 percent by weight (wt %) to about 5 wt % based on the total weight of the electrolyte wherein, in Formula 1, 0.9?x?1.2, 0.85<y?0.95, and 0?z<0.2; M is aluminum, magnesium, manganese, cobalt, iron, chromium, vanadium, titanium, copper, boron, calcium, zinc, zirconium, niobium, molybdenum, strontium, antimony, tungsten, bismuth, or a combination thereof; A is an element having an oxidation number of ?1 or ?2, and R1 is a substituted or unsubstituted linear or branched C2-C30 alkyl group or a substituted or unsubstituted C6-C60 aryl group.
    Type: Grant
    Filed: April 18, 2017
    Date of Patent: January 28, 2020
    Assignees: SAMSUNG ELECTRONICS CO., LTD., SAMSUNG SDI CO., LTD.
    Inventors: Basab Roy, Myongchun Koh, Dongyoung Kim, Eunha Park
  • Patent number: 10535473
    Abstract: A capacitor that includes a conductive metal base member having a porous portion in a first main surface, a dielectric layer that entirely covers the first main surface and entirely covers side surfaces disposed along a direction orthogonal to the first main surface, an electrode layer covering the dielectric layer, a second extended electrode covering the electrode layer, a first extended electrode covering a second main surface of the conductive metal base member opposite the first main surface, and an insulation layer that insulates the electrode layer and the conductive metal base member from each other.
    Type: Grant
    Filed: May 14, 2019
    Date of Patent: January 14, 2020
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Yasuo Fujii, Naoki Iwaji
  • Patent number: 10535877
    Abstract: A non-aqueous electrolyte secondary battery includes a non-aqueous electrolyte and an electrode body in which a positive electrode plate and a negative electrode plate are layered with a separator interposed therebetween. The positive electrode plate contains a phosphate compound. The negative electrode plate contains a graphite-based material, an amorphous/non-crystalline carbon material, and a rubber-based binder. The ratio of the coverage of the rubber-based binder on the amorphous/non-crystalline carbon material to the coverage of the rubber-based binder on the graphite-based material is more than 0 and 0.5 or less.
    Type: Grant
    Filed: September 20, 2016
    Date of Patent: January 14, 2020
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Kouhei Tuduki, Atsushi Fukui, Katsunori Yanagida
  • Patent number: 10522815
    Abstract: In some embodiments, lithium-sulfur electrochemical cells, fabrication methods thereof, and methods useful to enable improvement of one or more performance characteristics in lithium-sulfur electrochemical cells are provided herein. In some embodiments, a method to enable improvement of one or more performance characteristics in a lithium-sulfur electrochemical cell(s) is disclosed, wherein a conductive network is formed within the lithium-sulfur electrochemical cell(s) by applying a voltage thereto for a threshold time period. The one or more performance characteristics of the lithium-sulfur electrochemical cell increase as a result of the presence of the conductive network.
    Type: Grant
    Filed: June 19, 2017
    Date of Patent: December 31, 2019
    Inventors: James Allen Turney, Roger L Aronow, Sea Park, Joseph D Roy-Mayhew
  • Patent number: 10497976
    Abstract: A lithium air battery may include an electrolyte with a donor number of 10 to 40; and a quinone-based liquid catalyst which added to the electrolyte to induce a discharge in the solution.
    Type: Grant
    Filed: December 18, 2017
    Date of Patent: December 3, 2019
    Assignees: Hyundai Motor Company, Kia Motors Corporation, Seoul National University R&DB Foundation
    Inventors: Won Keun Kim, Jin Soo Kim, Kyoung Han Ryu, Ho Taek Lee, Byung Ju Lee, Ki Suk Kang, Young Min Ko
  • Patent number: 10490859
    Abstract: A positive electrode of a lithium-ion secondary battery contains first positive electrode active material particles and second positive electrode active material particles. The first positive electrode active material particles have a first composition represented by a compositional formula LiNix1Coy1Mnz1O2 (here, x1, y1, and z1 are numerical values satisfying 0<x1<1, 0<y1<1, 0.3<z1<0.5, and x1+y1+z1=1). The second positive electrode active material particles have a second composition represented by a compositional formula LiNix2Coy2Mnz2O2 (here, x2, y2, and z2 are numerical values satisfying 0<x2<1, 0<y2<1, 0<z2<0.2, and x2+y2+z2=1). The surface of at least one of the first positive electrode active material particles and the second positive electrode active material particles is coated with a transition metal oxide.
