Abstract: A binder for a lithium-sulfur secondary battery cathode, a composition containing the same, and an acrylic binder capable of forming a cross-linked network and a use thereof. The binder contains a polar functional group capable of strongly interacting with sulfur.
Type:
Grant
Filed:
September 26, 2017
Date of Patent:
March 11, 2025
Assignee:
LG ENERGY SOLUTION, LTD.
Inventors:
Jeong Ae Yoon, Yu Mi Kim, Choong Hyeon Lee, Doo Kyung Yang, Sung Soo Yoon
Abstract: The present application relates to an anode active material and a preparation method thereof, and a device using the anode active material. The anode active material provided by the present application includes anode active particles having silicon element, a first conductive material and a second conductive material, wherein the first conductive material and the second conductive material form a three-dimensional conductive network structure, at least a portion of the anode active particles are accommodated in the three-dimensional conductive network structure, and a ratio of the total surface area of the first conductive material to the total surface area of the anode active particles is less than 1000. The capacity retention rate and expansion ratio of the anode active material with progression of the cycle are significantly improved.
Type:
Grant
Filed:
November 19, 2019
Date of Patent:
January 7, 2025
Assignee:
NINGDE AMPEREX TECHNOLOGY LIMITED
Inventors:
Zhihuan Chen, Daoyi Jiang, Hang Cui, Yuansen Xie
Abstract: Discussed is sulfur-carbon composite including a porous carbon material; and sulfur, wherein the sulfur is present in at least a part of an inside of the porous carbon material and on a surface of the porous carbon material, a preparation method thereof, a positive electrode for a lithium secondary battery including the same, and a lithium secondary battery.
Abstract: A metal or metal-ion battery composition is provided that comprises anode and cathode electrodes along with an electrolyte ionically coupling the anode and the cathode. At least one of the electrodes includes active material particles provided to store and release ions during battery operation. Each of the active material particles includes internal pores configured to accommodate volume changes in the active material during the storing and releasing of the ions. The electrolyte comprises a solid electrolyte ionically interconnecting the active material particles.
Abstract: Provided is a technology that allows precipitated metallic lithium to be rendered harmless in a lithium ion secondary battery. The nonaqueous electrolyte solution of a lithium ion secondary battery disclosed herein contains a lithium salt as an electrolyte salt, a nonaqueous solvent, and an aromatic carboxylic acid compound and an aryl halide compound, as additives.
Abstract: A slurry manufacturing apparatus includes a rotation-revolution mixing device which mixes and prepares a slurry by rotational movement and revolving movement and a gas injection mechanism which dissolves carbonic acid gas in the slurry prepared by the rotation-revolution mixing device, in which the gas injection mechanism dissolves the carbonic acid gas in the slurry by injecting the carbonic acid gas under pressure in a sealed state.
Abstract: A negative electrode particle and a preparing method thereof, a negative electrode sheet, and an energy-storage apparatus are provided. The negative electrode particle provided in the disclosure defines a closed pore located inside the negative electrode particle and an open pore located on a surface of the negative electrode particle. A ratio of a pore volume C1 of the closed pore to a pore volume C2 of the open pore satisfies: 6?C1/C2?11, and the pore volume C1 of the closed pore satisfies: 0.03 cm3/g?C1?0.12 cm3/g.
Type:
Grant
Filed:
March 15, 2024
Date of Patent:
September 3, 2024
Assignee:
Xiamen Hithium Energy Storage Technology Co., Ltd.
Abstract: Provided are materials that may be used in or as a separator in an electrochemical cell such as a lithium sulfur battery. The separator includes a material capable of absorbing and desorbing a polysulfide. The inclusion of the materials in a separator provide for reduced sulfur loss from a cathode during cycling thereby improving cycle life.
