Zinc Oxide Patents (Class 429/231)
-
Patent number: 10847786Abstract: An alkaline dry battery includes a positive electrode, a gel negative electrode, a separator disposed between the positive electrode and the negative electrode, and an alkaline electrolyte solution contained in the positive electrode, the negative electrode, and the separator. The negative electrode contains a negative electrode active material containing zinc and particulate terephthalic acid. The terephthalic acid contained in the negative electrode has an average particle diameter of 25 to 210 ?m.Type: GrantFiled: July 18, 2017Date of Patent: November 24, 2020Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.Inventors: Yasufumi Takahashi, Satoshi Fujiyoshi
-
Patent number: 10141604Abstract: A polymer to be used as a binder for sulfur-based cathodes in lithium batteries that includes in its composition electrophilic groups capable of reaction with and entrapment of polysulfide species. Beneficial effects include reductions in capacity loss and ionic resistance gain.Type: GrantFiled: August 14, 2017Date of Patent: November 27, 2018Assignee: Seeo, Inc.Inventors: Russell Clayton Pratt, Hany Basam Eitouni, Kulandaivelu Sivanandan
-
Patent number: 10020513Abstract: There is provided a novel slurry composition for forming a lithium secondary battery electrode which can improve homogeneity of an electrode active material and a conductive assistant even without using an organic solvent and can improve the binding of an electrode active material and a conductive assistant with an electrode collector, and a lithium secondary battery with improved charge/discharge cycle characteristics and battery capacity. A slurry composition for forming a lithium secondary battery electrode, characterized by comprising an electrode active material (A), a conductive assistant (B), and a pulverized cellulose fiber (C) as an aqueous binder, and a lithium secondary battery electrode and a lithium secondary battery which are obtained using the composition, and an aqueous binder used for the composition.Type: GrantFiled: September 20, 2012Date of Patent: July 10, 2018Assignees: NISSAN CHEMICAL INDUSTRIES, LTD., IWATE UNIVERSITYInventors: Hisato Hayashi, Masaaki Ozawa, Osamu Uesugi, Yoshihiro Kadoma
-
Patent number: 9997774Abstract: A positive electrode active material for a nonaqueous electrolyte secondary battery contains a lithium composite oxide particle as a main component, in which a ratio of Ni to a total number of moles of all metal elements other than Li is greater than 30 mol %. The lithium composite oxide particle includes a secondary particle being aggregation of primary particles having an average particle diameter of 1 ?m or more, and a shell constituted around the secondary particle. A surface layer void is present between the secondary particle and the shell.Type: GrantFiled: December 10, 2015Date of Patent: June 12, 2018Assignee: PANASONIC CORPORATIONInventor: Hidekazu Hiratsuka
-
Patent number: 9859555Abstract: Provided is a positive active material, a positive electrode including the positive active material, a lithium battery, and a manufacturing method of the same. The positive active material includes a core including a lithium nickel composite oxide and a coating layer formed on the core. The coating layer improves structural stability of the positive active material. Accordingly, lifespan properties of a lithium battery including the positive active material may be improved.Type: GrantFiled: January 26, 2015Date of Patent: January 2, 2018Assignee: Samsung SDI Co., Ltd.Inventors: Jung-Yeon Won, Eun-Young Goh, Jin-Hyon Lee, Ju-Hee Sohn, Jong-Ki Lee, Seung-Wan Kim, Ju-Hyeong Han
-
Patent number: 9172086Abstract: A cathode and a lithium battery including the cathode have improved electrical characteristics. The cathode includes a cathode active material composition including a conducting agent, a binder, and a cathode active material, wherein the cathode active material includes a first lithium compound and a second lithium compound, the first lithium compound having an open-circuit voltage greater than an open-circuit voltage of the second lithium compound, and wherein the second lithium compound includes a metal oxide coating layer.Type: GrantFiled: December 4, 2009Date of Patent: October 27, 2015Assignee: Samsung SDI Co., Ltd.Inventor: Kyu-Sung Park
-
Publication number: 20150140359Abstract: In an aspect, a negative active material, a negative electrode and a lithium battery including the negative active material, and a method of manufacturing the negative active material is provided. The negative active material includes a silicon-based active material substrate; a metal oxide nanoparticle disposed on a surface of the silicon-based active material substrate. An initial irreversible capacity of the lithium battery may be decreased and lifespan characteristics may be improved by using the negative active material.Type: ApplicationFiled: April 25, 2014Publication date: May 21, 2015Applicant: Samsung SDI Co., Ltd.Inventors: Sang-Eun Park, Young-Ugk Kim, Hyun-Ki Park, Chang-Su Shin, Ui-Song Do, Sung-Su Kim