    Type: Grant
    Filed: December 11, 2017
    Date of Patent: November 26, 2019
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hiroshi Tsubouchi, Keiichi Takahashi, Naoyuki Wada, Yukihiro Okada
  • Patent number: 10468683
    Abstract: The present invention provides a conductive paste for positive electrodes of lithium-ion batteries and a mixture paste for positive electrodes of lithium-ion batteries that are inhibited from increasing in viscosity and gelling, and that have an easy-to-apply viscosity. The conductive paste of the present invention contains a dispersion resin (A), polyvinylidene fluoride (B), conductive carbon (C), a solvent (D), and a dehydrating agent (E).
    Type: Grant
    Filed: June 21, 2017
    Date of Patent: November 5, 2019
    Assignees: KANSAI PAINT CO., LTD., TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Koji Endo, Atsuya Kato, Atsushi Tsukamoto, Atsunao Hiwara, Hideki Hagiwara, Koji Takahata, Akira Saito, Machiko Abe, Yuichi Ito, Kentaro Komabayashi
  • Patent number: 10460882
    Abstract: The present invention aims to provide an electrolyte solution containing a quaternary ammonium salt as an electrolyte salt and is capable of providing an electrochemical device having a high capacitance retention and reducing generation of gas. The electrolyte solution of the present invention contains a solvent, a quaternary ammonium salt, and a nitrogen-containing unsaturated cyclic compound. The unsaturated cyclic compound is a nitrogen-containing unsaturated heterocyclic compound. The unsaturated cyclic compound excludes salts of the unsaturated cyclic compound and ionic liquids obtainable from the unsaturated cyclic compound.
    Type: Grant
    Filed: October 22, 2015
    Date of Patent: October 29, 2019
    Assignee: DAIKIN INDUSTRIES, LTD.
    Inventor: Kenzou Takahashi
  • Patent number: 10424793
    Abstract: An electrodeposited copper foil of high toughness having a lightness L* value of the deposit side in the range of 36 to 74, the copper foil having a tensile strength in the range of 40 to 70 kg/mm2, and a weight deviation of less than 3%. The electrodeposited copper foils are particularly useful as current collectors for anode components of rechargeable secondary batteries and tend not to form wrinkles during charge-discharge cycles of the battery and are resistant to fracture during pressing of the anode active materials onto the copper foil. Secondary batteries and methods of manufacture are also described.
    Type: Grant
    Filed: November 14, 2017
    Date of Patent: September 24, 2019
    Assignee: CHANG CHUN PETROCHEMICAL CO., LTD.
    Inventors: Kuei-Sen Cheng, Huei-Fang Huang, Yao-Sheng Lai, Jui-Chang Chou
  • Patent number: 10403926
    Abstract: A nonaqueous electrolyte secondary battery includes a positive electrode having a positive electrode active material layer provided on a positive electrode collector, a negative electrode having a negative electrode active material layer provided on a negative electrode collector, and a nonaqueous electrolyte. The nonaqueous electrolyte contains at least one member selected from the group consisting of sulfone compounds represented by the following formulae (1) and (2); and an inorganic phosphorus compound represented by the following formula (3) exists on the surface of a positive electrode active material: R1 represents CmH2m-n1Xn2; X represents a halogen; m represents an integer of from 2 to 7; each of n1 and n2 independently represents an integer of from 0 to 2m; R2 represents CjH2j-k1Zk2; Z represents a halogen; j represents an integer of from 2 to 7; each of k1 and k2 independently represents an integer of from 0 to 2j; each of R3, R4 and R5 independently represents H or OH; and a is 0 or 1.
    Type: Grant
    Filed: November 15, 2017
    Date of Patent: September 3, 2019
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Shinya Wakita, Masayuki Ihara, Masanori Soma, Izaya Okae
  • Patent number: 10403935
    Abstract: Provided is an electrolytic solution including a nonaqueous solvent and an alkali metal salt. The alkali metal salt is dissolved in the nonaqueous solvent. The nonaqueous solvent contains a perfluoropolyether having a weight-average molecular weight of 350 or more and less than 760. Also provided is a battery including the electrolytic solution, a positive electrode containing a positive electrode active material that can occlude and release an alkali metal cation, and a negative electrode containing a negative electrode active material that can occlude and release the alkali metal cation.
    Type: Grant
    Filed: May 19, 2016
    Date of Patent: September 3, 2019
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Hirotetsu Suzuki, Nobuhiko Hojo