Type:
Grant
Filed:
October 4, 2018
Date of Patent:
August 13, 2024
Assignee:
Navitas Systems, LLC
Inventors:
Qingliu Wu, Pu Zhang, Michael Wixom, Hong Wang
Abstract: A negative electrode active material including: silicon-containing composite particles including SiOx (0<x<2) and pores; and a carbon layer on a surface of the silicon-containing composite particles and in the pores, in which the carbon layer includes a metal, the metal includes at least one selected from the group consisting of Li, Na and K, and the pores have an average diameter in a range of 2 nm to 45 nm, a negative electrode including the same, a secondary battery including the negative electrode and a method for preparing the negative electrode active material.
Type:
Grant
Filed:
August 11, 2022
Date of Patent:
July 30, 2024
Assignee:
LG ENERGY SOLUTION, LTD.
Inventors:
Semi Park, Sun Young Shin, Ilgeun Oh, Su Min Lee, Yong Ju Lee
Abstract: The invention relates to a process for the preparation of carbon-deposited alkali metal oxyanion and the use thereof as cathode material in lithium secondary batteries wherein the process comprises synthesis of partially reacted alkali metal oxyanion, a wet-based nanomilling step, a drying step and a subsequent carbon deposition step performed by a thermal CVD process. The invention also relates to carbon deposited alkali metal oxyanion with less than 80 ppm of sulfur impurities for the preparation of a cathode of lithium secondary batteries with exceptional high-temperature electrochemical properties.
Abstract: A negative electrode active material including silicon-based active material particles each including a core including SiOx, wherein 0?x?2, and a coating layer present on the core. Also, a negative electrode active material in which the coating layer is any one of a carbon coating layer or a polymer coating layer, and the coating layer includes a fluorinated material including at least one of an alkali metal or an alkaline earth metal.
Type:
Grant
Filed:
November 26, 2019
Date of Patent:
July 9, 2024
Assignee:
LG ENERGY SOLUTION, LTD.
Inventors:
Jung Hyun Choi, Yong Ju Lee, Eun Kyung Kim, Rae Hwan Jo, Dong Hyuk Kim, Il Geun Oh
Abstract: Provided are passivation layers for batteries. The batteries may be aqueous aluminum batteries. The passivation layer may be disposed on a portion of or all of a surface or surfaces of an anode, which may be an aluminum or aluminum alloy anode. The passivation layer is bonded to the surface of the anode. The passivation layer may be an organic, nitrogen-rich material and inorganic Al-halide rich or Al-nitrate rich material. The passivation layer may be formed by contacting an aluminum or aluminum alloy substrate, which may be aluminum or aluminum alloy anode, with one or more aluminum halide and one or more ionic liquid.
Abstract: A battery includes a power generating element group including multiple laminated power generating elements each of which contains a solid electrolyte, and a first member in contact with a principal surface of a first power generating element that is one among the multiple power generating elements. The principal surface includes a central portion and an end portion with a ring-like shape surrounding the central portion in a plan view. The first member includes a central region overlapping with the central portion of the principal surface in a plan view, and an end region overlapping with the end portion of the principal surface in a plan view. At least one of the central region or the end region is in contact with the principal surface. A Young's modulus of the end region is smaller than that of the central region.
Abstract: An acidified metal oxide (“AMO”) material, preferably in monodisperse nanoparticulate form 20 nm or less in size, having a pH<7 when suspended in a 5 wt % aqueous solution and a Hammett function H0>?12, at least on its surface. The AMO material is useful in applications such as a battery electrode, catalyst, or photovoltaic component.
Abstract: To provide an electrode for an electricity storage device, which electrode employs a porous conductor having conductive nanostructures formed on its surface and makes it possible to provide a less expensive electricity storage device having a high discharge capacity and high charge/discharge cycle resistance. A porous conductor which is used as an electrode for an electricity storage device has a plurality of conductive nanostructures on a surface of the porous conductor.