-
Publication number: 20150132651Abstract: Provided is a cathode active material including a complex coating layer, which includes M below, formed on a surface of the cathode active material through reaction of a lithium transition metal oxide represented by Formula 1 below with a coating precursor: LixMO2??(1) wherein M is represented by MnaM?1-b, M? is at least one selected from the group consisting of Al, Mg, Ni, Co, Cr, V, Fe, Cu, Zn, Ti and B, 0.95?x?1.5, and 0.5?a?1. The lithium secondary battery including the cathode active material exhibits improved lifespan and rate characteristics due to superior stability.Type: ApplicationFiled: January 15, 2015Publication date: May 14, 2015Applicant: LG CHEM, LTD.Inventors: Bo Ram Lee, Hye Lim Jeon, Sun Sik Shin, Sangwook Lee, Wang Mo Jung
-
Patent number: 9029003Abstract: Disclosed is an electrode assembly of a lithium secondary battery, including an anode plate, a cathode plate, a separator for separating the anode plate and the cathode plate and conducting lithium ions of an electrolyte, and a composite film disposed between the anode plate and the separator and/or between the cathode plate and the separator. The composite film includes 5 to 95 parts by weight of an inorganic clay and 95 to 5 parts by weight of an organic polymer binder.Type: GrantFiled: March 1, 2012Date of Patent: May 12, 2015Assignee: Industrial Technology Research InstituteInventors: Angelia Sulaiman Lo, Chun-Wei Su, Chyi-Ming Leu, Chih-Jen Yang, Chang-Rung Yang, Jen-Chih Lo, Tzong-Ming Lee, Jing-Pin Pan
-
Publication number: 20150125749Abstract: The present invention relates to a novel phosphate based composite anode material, preparation method and uses thereof. Specifically disclosed is a phosphate based composite cell anode material, the material having monoclinic and orthorhombic crystal lattice structures with the chemical formula of A3-xV2-yMY(PO4)3, wherein A is Li+, Na+ or the mixture thereof, M is Mg, Al, Sc, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn or Nb, 0?x?3.0, 0?y?2.0, and C is the carbon layer. Also disclosed are a preparation method and uses of the composite material. Unlike simple physical mixing, the composite material of the present invention has the advantages of an adjustable electric potential plateau, high reversible capacity, good cycle stability, power consumption early warning and the like.Type: ApplicationFiled: September 12, 2012Publication date: May 7, 2015Applicant: Ningbo Institute of Materials & Engineering, Chinese Academy of SciencesInventors: Yuanhao Tang, Chenyun Wang, Deyu Wang, Jun Li
-
Patent number: 9023531Abstract: Disclosed is a nonaqueous secondary battery (100) comprising a positive electrode (155) having a positive current collector (151) made of a metal, and a positive electrode active material (153) composed of a lithium-metal complex oxide. The surface of the positive electrode active material (153) is coated with a lithium salt (158) having an average thickness of 20-50 nm.Type: GrantFiled: October 17, 2008Date of Patent: May 5, 2015Assignees: Toyota Jidosha Kabushiki Kaisha, Sumitomo Metal Mining Co., Ltd.Inventors: Tomoyoshi Ueki, Yutaka Oyama, Takuichi Arai, Kazuhiro Ohkawa, Koichi Yokoyama, Ryuichi Kuzuo, Katsuya Kase, Syuhei Oda
-
Publication number: 20150104706Abstract: The disclosure provides a Ni—Mn composite oxalate powder, including a plurality of biwedge octahedron particles represented by the general formula: NiqMnxCoyMzC2O4.nH2O, wherein q+x+y+z=1, 0<q, x<1, 0?y<1, 0?z<0.15, 0?n?5, and M is at least one of Mg, Sr, Ba, Cd, Zn, Al, Ga, B, Zr, Ti, Ca, Ce, Y, Nb, Cr, Fe and V. The above powder may be further calcined with a lithium salt to form a lithium transition metal oxide powder for use as a positive electrode material in lithium ion-batteries.Type: ApplicationFiled: December 26, 2013Publication date: April 16, 2015Applicants: NATIONAL TAIWAN UNIVERSITY, INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTEInventors: Hung-Chun WU, Yu-Ting CHEN, Nae-Lih WU, Wen-Chin CHEN, Shih-Chieh LIAO, Yih-Chyng WU
-
Publication number: 20150104707Abstract: The present disclosure refers to a cathode material composite having improved conductivity, and a cathode and electrochemical device having the cathode material composite. In accordance with one embodiment of the present disclosure, a conductive polymer is positioned on the surface of a shell present in the form of a tetragonal structure in the lithium manganese oxide, thereby enhancing electrical conductivity to be highly involved in reaction around 3V, and providing a conductive path to improve the capacity, life and rate characteristics of an electrochemical device.Type: ApplicationFiled: December 18, 2014Publication date: April 16, 2015Applicant: LG Chem, Ltd.Inventors: Ji-Hye Park, Song-Taek Oh, Hyeok-Moo Lee
