Alkalated Transition Metal Chalcogenide Component Is Active Material Patents (Class 429/231.1)
  • Publication number: 20130209889
    Abstract: An objective is to reduce the sheet resistance and gas evolution in a battery electrode comprising a conductive intermediate layer capable of reducing or shutting off a current when overcharged. A battery electrode (12) comprises a conductive intermediate layer (123) being placed between a current collector (122) and an active layer (124) while comprising conductive particles (50) and a binder (60). The mass proportion of conductive particles (50) is equal to or larger than the mass proportion of the binder (60). Conductive particles (50) has a size distribution that exhibits a first peak with the maximum at a first particle diameter value and a second peak with the maximum at a second particle diameter value larger than the first particle diameter value. The intermediate layer (123) contains 10% to 60% by mass of conductive particles (52) having particle diameters that belong to the second peak.
    Type: Application
    Filed: October 21, 2010
    Publication date: August 15, 2013
    Inventor: Koji Takahata
  • Publication number: 20130209673
    Abstract: The present application provides a heterojunction nano material, a negative pole piece of a lithium ion battery, and a lithium ion battery, where the heterojunction nano material includes a MoO3 nanobelt and a metal oxide in the alloy lithium intercalation mechanism coated on the surface of the MoO3 nanobelt. The negative pole piece of the lithium ion battery uses the heterojunction nano material as an active material, and the lithium ion battery using the negative pole piece of the lithium ion battery has a large reversible specific capacity and a high cycle stability.
    Type: Application
    Filed: December 19, 2012
    Publication date: August 15, 2013
    Applicant: Huawei Technologies Co., Ltd.
    Inventor: Huawei Technologies Co., Ltd.
  • Patent number: 8506847
    Abstract: The present invention relates to a process for the preparation of compounds of general formula (I) Lia-bM1bV2-cM2c(PO4)x (I) with M1: Na, K, Rb and/or Cs, M2: Ti, Zr, Nb, Cr, Mn, Fe, Co, Ni, Al, Mg and/or Sc, a: 1.5-4.5, b: 0-0.6, c: 0-1.98 and x: number to equalize the charge of Li and V and M1 and/or M2, if present, wherein a?b is >0, by providing an essentially aqueous mixture comprising at least one lithium-comprising compound, at least one vanadium-comprising compound in which vanadium has the oxidation state +5 and/or +4, and at least one M1-comprising compound, if present, and/or at least one M2-comprising compound, if present, and at least one reducing agent which is oxidized to at least one compound comprising at least one phosphorous atom in oxidation state +5, drying and calcining.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: August 13, 2013
    Assignee: BASF SE
    Inventors: Hartmut Hibst, Brian Roberts, Jordan Keith Lampert, Kirill Bramnik
  • Patent number: 8507134
    Abstract: Provided are an anode material capable of improving a capacity and cycle characteristics, and a battery using the anode material. A disk-shaped cathode contained in a package can and a disk-shaped anode contained in a package cup are laminated with a separator in between. The anode comprises a composite material formed through applying a compressive force and a shearing force to at least a part of a surface of a base material including at least one kind selected from Group 14 elements except for carbon so as to combine a carbonaceous material with the base material, thereby the capacity and the cycle characteristics can be improved.
    Type: Grant
    Filed: September 18, 2003
    Date of Patent: August 13, 2013
    Assignee: Sony Corporation
    Inventors: Takatomo Nishino, Hiroaki Tanizaki, Hiroshi Inoue
  • Publication number: 20130202956
    Abstract: Electrodeposition and energy storage devices utilizing an electrolyte having a surface-smoothing additive can result in self-healing, instead of self-amplification, of initial protuberant tips that give rise to roughness and/or dendrite formation on the substrate and anode surface. For electrodeposition of a first metal (M1) on a substrate or anode from one or more cations of M1 in an electrolyte solution, the electrolyte solution is characterized by a surface-smoothing additive containing cations of a second metal (M2), wherein cations of M2 have an effective electrochemical reduction potential in the solution lower than that of the cations of M1.
    Type: Application
    Filed: June 13, 2012
    Publication date: August 8, 2013
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Wu Xu, Jiguang Zhang, Gordon L. Graff, Xilin Chen, Fei Ding
  • Publication number: 20130202968
    Abstract: A lithium titanium oxide spinel having a ratio of FWHM1/FWHM2 at a spinning rate of about 5 kHz to about 50 kHz of about 1.70 or less, wherein FWHM1 is a full width at half maximum of a 7Li peak present about ?10 parts per million to about +10 parts per million in a solid state nuclear magnetic resonance spectrum of the lithium titanium oxide, FWHM2 is a full width at half maximum of a 7Li peak present about ?10 parts per million to about +10 parts per million in a solid state nuclear magnetic resonance spectrum of a lithium chloride standard reagent, and FWHM1 and FWHM2 are measured at the same spinning rate.