Type:
Grant
Filed:
September 19, 2018
Date of Patent:
April 2, 2024
Assignees:
National University Corporation Chiba University, TOMOEGAWA CORPORATION
Abstract: A multilayer body is provided that is used as the negative electrode of a lithium-ion secondary battery that has a high capacity and is excellent in terms of safety, economic efficiency, and cycle characteristics. The multilayer body has a conductive substrate and a composite layer provided on the conductive substrate. The composite layer includes a plurality of particles of silicon oxide and a conductive substance present in gaps between the plurality of particles of silicon oxide. The average particle diameter of the particles of silicon oxide is 1.0 ?m or less. The multilayer body further has a conductive layer that is provided on the composite layer and contains a conductive substance. The conductive layer has a thickness of 20 ?m or less.
Type:
Grant
Filed:
February 22, 2019
Date of Patent:
February 27, 2024
Assignee:
NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY
Abstract: This application relates to anode compositions and methods of making and using the same. In particular, the anode compositions are preferably layered. Preferably, the methods of making the anode compositions comprise a surfactant mediated assembly of layers. The anode compositions have improved structural integrity and capacity while reducing capacity fade due to cycling.
Type:
Grant
Filed:
October 22, 2019
Date of Patent:
November 21, 2023
Assignee:
SOUTH DAKOTA BOARD OF REGENTS
Inventors:
David R. Salem, Chunhui Chen, Abdulmenan Hussein
Abstract: Disclosed is a composite silicon negative electrode material. The composite silicon negative electrode material comprises a nano silicon (1), a nano composite layer (5) coated on the surface of the nano silicon, and a conductive carbon layer (4) uniformly coated outside the nano composite layer (5). The nano composite layer (5) is a silicon oxide (2) and a metal alloy (3).
Abstract: An electrochemical device includes a cathode including elemental selenium, elemental sulfur, or selenium-sulfur containing composite; a negative electrode; a separator; and an electrolyte including a poly(alkyleneoxide) siloxane; and a salt; wherein a concentration of the salt in the electrolyte is sufficient to minimize dissolution of polysulfides/polyselenides formed during cycling of the device.
Abstract: A battery includes a positive electrode; a negative electrode; a separator; and an intermediate layer. The intermediate layer is provided between the positive electrode and the separator and includes one or both of a fluororesin and a particle. The positive electrode has a positive electrode active material layer including a fluorine-based binder having a melting point of 166° C. or less, and a content of the fluorine-based binder in the positive electrode active material layer is from 0.5% by mass to 2.8% by mass.
Abstract: The invention relates to a process for the preparation of carbon-deposited alkali metal oxyanion and the use thereof as cathode material in lithium secondary batteries wherein the process comprises synthesis of partially reacted alkali metal oxyanion, a wet-based nanomilling step, a drying step and a subsequent carbon deposition step performed by a thermal CVD process. The invention also relates to carbon deposited alkali metal oxyanion with less than 80 ppm of sulfur impurities for the preparation of a cathode of lithium secondary batteries with exceptional high-temperature electrochemical properties.
Abstract: Electrolyte materials for use in electrochemical cells, electrochemical cells comprising the same, and methods of making such materials and cells, are generally described. In some embodiments, the materials, processes, and uses described herein relate to electrochemical cells comprising sulfur and lithium such as, for example, lithium sulfur batteries.
Abstract: Self-charging electrochemical cells, including self-charging batteries that incorporate such self-charging electrochemical cells, the electrochemical cells including a cathode including a cathode active material, an electrolyte including a solvent and a salt dissolved in the solvent, the electrolyte being in contact with the cathode, where the cathode active material is transformed into a discharge product during or after a discharge of the self-charging electrochemical cell and a solubility of the cathode active material in the electrolyte is less than a solubility of the discharge product in the electrolyte.
Abstract: A positive active material for a rechargeable lithium battery includes a first positive active material including a secondary particle including at least two agglomerated primary particles, where at least one part of the primary particles has a radial arrangement structure, as well as a second positive active material having a monolith structure, wherein the first and second positive active materials may each include nickel-based positive active materials and the surface of the second positive active material is coated with a boron-containing compound. Further embodiments provide a method of preparing the positive active material, and a rechargeable lithium battery including a positive electrode including the positive active material.