-
Patent number: 9005812Abstract: A negative active material, a method of preparing the negative active material and a lithium ion battery comprising the negative active material are provided. The negative active material may comprise: a core (1) composed of a carbon material; and a plurality of composite materials (2) attached to a surface of the core (1), each of which may comprise a first material (21) and a second material (22) coated on the first material (21), in which the first material (21) may be at least one selected from the elements that may form an alloy with lithium, and the second material (22) may be at least one selected from the group consisting of transition metal oxides, transition metal nitrides and transition metal sulfides.Type: GrantFiled: August 31, 2011Date of Patent: April 14, 2015Assignee: Shenzhen BYD Auto R&D Company LimitedInventors: Yongjun Ma, Pei Tu, Zizhu Guo
-
Publication number: 20150099175Abstract: The present invention provides an electrode material in which unevenness in a supporting amount of a carbonaceous film is less when using an electrode-active material having a carbonaceous film on a surface thereof as the electrode material, and which is capable of improving conductivity, and a method for producing the electrode material. The electrode material includes an aggregate formed by aggregating an electrode-active material in which a carbonaceous film is formed on a surface. In the electrode material, an average particle size of the aggregate is 0.5 to 100 ?m, a volume density of the aggregate is 50 to 80 vol % of a volume density in a case in which the aggregate is a solid, and 80% or more of the surface of the electrode-active material is covered with the carbonaceous film. Alternatively, the electrode material includes an aggregate formed by aggregating electrode-active material particles in which a carbonaceous film is formed on a surface.Type: ApplicationFiled: December 11, 2014Publication date: April 9, 2015Applicant: SUMITOMO OSAKA CEMENT CO., LTD.Inventors: Takao KITAGAWA, Hirofumi YASUMIISHI, Masaru UEHARA
-
Publication number: 20150093641Abstract: Provided is a lithium metal compound oxide having a layered structure, which is very excellent as a positive electrode active material of a battery that is mounted on, particularly, an electric vehicle or a hybrid vehicle. Suggested is a lithium metal compound oxide having a layered structure which is expressed by general formula of Li1+xM1?xO2 (M represents metal elements including three elements of Mn, Co, and Ni). In the lithium metal compound oxide having a layered structure, D50 is more than 4 ?m and less than 20 ?m, a ratio of a primary particle area to a secondary particle area of secondary particles having a size corresponding to the D50 (“primary particle area/secondary particle area”) is 0.004 to 0.035, and the minimum value of powder crushing strength that is obtained by crushing a powder using a microcompression tester is more than 70 MPa.Type: ApplicationFiled: April 16, 2013Publication date: April 2, 2015Inventors: Tetsuya Mitsumoto, Hitohiko Ide, Shinya Kagei, Yoshimi Hata
-
Publication number: 20150072232Abstract: In a lithium-ion secondary battery (100), positive electrode active material particles (610) each include a shell portion (612) made of a layered lithium-transition metal oxide, a hollow portion (614) formed inside the shell portion (612), and a through-hole (616) penetrating through the shell portion (612). A positive electrode active material layer (223) has a density A of 1.80 g/cm3?A?2.35 g/cm3, and a negative electrode active material layer (243) has a density B of 0.95 g/cm3?B?1.25 g/cm3.Type: ApplicationFiled: March 30, 2012Publication date: March 12, 2015Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHAInventor: Hiroki Nagai
-
Publication number: 20150064556Abstract: An electrode for a rechargeable battery and a rechargeable battery, the electrode including a current collector; an electrode active material layer; and an electrolyte solution impregnation layer, wherein the electrolyte solution impregnation layer includes a metal oxide and a conductive material.Type: ApplicationFiled: January 17, 2014Publication date: March 5, 2015Applicant: SAMSUNG SDI CO., LTD.Inventors: Jin-Hyon LEE, Ju-Hee SOHN, Jung-Yeon WON, Eun-Young GOH, Jong-Ki LEE, Sang-In PARK
-
ELECTRODE ACTIVE MATERIAL, ELECTRODE INCLUDING THE SAME, AND LITHIUM BATTERY INCLUDING THE ELECTRODE
Publication number: 20150064560Abstract: An electrode active material including an ordered mesoporous metal oxide; and at least one conductive carbon material disposed in a pore of the ordered mesoporous metal oxide. Also, an electrode including the electrode active material, and a lithium battery including the electrode.Type: ApplicationFiled: August 25, 2014Publication date: March 5, 2015Inventors: Jeongkuk SHON, Jaeman CHOI, Junhwan KU, Kuntae KWON, Moonseok KWON, Minsang SONG, Seungsik HWANG, Jiman KIM, Gwiok PARK -