    Type: Application
    Filed: August 16, 2012
    Publication date: August 8, 2013
    Applicant: SAMSUNG ELECTRONICS CO. LTD.
    Inventors: Min-sang SONG, Ryoung-hee KIM, Jeong-kuk SHON, Young-min CHOI, Jae-man CHOI, Moon-seok KWON, Seung-sik HWANG
  • Patent number: 8501356
    Abstract: An additive typified by tris(trimethylsilyl)phosphate, tris(trimethylsilyl)borate, and tetrakis(trimethylsiloxy)titanium (Chem. 3) are applied to a nonaqueous electrolyte containing a chain carbonate and/or a chain carboxylate as a main solvent (contained at a ratio of 70 volume % or higher). It is preferable that 0?a<30 is satisfied, in which “a” denotes the volume of a cyclic carbonate among carbonates having no carbon-carbon double bond in the entire volume, defined as 100, of the carbonates having no carbon-carbon double bond and chain carboxylates in a nonaqueous solvent contained in the nonaqueous electrolyte (0<a<30 in the case no chain carboxylate is contained).
    Type: Grant
    Filed: March 4, 2009
    Date of Patent: August 6, 2013
    Assignee: GS Yuasa International Ltd.
    Inventors: Kazusa Ohkubo, Koji Sukino, Shigeki Yamate, Suguru Kozono, Yoshihiro Katayama, Toshiyuki Nukuda
  • Patent number: 8501354
    Abstract: Using a non-aqueous electrolyte secondary battery containing lithium iron phosphate as a positive electrode active material and graphite as a negative electrode active material, a low-cost, high energy density battery is provided that exhibits good performance at high rate current and good cycle performance even at high temperature. The non-aqueous electrolyte secondary battery has a positive electrode having a positive electrode current collector and a positive electrode active material-containing layer formed on a surface of the positive electrode current collector, the positive electrode active material-containing layer containing a conductive agent and a positive electrode active material including lithium iron phosphate, a negative electrode containing a carbon material, and a non-aqueous electrolyte. The non-aqueous electrolyte contains vinylene carbonate.
    Type: Grant
    Filed: February 6, 2007
    Date of Patent: August 6, 2013
    Assignee: SANYO Electric Co., Ltd.
    Inventors: Kazunori Donoue, Denis Yau Wai Yu, Takao Inoue, Masahisa Fujimoto, Hiroshi Kurokawa
  • Patent number: 8501352
    Abstract: A composite material having: particles of a first lithium-metal oxide compound, particles of a conductive second lithium-metal oxide compound, a conductive matrix, and a polymeric binder.
    Type: Grant
    Filed: February 3, 2006
    Date of Patent: August 6, 2013
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Arnold Stux, Karen Lyons
  • Patent number: 8501350
    Abstract: To provide a lithium manganese composite oxide capable of improving the initial discharge capacity of secondary batteries by removing more Li ions than the conventional lithium manganese composite oxide does when used in the positive electrode used for secondary batteries. A lithium manganese composite oxide having a Li2MnO3 type crystal structure, wherein a part of Li and/or Mn in a lithium manganese oxide represented by a formula Li2MnO3 is substituted by one or more doping elements M selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Si, Ge, Sn, P, Sb and Bi. The above-described lithium manganese composite oxide, wherein the doping elements are P and/or Si. A positive electrode used for nonaqueous electrolyte secondary batteries, comprising the above-described lithium manganese composite oxide. A nonaqueous electrolyte secondary battery comprising the above-described positive electrode used for nonaqueous electrolyte secondary batteries.
    Type: Grant
    Filed: August 23, 2007
    Date of Patent: August 6, 2013
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Ryoji Kanno, Makoto Yoshioka, Yoshihiro Kawakami
  • Patent number: 8497039
    Abstract: Provided is a cathode active material which is lithium transition metal oxide having an ?-NaFeO2 layered crystal structure, wherein the transition metal is a blend of Ni and Mn, an average oxidation number of the transition metals except lithium is more than +3, and lithium transition metal oxide satisfies the Equation m(Ni)?m(Mn) (in which m (Ni) and m (Mn) represent an molar number of manganese and nickel, respectively). The lithium transition metal oxide has a uniform and stable layered structure through control of oxidation number of transition metals to a level higher than +3, thus advantageously exerting improved overall electrochemical properties including electric capacity, in particular, superior high-rate charge/discharge characteristics.
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: July 30, 2013
    Assignee: LG Chem, Ltd.
    Inventors: Sung Kyun Chang, Hong-Kyu Park, Ho Suk Shin, Seung Tae Hong, Youngsun Choi
  • Publication number: 20130189579
    Abstract: A method of treating an electrode for a battery to enhance its performance is disclosed. By depositing a layer of porous carbon onto the electrode, its charging and discharging characteristics, as well as chemical stability may be improved. The method includes creating a plasma that includes carbon and attracting the plasma toward the electrode, such as by biasing a platen on which the electrode is disposed. In some embodiments, an etching process is also performed on the deposited porous carbon to increase its surface area. The electrode may also be exposed to a hydrophilic treatment to improve its interaction with the electrolyte. In addition, a battery which includes at least one electrode treated according to this process is disclosed.