Type:
Grant
Filed:
November 23, 2020
Date of Patent:
June 6, 2023
Assignee:
Samsung SDI Co., Ltd.
Inventors:
Pilsang Yun, Jongmin Kim, Hyunbeom Kim, Sangin Park, Yongchan You
Abstract: A negative electrode including a negative electrode active material layer including a negative electrode active material including a negative electrode active material particle. The negative electrode active material particle includes a silicon compound particle including a silicon compound (SiOx: 0.5?x?1.6). The silicon compound particle includes crystalline Li2SiO3 in at least part of the silicon compound particle. Among a peak intensity A derived from Li2SiO3, a peak intensity B derived from Si, a peak intensity C derived from Li2Si2O5, and a peak intensity D derived from SiO2 which are obtained from a 29Si-MAS-NMR spectrum of the silicon compound particle, the peak intensity A is the highest intensity, and the peak intensity A and the peak intensity C satisfy a relationship of the following formula 1: Formula 1: 3C<A.
Abstract: Methods of preparing an electrode material can include providing silicon particles, forming a mixture comprising the silicon particles dispersed in a solvent, and forming a suspension by adding metal alkoxide or metal aryloxide to the mixture. The methods can also include evaporating the solvent in the suspension to form metal alkoxide or metal aryloxide coated silicon particles. The methods can further include heating the coated silicon particles to form metal oxide coated silicon particles.
Type:
Grant
Filed:
December 20, 2019
Date of Patent:
April 18, 2023
Assignee:
Enevate Corporation
Inventors:
Liwen Ji, Rahul R. Kamath, Ian Russell Browne, Benjamin Yong Park
Abstract: A cell formation system for lithium containing secondary batteries includes a population of formation clusters, each formation cluster includes a connector configured for connecting to a lithium containing secondary battery, a charging module connected to the connector and configured to charge the battery, a pre-lithiation module connected to the connector and configured to diffuse lithium to electrode active material layers of the battery, a discharging module connected to the connector and configured to discharge the battery, and a communication interface for communicatively coupling the formation cluster to a central controller.
Abstract: Disclosed is an all-solid-state lithium ion secondary battery excellent in cycle characteristics. The battery may be an all-solid-state lithium ion secondary battery, wherein an anode comprises anode active material particles, an electroconductive material and a solid electrolyte; wherein the anode active material particles comprise at least one active material selected from the group consisting of elemental silicon and SiO; and wherein a BET specific surface area of the anode active material particles is 1.9 m2/g or more and 14.2 m2/g or less.
Abstract: A negative electrode active material containing a negative electrode active material particle which includes a silicon compound particle containing a silicon compound (SiOx: 0.5?x?1.6). The silicon compound particle has three or more peaks in a chemical shift value ranging from ?40 ppm to ?120 ppm but has no peak in a chemical shift value within a range of ?65±3 ppm in a spectrum obtained from 29Si-MAS-NMR of the silicon compound particle. This provides a negative electrode active material capable of improving cycle characteristics when it is used as a negative electrode active material for a secondary battery.
Abstract: An all solid battery includes a solid electrolyte layer, a first electrode structure that has a structure in which a first electric collector layer of which a main component is a conductive material is sandwiched by two first electrode layers including an active material, and a second electrode structure that has a structure in which a second electric collector layer of which a main component is a conductive material is sandwiched by two second electrode layers including an active material. Roughness of interfaces between the first electric collector layer and the two first electrode layers and/or roughness of interfaces between the second electric collector layer and the two second electrode layers is larger than roughness of interfaces between the solid electrolyte layer, and the first electrode layer and the second electrode layer sandwiching the solid electrolyte layer.