Publication number: 20150044565Abstract: The present invention provides a process for producing a graphene-enhanced anode active material for use in a lithium battery. The process comprises (a) providing a continuous film of a graphene material into a deposition zone; (b) introducing vapor or atoms of a precursor anode active material into the deposition zone, allowing the vapor or atoms to deposit onto a surface of the graphene material film to form a sheet of an anode active material-coated graphene material; and (c) mechanically breaking this sheet into multiple pieces of anode active material-coated graphene; wherein the graphene material is in an amount of from 0.1% to 99.5% by weight and the anode active material is in an amount of at least 0.5% by weight, all based on the total weight of the graphene material and the anode active material combined.Type: ApplicationFiled: August 8, 2013Publication date: February 12, 2015Inventors: Yanbo Wang, Bor Z. Jang, Hui He, Aruna Zhamu
-
Publication number: 20150044564Abstract: The present invention provides an anode electrode of a lithium-ion battery, comprising an anode active material-coated graphene sheet, wherein the graphene sheet has two opposed parallel surfaces and at least 50% area of one of the surfaces is coated with an anode active material and wherein the graphene material is in an amount of from 0.1% to 99.5% by weight and the anode active material is in an amount of at least 0.5% by weight (preferably at least 60%), all based on the total weight of the graphene material and the anode active material combined.Type: ApplicationFiled: August 8, 2013Publication date: February 12, 2015Inventors: Yanbo Wang, Bor Z. Jang, Hui He, Aruna Zhamu
-
Patent number: 8940430Abstract: A nickel zinc battery cell includes a metallic zinc-based current collection substrate as a part of the negative electrode. The metallic zinc-based current collector may be made of or be coated with a zinc metal or zinc alloy material and may be a foil, perforated, or expanded material. Battery cells incorporating the zinc-based current collector exhibit good cycle lifetime and initial charge performance.Type: GrantFiled: February 8, 2008Date of Patent: January 27, 2015Assignee: PowerGenix Systems, Inc.Inventors: Jeffrey Phillips, Samaresh Mohanta, Zhen Gang Fan, Ru Jun Ma, Feng Feng, Lou Uzel, Chi Yau, Jason Zhao, Zeiad M. Muntasser
-
Publication number: 20150024280Abstract: In a battery production process, a positive electrode active material having a reaction-suppressing layer that does not easily peel off formed on the surface thereof, and a positive electrode and an all-solid-state battery that use said material are provided. The present invention involves positive electrode active material particles for an all-solid-state battery containing sulfide-based solid electrolyte. The positive electrode active material particles are an aggregate containing two or more particles. The surface of the aggregate is coated with a reaction-suppressing layer for suppressing reactions with the sulfide-based solid electrolyte.Type: ApplicationFiled: May 23, 2011Publication date: January 22, 2015Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHAInventor: Takayuki Uchiyama
-
Patent number: 8936874Abstract: This invention provides a nanocomposite-based lithium battery electrode comprising: (a) A porous aggregate of electrically conductive nano-filaments that are substantially interconnected, intersected, physically contacted, or chemically bonded to form a three-dimensional network of electron-conducting paths, wherein the nano-filaments have a diameter or thickness less than 1 ?m (preferably less than 500 nm); and (b) Sub-micron or nanometer-scale electro-active particles that are bonded to a surface of the nano-filaments with a conductive binder material, wherein the particles comprise an electro-active material capable of absorbing and desorbing lithium ions and wherein the electro-active material content is no less than 25% by weight based on the total weight of the particles, the binder material, and the filaments. Preferably, these electro-active particles are coated with a thin carbon layer. This electrode can be an anode or a cathode.Type: GrantFiled: June 4, 2008Date of Patent: January 20, 2015Assignee: Nanotek Instruments, Inc.Inventors: Jinjun Shi, Aruna Zhamu, Bor Z. Jang
-
Publication number: 20150017527Abstract: The present invention relates to a negative electrode active material for a rechargeable lithium battery, a method for preparing the same, and a rechargeable lithium battery using the same, and provides a negative electrode active material for a rechargeable lithium battery of a carbon-metal complex or a mixture type, containing a carbon-based active material including a first ceramic coating layer, a metal-based active material or a metal-base active material including a first ceramic coating layer, and a carbon-based active material.Type: ApplicationFiled: November 15, 2013Publication date: January 15, 2015Applicant: POSCO CHEMTECH CO., LTD.Inventors: Kyoung Muk LEE, Heon Young LEE, Mi Ryeong LEE, Eun Byeol HYEONG