    Type: Application
    Filed: January 25, 2012
    Publication date: July 25, 2013
    Applicant: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.
    Inventors: Blake L. Darby, Ludovic Godet, Xianfeng Lu, Tristan Yonghui Ma
  • Publication number: 20130189582
    Abstract: A composite anode active material includes a porous secondary particle formed by assembly of primary particles that includes metal nanoparticles capable of forming alloys with lithium and lithium titanate.
    Type: Application
    Filed: August 10, 2012
    Publication date: July 25, 2013
    Applicant: Samsung SDI Co., Ltd.
    Inventor: Jong-Hee Lee
  • Publication number: 20130189583
    Abstract: A composite anode active material includes matrix particles including lithium titanate; and at least one nanoparticle dispersed in the matrix particles. The at least one nanoparticle includes at least one selected from the group a metal capable of forming alloys with lithium and a non-transition metal oxide.
    Type: Application
    Filed: August 10, 2012
    Publication date: July 25, 2013
    Applicant: SAMSUNG SDI CO., LTD.
    Inventors: Jong-Hee Lee, Yong-Mi Yu
  • Publication number: 20130189584
    Abstract: According to one embodiment, an active material includes a lithium-titanium composite oxide. The lithium-titanium composite oxide includes a lithium compound including at least one of lithium carbonate and lithium hydroxide. A lithium amount of the lithium compound is within a range of 0.017 to 0.073 mass %.
    Type: Application
    Filed: December 20, 2012
    Publication date: July 25, 2013
    Inventors: Hiroki INAGAKI, Norio Takami
  • Patent number: 8492032
    Abstract: Provided is a lithium transition metal oxide having an ?-NaFeO2 layered crystal structure, as a cathode active material for lithium secondary battery, wherein the transition metal includes a blend of Ni and Mn, an average oxidation number of the transition metals except lithium is more than +3, and the lithium transition metal oxide satisfies Equations 1 and 2 below: 1.0<m(Ni)/m(Mn)??(1) m(Ni2+)/m(Mn4+)<1??(2) wherein m(Ni)/m(Mn) represents a molar ratio of nickel to manganese and m(Ni2+)/m(Mn4+) represents a molar ratio of Ni2+ to Mn4+. The cathode active material of the present invention has a uniform and stable layered structure through control of oxidation number of transition metals to a level higher than +3, in contrast to conventional cathode active materials, thus advantageously exerting improved overall electrochemical properties including electric capacity, in particular, superior high-rate charge/discharge characteristics.
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: July 23, 2013
    Assignee: LG Chem, Ltd.
    Inventors: Sung Kyun Chang, Hong-Kyu Park, Ho Suk Shin, Seung Tae Hong, Youngsun Choi
  • Patent number: 8492028
    Abstract: A positive electrode material for non-aqueous electrolyte lithium ion battery (31, 41) of the present invention has an oxide (11) containing lithium and nickel, and a lithium compound (13) which is deposited on a surface of the oxide (11) and covers nickel present on the surface of the oxide (11). By this structure, it is possible to suppress decomposition of an electrolysis solution as much as possible and drastically reduce swelling of the batteries (31, 41).
    Type: Grant
    Filed: November 29, 2004
    Date of Patent: July 23, 2013
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Takanori Itou, Takamitsu Saito, Hideaki Horie
  • Publication number: 20130183579
    Abstract: A positive active material for a rechargeable lithium battery includes a core including a lithium composite metal oxide selected from the group consisting of compounds represented by the following Chemical Formula 1, Chemical Formula 2, and combinations thereof; and a shell on the core, the shell including lithium iron phosphate (LiFePO4), and the lithium iron phosphate being present in an amount in a range of about 5 to about 15 wt % based on the total weight of the positive active material. LixMO2 ??[Chemical Formula 1] (wherein, in the above Chemical Formula 1, M is one or more transition elements, and 1?x?1.1) yLi2MnO3·(1?y)LiM?O2 ??[Chemical Formula 2] (wherein, in the above Chemical Formula 2, M? is one or more transition elements, and 0?x?1).
    Type: Application
    Filed: July 27, 2012
    Publication date: July 18, 2013
    Inventors: Seung-Mo Kim, Jun-Sik Jeoung
  • Publication number: 20130177809
    Abstract: A lithium-ion secondary battery comprising a positive electrode and a negative electrode is provided. The positive electrode comprises as a positive electrode active material a lithium transition metal composite oxide having a layered structure. The composite oxide contains as its metal components at least one species of Ni, Co and Mn as well as W and Ca. The composite oxide contains 0.26 mol % or more, but 5 mol % or less of W and Ca combined when all the metal elements contained in the oxide excluding lithium account for a total of 100 mol %, with the ratio (mW/mCa) of the number of moles of W contained, mW, to the number of moles of Ca contained, mCa, being 2.0 or larger, but 50 or smaller.