Abstract: An energy storage module includes: a cover member accommodating a plurality of battery cells in an internal receiving space, each of the battery cells including a vent; a top plate coupled to a top of the cover member and including a duct corresponding to the vent of at least one of the battery cells; a top cover coupled to a top of the top plate and having an exhaust area corresponding to the duct, the exhaust area having a plurality of discharge openings, the top cover including a protrusion protruding from a bottom surface of the top cover, the protrusion extending around a periphery of the exhaust area and around a distal end of the duct; and an extinguisher sheet between the top cover and the top plate, the extinguisher sheet being configured to emit a fire extinguishing agent at a reference temperature.
Type:
Grant
Filed:
April 9, 2020
Date of Patent:
January 31, 2023
Assignee:
SAMSUNG SDI CO., LTD.
Inventors:
Jin Taek Kim, Eun Ok Kwak, Jang Hoon Kim, Jin Bhum Yun, Jong Yeol Woo, Kwang Deuk Lee, Woo Sung Choi
Abstract: A method of making a positive electrode includes forming a slurry of particles using an electrode formulation, a diluent, and oxalic acid, coating the slurry on a collector and drying the coating on the collector to form the positive electrode. The electrode formulation includes an electrode active material, a conductive carbon source, an organic polymeric binder, and a water soluble polymer. The diluent consists essentially of water.
Type:
Grant
Filed:
July 28, 2014
Date of Patent:
January 31, 2023
Assignee:
CPS TECHNOLOGY HOLDINGS LLC
Inventors:
Qiang Luo, Junwei Jiang, Yongkyu Son, Bernhard M. Metz, Patrick T. Hurley
Abstract: A positive electrode includes a positive electrode current collector, and a positive electrode active material layer that is provided on the positive electrode current collector and that includes a positive electrode active material, a conductive auxiliary agent, and a binder. A surface of the positive electrode active material layer has a reflectance Rc in a range of 2.0?Rc?12.0% at a wavelength of 550 nm. A lithium ion secondary battery includes: the positive electrode; a negative electrode including a negative electrode current collector and a negative electrode active material layer that is provided on the negative electrode current collector and that includes a negative electrode active material; a separator; and a nonaqueous electrolyte solution. A surface of the negative electrode active material layer has a reflectance Ra in a range of 7.5?Ra?16.0% at a wavelength of 550 nm.
Abstract: A positive active material for a rechargeable lithium battery includes a first positive active material including a secondary particle including at least two agglomerated primary particles, where at least one part of the primary particles has a radial arrangement structure, as well as a second positive active material having a monolith structure, wherein the first and second positive active materials may each include nickel-based positive active materials and the surface of the second positive active material is coated with a boron-containing compound. Further embodiments provide a method of preparing the positive active material, and a rechargeable lithium battery including a positive electrode including the positive active material.
Type:
Grant
Filed:
November 23, 2020
Date of Patent:
December 27, 2022
Assignee:
Samsung SDI Co., Ltd.
Inventors:
Pilsang Yun, Jongmin Kim, Hyunbeom Kim, Sangin Park, Yongchan You
Abstract: Metal electrodes, more specifically lithium-containing anodes, high performance electrochemical devices, such as secondary batteries, including the aforementioned lithium-containing electrodes, and methods for fabricating the same are provided. In one implementation, an anode electrode structure is provided. The anode electrode structure comprises a current collector comprising copper, a lithium metal film formed on the current collector, a copper film formed on the lithium metal film, and a protective film formed on the copper film. The protective film is a lithium-ion conducting film selected from the group comprising lithium-ion conducting ceramic, a lithium-ion conducting glass, or ion conducting liquid crystal.
Abstract: A positive-electrode active material precursor for a nonaqueous electrolyte secondary battery is provided that includes a nickel-cobalt-manganese carbonate composite represented by general formula NixCoyMnzMtCO3 (where x+y+z+t=1, 0.05?x?0.3, 0.1?y?0.4, 0.55?z?0.8, 0?t?0.1, and M denotes at least one additional element selected from a group consisting of Mg, Ca, Al, Ti, V, Cr, Zr, Nb, Mo, and W) and a hydrogen-containing functional group, wherein H/Me representing the ratio of the amount of hydrogen to the amount of metal components Me included in the positive-electrode active material precursor is greater than or equal to 1.60.