-
Publication number: 20150010832Abstract: The invention relates to Chevrel-phase materials and methods of preparing these materials utilizing a precursor approach. The Chevrel-phase materials are useful in assembling electrodes, e.g., cathodes, for use in electrochemical cells, such as rechargeable batteries. The Chevrel-phase materials have a general formula of Mo6Z8 and the precursors have a general formula of MxMo6Z8. The cathode containing the Chevrel-phase material in accordance with the invention can be combined with a magnesium-containing anode and an electrolyte.Type: ApplicationFiled: July 8, 2014Publication date: January 8, 2015Applicant: UNIVERSITY OF PITTSBURGH - OF THE COMMONWEALTH SYSTEM OF HIGHER EDUCATIONInventors: Prashant N. Kumta, Partha Saha, Moni Kanchan Datta, Ayyakkannu Manivannan
-
Publication number: 20150004487Abstract: Disclosed is an electrode for secondary batteries including an electrode mixture including an electrode active material, binder and conductive material coated on a current collector wherein a conductive material is coated to a thickness of 1 to 80 ?m on the current collector and the electrode mixture is coated on a coating layer of the conductive material so as to improve electrical conductivity.Type: ApplicationFiled: September 18, 2014Publication date: January 1, 2015Applicant: LG Chem, Ltd.Inventors: Min Hee Lee, Tae Jin Park, Daehong Kim
-
Publication number: 20150004471Abstract: Ultrafast battery devices having enhanced reliability and power density are provided. Such batteries can include a cathode including a first silicon substrate having a cathode structured surface, an anode including a second silicon substrate having an anode structured surface positioned adjacent to the cathode such that the cathode structured surface faces the anode structured surface, and an electrolyte disposed between the cathode and the anode. The anode structured surface can be coated with an anodic active material and the cathode structured surface can be coated with a cathodic active material.Type: ApplicationFiled: June 28, 2013Publication date: January 1, 2015Inventors: Zhaohui Chen, Yang Liu, Charles W. Holzwarth, Nicolas Cirigliano, Bum Ki Moon
-
Publication number: 20140377655Abstract: A composite cathode active material, a method of preparing the composite cathode active material, a cathode including the composite cathode active material, and a lithium battery including the cathode. The composite cathode active material includes a lithium intercalatable material; and a garnet oxide, wherein an amount of the garnet oxide is about 1.9 wt % or less, based on a total weight of the composite cathode active material.Type: ApplicationFiled: April 25, 2014Publication date: December 25, 2014Applicant: Samsung Electronics Co., Ltd.Inventors: Jun-young MUN, Jae-myung LEE, Gue-sung KIM, Yoon-sok KANG, Myung-hoon KIM, Jun-ho PARK, Jin-hwan PARK, Jae-gu YOON, Byung-jin CHOI
-
Publication number: 20140349183Abstract: A composite particle is provided. The particle comprises a first particle component and a second particle component in which: (a) the first particle component comprises a body portion and a surface portion, the surface portion comprising one or more structural features and one or more voids, whereby the surface portion and body portion define together a structured particle; and (b) the second component comprises a removable filler; characterised in that (i) one or both of the body portion and the surface portion comprise an active material; and (ii) the filler is contained within one or more voids comprised within the surface portion of the first component.Type: ApplicationFiled: February 27, 2013Publication date: November 27, 2014Applicant: Nexeon LimitedInventors: William James Macklin, Fiona Scott, Christopher Michael Friend
-
Publication number: 20140349170Abstract: Disclosed are a method of manufacturing an electrode for secondary batteries that includes surface-treating a current collector so as to have a morphology wherein a surface roughness Ra of 0.001 ?m to 10 ?m is formed over the entire surface thereof to enhance adhesion between an electrode active material and the current collector and an electrode for secondary batteries that is manufactured using the method.Type: ApplicationFiled: August 7, 2014Publication date: November 27, 2014Inventors: Daehong Kim, Jae Hyun Lee, Jihyun Kim
-