    Type: Application
    Filed: September 17, 2010
    Publication date: July 11, 2013
    Inventor: Hiroki Nagai
  • Publication number: 20130177810
    Abstract: Provided are embodiments of a method of synthesizing nano scale electrode materials using an ultrafast combustion technique and nano scale electrode materials synthesized using the method. The method does not require a process of annealing reaction products required for synthesis of electrode materials or any other additional processes, such as cleaning, filtering, and drying processes, so that it can take only several seconds to several minutes to obtain a resultant product.
    Type: Application
    Filed: April 14, 2011
    Publication date: July 11, 2013
    Applicant: INDUSTRY FOUNDATION OF CHONNAM NATIONAL UNIVERSITY
    Inventors: Jae Kook Kim, Eun Joung Kim, In Sun Yoo, Jin Sub Lim
  • Patent number: 8481213
    Abstract: Disclosed herein is a cathode active material for a lithium secondary battery, in particular, including a lithium transition metal oxide with a layered crystalline structure in which the transition metal includes a transition metal mixture of Ni, Mn and Co, and an average oxidation number of all transition metals other than lithium is more than +3, and specific conditions represented by the following formulae (1) and (2), 1.1<m(Ni)/m(Mn)<1.5 and 0.4<m(Ni2+)/m(Mn4+)<1, are satisfied. The inventive cathode active material has a more uniform and stable layered structure by controlling the oxidation number of transition metals contained in a transition metal oxide layer to form the layered structure, compared to conventional substances. Accordingly, the active material exhibits improved overall electrochemical characteristics including battery capacity and, in particular, excellent high rate charge-discharge features.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: July 9, 2013
    Assignee: LG Chem, Ltd.
    Inventors: Sung Kyun Chang, Hong-Kyu Park, Ho Suk Shin, Seung Tae Hong, Youngsun Choi
  • Patent number: 8480987
    Abstract: Provided are lithium transition metal phosphates where the cation anti-site defects between lithium and transition metals in a lithium transition metal phosphate with a cation well-ordered olivine structure are arranged only in a 1D crystal direction, and a method of preparing the same. The method comprises adding any one selected from the group consisting of an alkali element and an element that has a valence of 5+ or any combination thereof to a solid salt comprising lithium, transition metals, and phosphorus as a starting material to produce a first intermediate material; subjecting the first intermediate to a first heat treatment at a temperature of approximately 250° C. to approximately 400° C. to produce a second amorphous material; and cooling the second intermediate material to room temperature, followed by a second heat treatment at a temperature of approximately 400° C. to approximately 800° C.
    Type: Grant
    Filed: December 9, 2009
    Date of Patent: July 9, 2013
    Inventor: Sung Yoon Chung
  • Publication number: 20130171502
    Abstract: The present invention provides a multi-component hybrid electrode for use in an electrochemical super-hybrid energy storage device. The hybrid electrode contains at least a current collector, at least an intercalation electrode active material storing lithium inside interior or bulk thereof, and at least an intercalation-free electrode active material having a specific surface area no less than 100 m2/g and storing lithium on a surface thereof, wherein the intercalation electrode active material and the intercalation-free electrode active material are in electronic contact with the current collector. The resulting super-hybrid cell exhibits exceptional high power and high energy density, and long-term cycling stability that cannot be achieved with conventional supercapacitors, lithium-ion capacitors, lithium-ion batteries, and lithium metal secondary batteries.
    Type: Application
    Filed: December 29, 2011
    Publication date: July 4, 2013
    Inventors: Guorong Chen, Aruna Zhamu, Xiqing Wang, Bor Z. Jang, Yanbo Wang
  • Publication number: 20130171526
    Abstract: A method of producing a composite active material having an active material and a coat layer containing an ion conductive oxide and formed on a surface of the active material, including: applied film forming step of forming an applied film by applying a coating liquid for coat layer, containing an alkoxide compound as a raw material of the ion conductive oxide, on a surface of the active material under an atmosphere of lower dew-point temperature than dew-point temperature where the active material deteriorates; hydrolysis promoting step of promoting hydrolysis of the alkoxide compound by exposing the applied film under an atmosphere of higher dew-point temperature than dew-point temperature in the applied film forming step; and heat-treating step of forming the coat layer by heat-treating the applied film after the hydrolysis promoting step.
    Type: Application
    Filed: December 27, 2012
    Publication date: July 4, 2013
    Inventors: Nariaki Miki, Takayuki Uchiyama
  • Publication number: 20130164623
    Abstract: The present invention provides a positive electrode active material. The positive electrode active material is represented by the following formula (I) and has a BET specific surface area of larger than 5 m2/g and not larger than 15 m2/g: LixM1yM31-yO2??(I) wherein M1 is at least one transition metal element selected from Group 5 elements and Group 6 elements of the Periodic Table, M3 is at least one transition metal element other than M1 and selected from among transition metal elements excluding Fe, x is not less than 0.9 and not more than 1.3, and y is more than 0 and less than 1.