Abstract: Batteries having a metal interlayer that acts as an ion conductor are provided, as well as methods of forming the same. The metal interlayer can include, for example, palladium, platinum, iridium, rhodium, ruthenium, osmium, gold, silver, or a combination thereof, and can act as a conductor while also inhibiting the transport of other species that would produce byproduct films and cause capacity degradation in the battery.
Type:
Grant
Filed:
April 12, 2021
Date of Patent:
October 4, 2022
Assignee:
THE FLORIDA INTERNATIONAL UNIVERSITY BOARD OF TRUSTEES
Abstract: An all solid type three-dimensional (“3D”) battery may include a cathode collector, a cathode structure in contact with the cathode collector, an electrolyte structure in contact with the cathode structure, an anode structure in contact with the electrolyte structure, the anode structure not being in contact with the cathode structure and the cathode collector, and an anode collector in contact with the anode structure, where the electrolyte structure is in contact with the cathode collector around the cathode structure. An entirety of a surface of the cathode structure which is used for a battery operation may be in contact with the cathode collector and the electrolyte structure.
Type:
Grant
Filed:
September 9, 2020
Date of Patent:
September 27, 2022
Assignee:
SAMSUNG ELECTRONICS CO., LTD.
Inventors:
Huisu Jeong, Hwiyeol Park, Kyounghwan Kim, Hojung Yang, Sungjin Lim, Jin S. Heo
Abstract: A battery electrode composition is provided that comprises composite particles. Each composite particle may comprise, for example, active fluoride material and a nanoporous, electrically-conductive scaffolding matrix within which the active fluoride material is disposed. The active fluoride material is provided to store and release ions during battery operation. The storing and releasing of the ions may cause a substantial change in volume of the active material. The scaffolding matrix structurally supports the active material, electrically interconnects the active material, and accommodates the changes in volume of the active material.
Type:
Grant
Filed:
September 15, 2020
Date of Patent:
September 20, 2022
Assignee:
SILA NANOTECHNOLOGIES, INC.
Inventors:
Gleb Yushin, Bogdan Zdyrko, Alexander Jacobs, Eugene Berdichevsky
Abstract: A process for the preparation of a material comprising at least silicon particles and silicon nanowires, said process comprising: (1) introducing, into a chamber of a reactor, at least: silicon particles, and a catalyst, (2) introducing, into the chamber, a precursor composition comprising at least a silane compound or a mixture of silane compounds as precursor compound of the silicon nanowires, (3) decreasing the content of molecular oxygen in the chamber, (4) applying a heat treatment to the chamber at a temperature ranging from 270° C. to 600° C., and (5) recovering the material comprising at least silicon particles and silicon nanowires. A material based on silicon particles and on silicon nanowires and its use for manufacturing electrodes, notably anodes, which can be used in an energy storage device.
Abstract: A lithium metal secondary battery including a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and a protective layer interposed between the negative electrode and the separator. The protective layer includes an additive, wherein the additive comprises a mixture of hexagonal boron nitride (BN) flakes with an ionomer having a sulfur (S)-containing anionic group and fluorine (F).
Abstract: An anode active material of a lithium-ion battery is provided. The active material of the anode of the lithium-ion battery includes silicon, tin and copper-zinc alloy, in which tin is substantially in an elemental state. Moreover, an anode of a lithium-ion battery is provided. The anode of the lithium-ion battery includes the active material as mentioned above.
Abstract: In one embodiment, a secondary battery is provided, which includes an electrolytic solution, and a positive electrode and a negative electrode which are immersed in the electrolytic solution. The electrolytic solution contains water, an electrolyte salt, and at least one kind of an organic solvent with a relative permittivity of not more than 42. The relative permittivity of the electrolytic solution fractionated when converted according to a volume fraction is not more than 78.50.