Publication number: 20140322606Abstract: The present disclosure relates to an anode active material comprising a composite of a core-shell structure, a lithium secondary battery comprising the same, and a method of manufacturing the anode active material. According to an aspect of the present disclosure, there is provided an anode active material of a core-shell structure comprising a core including alloyed (quasi)metal oxide-Li (MOx—Liy) and a shell including a carbon material coated on a surface of the core. According to another aspect of the present disclosure, there is provided a method of manufacturing the anode active material of the core-shell structure. According to an aspect of the present disclosure, an anode active material with high capacity, excellent cycle characteristics and volume expansion control capacity, and high initial efficiency is provided.Type: ApplicationFiled: July 15, 2014Publication date: October 30, 2014Inventors: Yong-Ju Lee, Yoon-Ah Kang, Mi-Rim Lee, Je-Young Kim, Hye-Ran Jung
-
Publication number: 20140315086Abstract: This invention relates to a negative electrode material for lithium-ion batteries comprising silicon and having a chemically treated or coated surface influencing the zeta potential of the surface. The active material consists of particles or particles and wires comprising a core (11) comprising silicon, wherein the particles have a positive zeta potential in an interval between pH 3.5 and 9.5, and preferably between pH 4 and 9.5. The core is either chemically treated with an amino-functional metal oxide, or the core is at least partly covered with OySiHx groups, with 1<x<3, 1<y<3, and x>y, or is covered by adsorbed inorganic nanoparticles or cationic multivalent metal ions or oxides.Type: ApplicationFiled: December 13, 2012Publication date: October 23, 2014Inventors: Stijn Put, Jan Gilleir, Kris Driesen, Jean-Sebastien Bridel, Nicolas Marx, Delphine Longrie, Dan V. Goia, John I. Njagi
-
Publication number: 20140272584Abstract: A Li-ion battery is disclosed, the Li-ion battery including an anode, a cathode, a lithium donor formed from a Li-containing material, and an electrolyte in communication with the anode, the cathode, and the lithium donor. The lithium donor may be incorporated into the anode, incorporated into the cathode, a layer formed on either an anode side or a cathode side of a separator of the battery. The lithium donor is formed from Li-containing material insensitive to oxygen and aqueous moisture.Type: ApplicationFiled: March 15, 2013Publication date: September 18, 2014Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLCInventors: Meng Jiang, Xingcheng Xiao, Mei Cai, Li Yang, Bob R. Powell, JR.
-
Publication number: 20140242464Abstract: Provided is a lithium secondary battery having improved discharge characteristics in a range of high-rate discharge while minimizing a dead volume and at the same time, having increased cell capacity via increased electrode density and electrode loading amounts, by inclusion of two or more active materials having different redox levels so as to exert superior discharge characteristics in the range of high-rate discharge via sequential action of cathode active materials in a discharge process, and preferably having different particle diameters.Type: ApplicationFiled: March 28, 2014Publication date: August 28, 2014Applicant: LG Chem, Ltd.Inventors: Sung Kyun Chang, Seo-Jae Lee, Sanghoon Choy, Euiyong Bang, Minchul Jang, Ki-Young Lee
-
Publication number: 20140234714Abstract: A negative active material and a lithium battery are provided. The negative active material includes a composite core, and a coating layer formed on at least part of the composite core. The composite core includes a carbonaceous base and a metal/metalloid nanostructure disposed on the carbonaceous base. The coating layer includes a metal oxide coating layer and an amorphous carbonaceous coating layer.Type: ApplicationFiled: December 19, 2013Publication date: August 21, 2014Applicant: Samsung SDI Co., Ltd.Inventors: Yu-Jeong Cho, Sang-Eun Park, So-Ra Lee, Su-Kyung Lee, Ui-Song Do, Chang-Su Shin, Jae-Myung Kim
-
Publication number: 20140234710Abstract: A negative active material includes a conductive unit bound in island-like form to silicon-based nanowires on a carbonaceous base. Such negative active material may improve the electrical conductivity of the silicon-based nanowires, and suppress separation of the silicon-based nanowires caused from volume expansion, and thus may improve lifetime characteristics of a lithium battery.Type: ApplicationFiled: January 9, 2014Publication date: August 21, 2014Applicant: SAMSUNG SDI CO., LTD.Inventors: Su-Kyung Lee, So-Ra Lee, Kyu-Nam Joo, Yu-Jeong Cho, Ui-Song Do, Chang-Su Shin, Ha-Na Yoo, Sang-Eun Park, Jae-Myung Kim
-
Patent number: 8808916Abstract: Disclosed are a cathode active material for lithium secondary batteries, a method for preparing the same, and lithium secondary batteries comprising the same. The cathode active material for lithium secondary batteries comprises a lithium metal oxide secondary particle core formed by aggregation of a plurality of lithium metal oxide primary particles; a first shell formed by coating the surface of the secondary particle core with a plurality of barium titanate particles and a plurality of metal oxide particles; and a second shell formed by coating the surface of the first shell with a plurality of olivine-type lithium iron phosphate oxide particles and a plurality of conductive material particles. The cathode active material for lithium secondary batteries allows manufacture of lithium secondary batteries having excellent thermal stability, high-temperature durability and overcharge safety.Type: GrantFiled: November 25, 2009Date of Patent: August 19, 2014Assignees: Daejung EM Co., Ltd., Kokam Co., Ltd.Inventors: Seong-Bae Kim, Woo-Seong Kim, Ki-Sup Song, Ji-Jun Hong, Sung-Tae Ko, Yoon-Jeong Heo