    Type: Application
    Filed: August 22, 2011
    Publication date: June 27, 2013
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Maiko Saka, Cedric Pitteloud, Tetsuri Nakayama, Kenji Takamori
  • Publication number: 20130157137
    Abstract: A lithium rechargeable battery having a nonaqueous electrolyte held between a positive electrode and a negative electrode is provided. The lithium rechargeable battery has a high energy density and a high battery capacity by enhancing a filling factor of an active material of the positive electrode or the negative electrode. In the lithium rechargeable battery includes the positive electrode, the negative electrode, and the nonaqueous electrolyte held between the positive electrode and the negative electrode, the positive electrode or the negative electrode is comprised of a lithium titanate sintered body. The lithium titanate sintered body has a mean fine pore diameter of 0.10 to 0.20 ?m, a specific surface area of 1.0 to 3.0 m2/g, and a relative density of 80 to 90%.
    Type: Application
    Filed: December 17, 2011
    Publication date: June 20, 2013
    Applicant: KYOCERA CORPORATION
    Inventor: Takaashi Fukushima
  • Publication number: 20130157133
    Abstract: A method of synthesizing defect-free phospho-olivine materials is disclosed. The method is based on direct hydrothermal synthesis of phospho-olivine compound(s) and subsequent lattice reordering at or near the transition temperature to eliminate lattice defects or on one-pot in situ hydrothermal synthesis of phospho-olivine compound(s), where the cation ordering occurs during dwell time after rapid synthesis to eliminate lattice defects. The disclosed methods produce defect-free phospho-olivine compound(s) having a crystal lattice with a Pnma space group. In order to determine the exact transition temperature for complete removal of single- or mixed-transition metals from lithium sites or to monitor the crystal growth and removal of single- or mixed-transition metals from lithium sites during the hydrothermal synthesis, the method encompasses a procedure for determining and monitoring defects in the phospho-olivine phases using X-ray diffraction.
    Type: Application
    Filed: November 14, 2012
    Publication date: June 20, 2013
    Applicant: Brookhaven Science Associates, LLC
    Inventor: Brookhaven Science Associates, LLC
  • Patent number: 8465871
    Abstract: The present invention provides electrochemical cells and batteries having one or more electrically conductive tabs and carbon sheet current collectors, where the tabs are connected to the carbon sheet current collectors; and methods of connecting the tabs to the carbon based current collectors. In one embodiment, the electrically conductive tabs are metallic tabs.
    Type: Grant
    Filed: January 4, 2012
    Date of Patent: June 18, 2013
    Assignee: Leyden Energy, Inc.
    Inventors: Marc Juzkow, Aakar Patel, Jun Lui, Konstantin Tikhonov, Michael Erickson, Hashmat Haidari, Thomas Nagy, Hongli Dai
  • Patent number: 8465717
    Abstract: A process for preparing a nanoparticle powder of a lithium transition metal phosphate includes mixing lithium, a transition metal and a phosphorus-containing salt as starting materials, adding an additive to the starting materials in an amount of greater than 0 at % and less than 10 at % to obtain a mixed raw material powder, subjecting the mixed powder to a first heat treatment at a temperature of 250° C. to 400° C. under a gas atmosphere for 2 to 10 hours; and subjecting the first heat-treated product to a second heat treatment at a temperature of 400° C. to 700° C. for 2 to 24 hours to uniformly form crystalline nuclei so as to induce growth of nanocrystalline particles. The additive may be any one element selected from the group consisting of sodium (Na), potassium (K), lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), gadolinium (Gd) and erbium (Er).
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: June 18, 2013
    Inventor: Sung Yoon Chung
  • Publication number: 20130149567
    Abstract: Lithium-ion battery comprising: (a) a positive electrode comprising an amorphous chalcogenide which comprises lithium ions or which can conduct lithium ions; (b) a negative electrode; (c) a separator between the positive electrode and the negative electrode, wherein the separator comprises a non-woven material composed of fibres, preferably polymer fibres; (d) a non-aqueous electrolyte.
    Type: Application
    Filed: May 17, 2011
    Publication date: June 13, 2013
    Applicant: LI-TEC BATTERY GMBH
    Inventor: Tim Schaefer
  • Publication number: 20130149616
    Abstract: A protected anode including an anode including a lithium titanium oxide; and a protective layer including a compound represented by Formula 1 below, a lithium air battery including the same, and an all-solid battery including the protected anode: Li1+XMXA2?XSiYP3?YO12??<Formula 1> wherein M may be at least one of aluminum (Al), iron (Fe), indium (In), scandium (Sc), or chromium (Cr), A may be at least one of germanium (Ge), tin (Sn), hafnium (Hf), and zirconium (Zr), 0?X?1, and 0?Y?1.
