Halogenated Carbon, Graphite, Or Carbonaceous Component Is Active Material Patents (Class 429/231.7)
  • Publication number: 20120148921
    Abstract: Disclosed are an electrode for a low-resistance energy storage device, a method of manufacturing the same, and an energy storage device using the same. In detail, the electrode for an energy storage device is manufactured by forming electrode materials on a metal layer having a dendrite formed thereon. The energy storage device using the electrode for an energy storage device has low resistance characteristics.
    Type: Application
    Filed: May 20, 2011
    Publication date: June 14, 2012
    Inventors: Sang Kyun Lee, Bae Kyun Kim, Ji Sung Cho
  • Patent number: 8163410
    Abstract: A battery management system includes one or more lithium ion cells in electrical connection, each said cell comprising: first and second working electrodes and one or more reference electrodes, each reference electrode electronically isolated from the working electrodes and having a separate tab or current collector exiting the cell and providing an additional terminal for electrical measurement; and a battery management system comprising a battery state-of-charge monitor, said monitor being operable for receiving information relating to the potential difference of the working electrodes and the potential of one or more of the working electrodes versus the reference electrode.
    Type: Grant
    Filed: September 15, 2008
    Date of Patent: April 24, 2012
    Assignee: A123 Systems, Inc.
    Inventors: Ricardo Fulop, Yet-Ming Chiang, Karen E. Thomas-Alyea, William H. Gardner
  • Patent number: 8153304
    Abstract: The traditional method of building a CFx/current collector/SVO assembly is by the application of a static pressing force. However, the density of the electrode and, particularly the CFx component, can be increase by using a cyclic pressing protocol. That is where the active materials are formed into a blank or contacted to a current collector by the use of at least two pressing events separated by a period when the pressure is removed. Not only does this cyclic pressing protocol increase the density of the CFx material, it also provides an electrode that is relatively flat, and not cupped. Conventional pressing techniques often result in badly cupped electrodes, especially when disparate active materials are contacting opposite sides of the current collector. Cupping consequently reduces the effective volumetric energy density of the electrode or necessitates the addition of a process step of flattening of the cathode, if at all possible.
    Type: Grant
    Filed: July 23, 2010
    Date of Patent: April 10, 2012
    Assignee: Greatbatch Ltd.
    Inventor: Ashish Shah
  • Publication number: 20120077089
    Abstract: The present invention provides a positive electrode active material for a lithium primary cell. The positive electrode active material can reduce the internal resistance of the positive electrode of a lithium primary cell and can maintain the load characteristics and the discharge voltage not only at high temperatures but also at low temperatures. The positive electrode active material includes a fluoride of a low crystalline carbon.
    Type: Application
    Filed: September 27, 2011
    Publication date: March 29, 2012
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Hideo SAKATA, Meiten KOH, Hitomi NAKAZAWA, Tomoyo SANAGI
  • Publication number: 20120064412
    Abstract: A lithium primary battery includes a positive electrode, a negative electrode, a separator and a nonaqueous electrolytic solution both disposed between the positive electrode and the negative electrode. The positive electrode contains carbon fluoride as a positive electrode active material, and the negative electrode contains metallic lithium as a negative electrode active material. The carbon fluoride includes a non-fluorinated carbon component. A spacing of a (001) plane of the carbon fluoride ranges from 7.0 ? to 7.5 ?, inclusive. A ratio of an X-ray diffraction peak intensity of the (001) plane of the carbon fluoride to an X-ray diffraction peak intensity of a (002) plane of the non-fluorinated carbon component ranges from 30 to 50, inclusive.
    Type: Application
    Filed: March 25, 2010
    Publication date: March 15, 2012
    Inventor: Shinichiro Tahara
  • Publication number: 20120052400
    Abstract: Disclosed herein is an electrode structure for an energy storage apparatus. The electrode structure according to an exemplary embodiment of the present invention includes a current collector; and an active material layer formed in the current collector, wherein the active material layer includes: an active material; and a conductive material having a relatively higher content than that of the active material as being away from the current collector.
    Type: Application
    Filed: August 31, 2011
    Publication date: March 1, 2012
    Inventors: Hak Kwan KIM, Bae Kyun KIM, Dong Hyeok CHOI, Hyun Chul JUNG
  • Patent number: 8067116
    Abstract: Disclosed are an electrode active material, having a composition of SnPx (0.9?x?0.98), an electrode comprising the same, and a lithium secondary battery comprising the electrode. Also disclosed is a method for preparing an electrode active material having a composition of SnPx (0.9?x?0.98), the method comprising the steps of: preparing a mixed solution of a Sn precursor, trioctyl phosphine (TOP) and trioctyl phosphine oxide (TOPO); and heating the solution. The application of the teardrop-shaped single-crystal SnP0-94 particles as an anode active material for lithium secondary batteries can provide an anode having very excellent cycling properties because the active material has a reversible capacity, which is about two times as large as that of a carbon anode, along with a very low irreversible capacity, and it is structurally very stable against Li ion intercalation/deintercalation in a charge/discharge process, indicating little or no change in the volume thereof.
    Type: Grant
    Filed: August 23, 2007
    Date of Patent: November 29, 2011
    Assignee: LG Chem, Ltd.
    Inventors: Ki-Tae Kim, Min-Gyu Kim, Jae-Phil Cho, Soon-Ho Ahn, Seo-Jae Lee
  • Publication number: 20110244305
    Abstract: An electrochemical device, such as a battery or power source, provides improved performance under stringent or extreme conditions. Such an electrochemical device for use in high temperature conditions may include at least a cathode, a lithium-based anode, a separator, and an ionic liquid electrolyte. This device also may include a current collector and housing that are electrochemically inert with respect to other components of the device. This electrochemical device may operate at temperatures ranging from 0 to 180, 200, 220, 240, and 260° C.