-
Publication number: 20140205909Abstract: The purpose of the present invention is to provide a zinc negative electrode mixture for forming negative electrodes of safe and economic batteries exhibiting excellent battery performance; and a gel electrolyte or a negative electrode mixture which can be suitably used for forming a storage battery exhibiting excellent battery performance such as a high cycle characteristic, rate characteristic, and coulombic efficiency while suppressing change in form, such as shape change and dendrite, and passivation of the electrode active material. Another purpose of the present invention is to provide a battery including the zinc negative electrode mixture or the gel electrolyte. (1) The zinc negative electrode mixture contains a zinc-containing compound and a conductive auxiliary agent. The zinc-containing compound and/or the conductive auxiliary agent contain(s) particles having an average particle size of 1000 ?m or smaller and/or particles having an aspect ratio (vertical/lateral) of 1.1 or higher.Type: ApplicationFiled: August 22, 2012Publication date: July 24, 2014Applicant: NIPPON SHOKUBAI CO., LTD.Inventors: Koji Yonehara, Hironobu Ono, Hiroko Harada, Yasuyuki Takazawa
-
Publication number: 20140205905Abstract: An electrode material for use in an electrochemical cell, like a lithium-ion battery, is provided. The electrode material may be a negative electrode comprising graphite, silicon, silicon-alloys, or tin-alloys, for example. By avoiding deposition of transition metals, the battery substantially avoids charge capacity fade during operation. The surface coating is particularly useful with negative electrodes to minimize or prevent deposition of transition metals thereon in the electrochemical cell. The coating has a thickness of less than or equal to about 40 nm. Methods for making such materials and using such coatings to minimize transition metal deposition in electrochemical cells are likewise provided.Type: ApplicationFiled: January 18, 2013Publication date: July 24, 2014Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLCInventors: Xingcheng Xiao, Junghyun Kim, Zhongyi Liu
-
Publication number: 20140193714Abstract: A cathode active material including a lithium metal oxide composite having a first domain and a second domain and represented by Formula 1: x[Li2-y(M1)1-z(M2)y+zO3]-(1?x)[LiMeO2]??Formula 1 wherein 0<x<1, 0?y<1, 0?z<1, 0<y+z<1, M1 includes at least one transition metal, M2 includes at least one metal selected from magnesium (Mg), aluminum (Al), vanadium (V), zinc (Zn), molybdenum (Mo), niobium (Nb), lanthanum (La), and ruthenium (Ru), and Me includes at least one metal selected from nickel (Ni), cobalt (Co), manganese (Mn), iron (Fe), chromium (Cr), titanium (Ti), copper (Cu), aluminum (Al), magnesium (Mg), zirconium (Zr), and boron (B).Type: ApplicationFiled: July 30, 2013Publication date: July 10, 2014Applicants: Samsung Fine Chemicals Co., Ltd., Samsung SDI Co., Ltd.Inventors: Myung-hoon KIM, Jae-gu YOON, Min-sik PARK, Jin-hwan PARK
-
Publication number: 20140178759Abstract: A composition comprising at least one graphene-supported metal oxide monolith, said monolith comprising a three-dimensional structure of graphene sheets crosslinked by covalent carbon bonds, wherein the graphene sheets are coated by at least one metal oxide such as iron oxide or titanium oxide. Also provided is an electrode comprising the aforementioned graphene-supported metal oxide monolith, wherein the electrode can be substantially free of any carbon-black and substantially free of any binder.Type: ApplicationFiled: March 15, 2013Publication date: June 26, 2014Applicant: LAWRENCE LIVERMORE NATIONAL SECURITY, LLCInventor: LAWRENCE LIVERMORE NATIONAL SECURITY, LLC
-
Publication number: 20140178760Abstract: A positive electrode active material comprising a lithium rich metal oxide active composition coated with aluminum zinc oxide coating composition is disclosed. The aluminum zinc oxide can be represented by the formula AlxZn1-3x/2O, where x is from about 0.01 to about 0.6. In some embodiments, the material can have an average voltage that is very stable with cycling, and a specific capacity of at least about 175 mAh/g and an average voltage of at least about 3.55V discharged at a rate of C/3 from 4.6V to 2V against lithium. The material can further comprise an overcoat of metal halide over the aluminum zinc oxide coating. In some embodiments, the material can have from about 1 mole percent to about 15 mole percent aluminum zinc oxide coating and from about 0.5 mole percent to about 3 mole percent aluminum halide overcoat.Type: ApplicationFiled: December 20, 2012Publication date: June 26, 2014Applicant: ENVIA SYSTEMS, INC.Inventors: Charles A. Bowling, Subramanian Venkatachalam, Herman A. Lopez, Sujeet Kumar