    Type: Application
    Filed: September 28, 2012
    Publication date: June 13, 2013
    Applicants: NATIONAL UNIVERSITY CORPORATION MIE UNIVERSITY, SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Dong-joon LEE, Osamu YAMAMOTO, Nobuyuki IMANISHI, Dong-min IM, Yasuo TAKEDA
  • Publication number: 20130149612
    Abstract: The present invention provides an electrode material for a secondary battery wherein the inside and the surface of a lithium-titanium complex oxide is composited with a fine carbon fiber as a network.
    Type: Application
    Filed: August 25, 2011
    Publication date: June 13, 2013
    Applicant: UBE Industries, Ltd.
    Inventors: Hirofumi Takemoto, Kazuo Hashimoto, Atsuo Hitaka
  • Publication number: 20130143118
    Abstract: According to one embodiment, a negative electrode active material includes a compound having a crystal structure of monoclinic titanium dioxide. The compound has a highest intensity peak detected by an X-ray powder diffractometry using a Cu-K? radiation source. The highest intensity peak is a peak of a (001) plane, (002) plane, or (003) plane. A half-width (2?) of the highest intensity peak falls within a range of 0.5 degree to 4 degrees.
    Type: Application
    Filed: November 27, 2012
    Publication date: June 6, 2013
    Inventors: Yasuhiro Harada, Norio Takami, Hiroki Inagaki, Keigo Hoshina, Yuki Otani
  • Publication number: 20130143125
    Abstract: The lithium-ion secondary battery provided by the present invention comprises a positive electrode, a negative electrode, and a non-aqueous liquid electrolyte. The positive electrode comprises as a primary component of its positive electrode active material, a lithium-containing olivine compound. The positive electrode further comprises 2 to 20 parts by mass of an activated carbon relative to 100 parts by mass of the positive electrode active material.
    Type: Application
    Filed: July 23, 2010
    Publication date: June 6, 2013
    Inventors: Akira Tsujiko, Yuko Matsumura
  • Patent number: 8455142
    Abstract: A non-aqueous electrolyte can suppress decomposition of a solvent, improve the cycle life of a secondary battery, suppress the rise of resistance of a secondary battery and improve the capacity maintenance ratio of a secondary battery.
    Type: Grant
    Filed: April 7, 2009
    Date of Patent: June 4, 2013
    Assignee: NEC Energy Devices, Ltd.
    Inventors: Hitoshi Ishikawa, Yasutaka Kono, Koji Utsugi, Yoko Hashizume, Shinako Kaneko, Hiroshi Kobayashi
  • Publication number: 20130136988
    Abstract: [Objectives] The present invention provides a non-aqueous secondary battery in which a material containing Si and O as constituent elements is used in a negative electrode. The present invention provides a non-aqueous secondary battery having good charge discharge cycle characteristics, and suppressing the battery swelling associated with the charge and the discharge. Also, the present invention relates to a negative electrode that can provide the non-aqueous secondary battery. [Solution] The negative electrode includes a negative electrode active material, including a composite of a material containing Si and O as constitution elements (atom ratio x of O to Si is 0.5?x?1.5) in combination with a carbon material, and graphite. The graphite has an average particle diameter dg(?m) of 4 to 20 ?m. The material containing Si and O as constitution elements has an average particle diameter ds(?m) of 1 ?m or more. The ratio ds/dg (i.e., ds to dg) is 0.05 to 1.
    Type: Application
    Filed: August 3, 2011
    Publication date: May 30, 2013
    Applicant: HITACHI MAXELL ENERGY, LTD.
    Inventors: Naokage Tanaka, Akira Inaba, Keiichiro Uenae, Masayuki Yamada, Kazunobu Matsumoto
  • Publication number: 20130130129
    Abstract: An electrochemical cell in one embodiment includes a negative electrode including a form of lithium, a positive electrode spaced apart from the negative electrode, a separator positioned between the negative electrode and the positive electrode, and an electrolyte including a load leveling agent in contact with the negative electrode.
    Type: Application
    Filed: December 27, 2012
    Publication date: May 23, 2013
    Applicant: ROBERT BOSCH GMBH
    Inventor: ROBERT BOSCH GMBH
  • Publication number: 20130130114
    Abstract: A non-aqueous electrolyte secondary battery comprising amorphous carbon as a main agent of a negative electrode active material and having high energy density, less degradation of capacity during storage in a charged state, and excellent in cycle life characteristics is provided. The negative electrode active material comprises a mixture of easily graphitizable carbon, less graphitizable carbon, and graphite, the mixture comprising composite particles having a structure where less graphitizable carbon is deposited to the surface of particles of easily graphitizable carbon and graphite. Particularly, it is preferred that the ratio of the less graphitizable carbon content relative to the total weight of the mixture is from 0.5 to 7%, the ratio of graphite content relative to the total weight of the mixture is from 5 to 20% in which the less graphitizable carbon is present at the surface of particles of easily graphitizable carbon by a mechanochemical treatment.