Abstract: A positive electrode active material for a lithium secondary battery is provided having a secondary particle formed by agglomerating a plurality of polycrystalline primary particles including a lithium composite metal oxide of Chemical Formula 1, wherein an average crystallite size of the primary particle is 180 to 400 nm, a particle size D50 of the primary particle is 1.5 to 3?m, and the primary particle is doped or surface-coated with at least one element M selected from the group consisting Al, Ti, Mg, Zr, Y, Sr, and B in an amount of 3,800 to 7,000 ppm: Lia(NixMnyCozAw)O2+b ??[Chemical Formula 1].
Type:
Grant
Filed:
November 22, 2018
Date of Patent:
August 23, 2022
Inventors:
Younguk Park, Tae Gu Yoo, Jintae Hwang, Wang Mo Jung, Sungbin Park
Abstract: A negative active material for a rechargeable lithium battery includes a composite carbon particle including a core particle including crystalline-based carbon and a coating layer positioned on the surface of the core particle and including amorphous carbon. A peak intensity (I1620) at 1620 cm?1 ranges from about 0.01 to about 0.1, a peak intensity (I1360) at 1360 cm?1 ranges from about 0.05 to about 0.5, and a peak intensity (I1580 at 1580 cm?1 ranges from about 0.1 to about 0.8 in a Raman spectrum of the composite carbon particle.
Abstract: Large-scale anodes containing high weight percentages of silicon suitable for use in lithium-ion energy storage devices and batteries, and methods of manufacturing the same, are described. The anode material described herein can include a film cast on a current collector substrate, with the film including a plurality of active material particles and a conductive polymer membrane coated over the active material particles. In some embodiments, the conductive polymer membrane comprises polyacrylonitrile (PAN). The method of manufacturing the anode material can include preparation of a slurry including the active material particles and the conductive polymer material, casting the slurry on a current collector substrate, and subjecting the composite material to drying and heat treatments.
Abstract: The present invention provides a carbon fiber aggregate that is characterized by comprising carbon fibers in which crystallite interplanar spacing (d002) measured using X-ray diffraction is 0.3400 nm or more, the average liber diameter being 10-900 nm, and the powder volume resistivity being 4.00×10?2 ?·cm or less when the packing density is 0.8 g/cm3.
Abstract: The present invention provides an electrolyte composition that provides better charging/discharging performance when used in a cell than a conventional electrolyte composition. The present invention relates to an electrolyte composition containing an alkali metal salt, at least one polymer selected from the group consisting of a polyether polymer, a (meth)acrylic polymer, a nitrile polymer, and a fluoropolymer, and an ion dissociation accelerator. The composition has an alkali metal salt concentration of 1.8 mol/kg or higher.
Abstract: Electroactive materials having a nitrogen-containing carbon coating and composite materials for a high-energy-density lithium-based, as well as methods of formation relating thereto, are provided. The composite electrode material includes a silicon-containing electroactive material having a substantially continuous nitrogen-containing carbon coating formed thereon. The method includes contacting the silicon-containing electroactive material and one or more nitrogen-containing precursor materials and heating the mixture. The one or more nitrogen-containing precursor materials include one or more nitrogen-carbon bonds and during heating the nitrogen of the one or more nitrogen-carbon bonds with silicon in the silicon-containing electroactive material to form the nitrogen-containing carbon coating on exposed surfaces of the silicon-containing electroactive material.
Type:
Grant
Filed:
October 15, 2018
Date of Patent:
May 31, 2022
Assignee:
GM GLOBAL TECHNOLOGY OPERATIONS LLC
Inventors:
Ion C. Halalay, Timothy J. Fuller, Michael P. Balogh
Abstract: The present invention provides an electrolyte composition that provides better charging/discharging performance when used in a cell than a conventional electrolyte composition. The present invention relates to an electrolyte composition containing an alkali metal salt, at least one polymer selected from the group consisting of a polyether polymer, a (meth)acrylic polymer, a nitrile polymer, and a fluoropolymer, and an ion dissociation accelerator. The composition has an alkali metal salt concentration of 1.8 mol/kg or higher.