-
Patent number: 8753778Abstract: Disclosed is a negative active material for a rechargeable lithium battery is provided that includes composite particles including an amorphous or semi-crystalline carbon matrix, and crystalline graphite powder particles having an average particle diameter of 0.2 to 3 ?m dispersed in the matrix. The composite particles have an average particle diameter of 4 to 40 ?m. A method of preparing the same and a rechargeable lithium battery including the negative active material are also disclosed.Type: GrantFiled: October 9, 2009Date of Patent: June 17, 2014Assignee: Knu-Industry Cooperation FoundationInventors: Sung Man Lee, Byoung-Hoon Ahn
-
Publication number: 20140154571Abstract: Provided are a composite and a method of preparing an anode slurry including the same. More particularly, the present invention provides a composite including a (semi) metal oxide, a conductive material on a surface of the (semi) metal oxide, and a binder, and a method of preparing an anode slurry including preparing a composite by dispersing a conductive material in an aqueous binder and then mixing with a (semi) metal oxide, and mixing the composite with a carbon material and a non-aqueous binder.Type: ApplicationFiled: January 29, 2014Publication date: June 5, 2014Applicant: LG CHEM, LTD.Inventors: Yoon Ah Kang, Yong Ju Lee, Rae Hwan Jo, Je Young Kim
-
Publication number: 20140154576Abstract: Provided are a composite for an anode active material and a method of preparing the same. More particularly, the present invention provides a composite for an anode active material including a (semi) metal oxide and an amorphous carbon layer on a surface of the (semi) metal oxide, wherein the amorphous carbon layer comprises a conductive agent, and a method of preparing the composite.Type: ApplicationFiled: January 29, 2014Publication date: June 5, 2014Applicant: LG CHEM, LTD.Inventors: Yoon Ah Kang, Yong Ju Lee, Rae Hwan Jo, Je Young Kim
-
Patent number: 8741455Abstract: A secondary hybrid aqueous energy storage device includes an anode electrode, a cathode electrode which is capable of reversibly intercalating sodium cations, a separator, and a sodium cation containing aqueous electrolyte, wherein an initial active cathode electrode material comprises an alkali metal containing active cathode electrode material which deintercalates alkali metal ions during initial charging of the device.Type: GrantFiled: August 29, 2011Date of Patent: June 3, 2014Assignee: Carnegie Mellon UniversityInventor: Jay Whitacre
-
Publication number: 20140141329Abstract: The present disclosure describes, among other things, new layered molybdenum oxides for lithium ion battery cathodes from solid solutions of Li2MoO3 and LiCrO2. These materials display high energy density, good rate capability, great safety against oxygen release at charged state due mostly to their low voltage. Therefore, these materials have properties desirable for lithium ion battery cathodes.Type: ApplicationFiled: October 2, 2013Publication date: May 22, 2014Applicant: Massachusetts Institute of TechnologyInventors: Gerbrand Ceder, Jinhyuk Lee, Sangtae Kim, Xin Li
-
Publication number: 20140141334Abstract: Provided are a porous composite expressed by Chemical Formula 1 and having a porosity of 5% to 90%, and a method of preparing the same: MOx??<Chemical Formula 1> where M and x are the same as described in the specification. According to the present invention, since a molar ratio (x) of oxygen to a molar ratio of (semi) metal in the porous composite is controlled, an initial efficiency of a secondary battery may be increased. Also, since the porous composite satisfies the above porosity, a thickness change rate of an electrode generated during charge and discharge of the secondary battery may be decreased and lifetime characteristics may be improved.Type: ApplicationFiled: January 27, 2014Publication date: May 22, 2014Applicant: LG CHEM, LTD.Inventors: Jung Woo Yoo, Yong Ju Lee, Yoon Ah Kang, Mi Rim Lee, Je Young Kim
-
Publication number: 20140129065Abstract: A secondary battery includes: a cathode; an anode; and an electrolytic solution. The anode includes a lithium composite oxide represented by following Formula (1), LiwZnxSnyMzO4??(1) where M is one or more of Co, Mg, Ni, Ca, Al, Ti, V, Cr, Mn, Fe, Cu, and Ag; and w to z satisfy 0.3?w?1, 0.3?x?1, 0.8?y?1.2, and (w+x+y+z)=3.Type: ApplicationFiled: October 21, 2013Publication date: May 8, 2014Applicant: Sony CorporationInventors: Kenta Yamamoto, Takayuki Ito, Takeshi Miyazaki, Hidetoshi Ito