    Type: Application
    Filed: July 30, 2010
    Publication date: May 23, 2013
    Applicant: HITACHI VEHICLE ENERGY, LTD.
    Inventors: Yusuke Ohno, Yoshihisa Okuda
  • Publication number: 20130130090
    Abstract: Provided are a transition metal mixed hydroxide comprising an alkali metal other than Li, SO4 and a transition metal element, wherein the molar ratio of the molar content of the alkali metal to the molar content of the SO4 is not less than 0.05 and less than 2, and a lithium mixed metal oxide obtained by calcining a mixture of the transition metal mixed hydroxide and a lithium compound by maintaining the mixture at a temperature of 650 to 100000.
    Type: Application
    Filed: June 9, 2011
    Publication date: May 23, 2013
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Kenji Takamori, Hiroshi Inukai, Taiga Obayashi
  • Publication number: 20130130103
    Abstract: A cathode and a battery including a cathode active material including a layer-structured material having a composition of xLi2MO3-(1-x)LiMeO2; and a metal oxide having a perovskite structure. The cathode active material may have improved structural stability by intermixing a metal oxide having a similar crystalline structure with the layer-structured material, and thus, life and capacity characteristics of a cathode and a lithium battery including the metal oxide may be improved.
    Type: Application
    Filed: October 17, 2012
    Publication date: May 23, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Myung-hoon KIM, Kyu-sung PARK, Min-sik PARK, Jin-hwan PARK
  • Publication number: 20130122398
    Abstract: An electrochemical or electric layer system, having at least two electrode layers and at least one ion-conducting layer disposed between two electrode layers. The ion-conducting layer has at least one ion-conducting solid electrolyte and at least one binder at grain boundaries of the at least one ion-conducting solid electrolyte for improving the ion conductivity over the grain boundaries and the adhesion of the layers.
    Type: Application
    Filed: May 16, 2011
    Publication date: May 16, 2013
    Applicant: CONTINENTAL AUTOMOTIVE GMBH
    Inventors: Peter Birke, Olaf Böse, Michael Keller, Michael Schiemann, Hans-Georg Schweiger
  • Patent number: 8440349
    Abstract: The present invention provides a nonaqueous electrolytic solution exhibiting excellent battery characteristics such as electrical capacity, cycle property and storage property and capable of maintaining the battery characteristics for a long time, and a lithium secondary battery using the nonaqueous electrolytic solution. A nonaqueous electrolytic solution for a lithium secondary battery, in which an electrolyte salt is dissolved in a nonaqueous solvent, containing 0.1 to 10% by weight of an ethylene carbonate derivative represented by the general formula (I) shown below, and 0.
    Type: Grant
    Filed: June 1, 2010
    Date of Patent: May 14, 2013
    Assignee: UBE Industries, Ltd.
    Inventors: Koji Abe, Takaaki Kuwata
  • Patent number: 8440354
    Abstract: Provided is a lithium transition metal oxide having an ?-NaFeO2 layered crystal structure, as a cathode active material for lithium secondary battery, wherein the transition metal includes a blend of Ni and Mn, an average oxidation number of the transition metals except lithium is +3 or higher, and the lithium transition metal oxide satisfies Equations 1 and 2 below: 1.0<m(Ni)/m(Mn)??(1) m(Ni2+)/m(Mn4+)<1??(2) wherein m(Ni)/m(Mn) represents a molar ratio of nickel to manganese and m (Ni2+)/m(Mn4+) represents a molar ratio of Ni2+ to Mn4+. The cathode active material of the present invention has a uniform and stable layered structure through control of oxidation number of transition metals to a level higher than +3, in contrast to conventional cathode active materials, thus advantageously exerting improved overall electrochemical properties including electric capacity, in particular, superior high-rate charge/discharge characteristics.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: May 14, 2013
    Assignee: LG Chem, Ltd.
    Inventors: Sung kyun Chang, Hong-Kyu Park, Sinyoung Park, Hyo-shik Kil, Hera Lee
  • Patent number: 8440113
    Abstract: The present invention aims at providing lithium manganate having a high output and an excellent high-temperature stability. The above aim can be achieved by lithium manganate particles having a primary particle diameter of not less than 1 ?m and an average particle diameter (D50) of kinetic particles of not less than 1 ?m and not more than 10 ?m, which are substantially in the form of single crystal particles and have a composition represented by the following chemical formula: Li1+xMn2?x?yYyO4 in which Y is at least one element selected from the group consisting of Al, Mg and Co; x and y satisfy 0.03?x?0.15 and 0.05?y?0.20, respectively, wherein the Y element is uniformly dispersed within the respective particles, and an intensity ratio of I(400)/I(111) thereof is not less than 33% and an intensity ratio of I(440)/I(111) thereof is not less than 16%.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: May 14, 2013
    Assignee: Toda Kogyo Corporation
    Inventors: Masayuki Uegami, Akihisa Kajiyama, Kazutoshi Ishizaki, Hideaki Sadamura
  • Publication number: 20130115513
    Abstract: An electrode active material includes a core capable of intercalating and deintercalating lithium; and a surface treatment layer disposed on at least a portion of a surface of the core, wherein the surface treatment layer includes a lithium-free oxide having a spinel structure, and an intensity of an X-ray diffraction peak corresponding to impurity phase of the lithium-free oxide, when measured using Cu—K? radiation, is at a noise level of an X-ray diffraction spectrum or less.
    Type: Application
    Filed: July 23, 2012
    Publication date: May 9, 2013
    Applicants: SAMSUNG CORNING PRECISION MATERIALS CO., LTD., SAMSUNG SDI CO., LTD.
    Inventors: Won-chang CHOI, Gue-sung KIM, Min-sang SONG, Young-min CHOI, Ryoung-hee KIM, So-yeon KIM
  • Publication number: 20130115516
    Abstract: Highly dispersed lithium titanate crystal structures having a thickness of few atomic layers level and the two-dimensional surface in a plate form are supported on carbon nanofiber (CNF). The lithium titanate crystal structure precursors and CNF that supports these are prepared by a mechanochemical reaction that applies sheer stress and centrifugal force to a reactant in a rotating reactor. The mass ratio between the lithium titanate crystal structure and carbon nanofiber is preferably between 75:25 and 85:15. The carbon nanofiber preferably has an external diameter of 10-30 nm and an external specific surface area of 150-350 cm2/g. This composite is mixed with a binder and then molded to obtain an electrode, and this electrode is employed for an electrochemical element.
    Type: Application
    Filed: May 2, 2011
    Publication date: May 9, 2013
    Inventors: Katsuhiko Naoi, Wako Naoi, Shuichi Ishimoto, Kenji Tamamitsu
  • Patent number: 8435673
    Abstract: A cathode composition and a rechargeable electrochemical cell comprising same are disclosed. The cathode composition is described as comprising particles of one or more transition metal, alkali halometallate having a melting point of less than about 300 degrees Celsius, and at least one phosphorus composition additive selected from P—O compositions, P-halogen compositions, P—O-halogen compositions, and their reaction products and combinations. Also described is a rechargeable electrochemical cell comprising the composition. The phosphorus composition additive in the cathode composition of a cell is effective to lower the capacity degradation rate of the cell during operation relative to absence of the additive, and effective to lower the internal resistance of the cell when under operating conditions relative to absence of the additive.
    Type: Grant
    Filed: April 30, 2009
    Date of Patent: May 7, 2013
    Assignee: General Electric Company
    Inventors: John Patrick Lemmon, Jun Cui, Malgorzata Iwona Rubinsztajn, Richard Louis Hart, Jennifer Kathleen Redline
  • Patent number: 8435674
    Abstract: A lithium battery includes a cathode; an anode; and an organic electrolyte solution. The cathode includes cathode active materials that discharge oxygen during charging and discharging. The organic electrolyte solution includes: lithium salt; an organic solvent, and at least one selected from the group consisting of compounds represented by Formula 1 and Formula 2 below: P(R1)a(OR2)b??Formula 1 O?P(R1)a(OR2)b.??Formula 2 R1 is each independently a substituted or unsubstituted C1-C20 alkyl group or a substituted or unsubstituted C6-C30 aryl group. R2 is each independently a substituted or unsubstituted C1-C20 alkyl group or a substituted or unsubstituted C6-C30 aryl group. a and b are each independently in a range of about 0 to about 3 and a+b=3.
    Type: Grant
    Filed: August 16, 2010
    Date of Patent: May 7, 2013
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Dong-joon Lee, Dong-min Im, Young-gyoon Ryu, Seok-soo Lee
  • Patent number: 8435680
    Abstract: A rechargeable lithium battery including: a positive electrode including a nickel-based positive active material; a negative electrode including a negative active material; and an electrolyte including a non-aqueous organic solvent, a lithium salt, a first fluoroethylene carbonate additive, a second vinylethylene carbonate additive, and a third alkane sultone additive, wherein when the battery is thicker than about 5mm, a mixing weight ratio of the first fluoroethylene carbonate additive to the second vinylethylene carbonate additive ranges from about 5:1 to about 10:1, or when the battery is thinner than about 5 mm, the mixing weight ratio of the first fluoroethylene carbonate additive to the second vinylethylene carbonate additive ranges from about 1:1 to about 4:1.
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: May 7, 2013
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Na-Rae Park, Jin-Sung Kim, Su-Hee Han, Jin-Hyunk Lim
  • Publication number: 20130108925
    Abstract: An electrode, free of added conductive agent, for a secondary lithium-ion battery with a lithium titanate as active material, and a secondary lithium-ion battery which contains the electrode.
    Type: Application
    Filed: January 28, 2011
    Publication date: May 2, 2013
    Applicant: SUED-CHEMIE IP GMBH & CO., KG
    Inventor: Michael Holzapfel