    Type: Application
    Filed: April 6, 2011
    Publication date: October 6, 2011
    Inventors: Wenlin Zhang, Richard Frerker, Iain Cooper, Catherine Busser, Arunkumar Tiruvannamalai, Jason Hsu-Feng Cheng, Joseph Ralph Wong, Simon Jones
  • Publication number: 20110229762
    Abstract: The traditional method of building a CFx/current collector/SVO assembly is by the application of a static pressing force. However, the density of the electrode and, particularly the CFx component, can be increase by using a cyclic pressing protocol. That is where the active materials are formed into a blank or contacted to a current collector by the use of at least two pressing events separated by a period when the pressure is removed. Not only does this cyclic pressing protocol increase the density of the CFx material, it also provides an electrode that is relatively flat, and not cupped. Conventional pressing techniques often result in badly cupped electrodes, especially when disparate active materials are contacting opposite sides of the current collector. Cupping consequently reduces the effective volumetric energy density of the electrode or necessitates the addition of a process step of flattening of the cathode, if at all possible.
    Type: Application
    Filed: July 23, 2010
    Publication date: September 22, 2011
    Applicant: Greatbatch Ltd.
    Inventor: Ashish Shah
  • Patent number: 8003015
    Abstract: The present invention provides a composite positive electrode material for a lithium ion battery, which is particularly excellent in high-rate discharge characteristics in a battery, and also provides a slurry, positive electrode and battery using the composite positive electrode material. The composite positive electrode material for a lithium ion battery contains: a positive electrode active material (a); a conductive material (b) having a primary particle diameter of 10 to 100 nm and/or a fibrous conductive material (c) having a fiber diameter of 1 nm to 1 ?m; and a conductive material (d) having an aspect ratio of 2 to 50.
    Type: Grant
    Filed: June 27, 2007
    Date of Patent: August 23, 2011
    Assignees: Kao Corporation, Nissan Motor Co., Ltd.
    Inventors: Kazuo Oki, Yasuhisa Fukumoto, Ryuichi Akagi, Kenichi Nishimura, Taketo Kaneko, Tamaki Miura, Takamitsu Saito, Mikio Kawai, Mieko Kawai, legal representative
  • Patent number: 7993780
    Abstract: This invention provides a process for producing a lithium secondary battery. The process comprises: (a) providing a positive electrode; (b) providing a negative electrode comprising a carbonaceous material capable of absorbing and desorbing lithium ions, wherein the carbonaceous material is obtained by chemically or electrochemically treating a laminar graphite material to form a graphite crystal structure having an interplanar spacing d002 of at least 0.400 nm as determined from a (002) reflection peak in powder X-ray diffraction; and (c) providing a non-aqueous electrolyte disposed between the negative electrode and the positive electrode to form the battery structure. This larger interplanar spacing (greater than 0.400 nm, preferably no less than 0.55 nm) implies a larger interstitial space between two graphene planes to accommodate a greater amount of lithium. The resulting battery exhibits an exceptionally high specific capacity, an excellent reversible capacity, and a long cycle life.
    Type: Grant
    Filed: October 5, 2007
    Date of Patent: August 9, 2011
    Assignee: Nanotek Instruments, Inc.
    Inventors: Bor Z. Jang, Aruna Zhamu
  • Publication number: 20110143208
    Abstract: Non-aqueous electrochemical cells, and batteries formed of such cells are described. More particularly, use of electrochemical cells containing sub-fluorinated carbon-carbon composite as an active material for the positive electrode of such cells and batteries is disclosed. When used in conjunction with lithium anodes and a non-aqueous electrolyte, the electrochemical cell provides high discharge rate and excellent capacity utilization.
    Type: Application
    Filed: December 9, 2010
    Publication date: June 16, 2011
    Applicant: Contour Energy Systems, Inc.
    Inventors: Sohrab Hossain, John Paul Ruiz
  • Patent number: 7939199
    Abstract: An electrochemical cell comprising a lithium anode, a silver vanadium oxide cathode having a relatively lower basis weight, and an electrolyte activating the anode and the cathode is described. By limiting the amount of cathode active material per unit area (i.e. basis weight) facing the anode in the Li/SVO cell, the magnitude of the passivating film growth at the solid-electrolyte interphase (SEI) and its relative impermeability to lithium ion diffusion is reduced. Therefore, by using a cathode of a relatively low basis weight active material, it is possible to eliminate or significantly reduce undesirable irreversible Rdc growth and voltage delay in the cell and to extend its useful life in an implantable medical device.
    Type: Grant
    Filed: April 17, 2007
    Date of Patent: May 10, 2011
    Assignee: Greatbatch Ltd.
    Inventors: Hong Gan, Joseph M. Lehnes, Esther S. Takeuchi
  • Patent number: 7824805
    Abstract: A battery cell in an implantable medical device is presented. The battery cell includes an anode, a cathode, an insulator therebetween, and an electrolyte. The cathode includes silver vanadium oxide and fluorinated carbon (CFx). The CFx includes fluorine at greater than or equal to 61 percentage (%) by weight.
    Type: Grant
    Filed: January 17, 2007
    Date of Patent: November 2, 2010
    Assignee: Medtronic, Inc.
    Inventors: William G. Howard, Kaimin Chen, Gaurav Jain, Craig L. Schmidt, Erik R. Scott
  • Publication number: 20100273059
    Abstract: The invention provides a lithium primary battery including a negative electrode 12 comprising metal lithium or a lithium alloy, a positive electrode 11 including a positive electrode active material, a separator 13 interposed between the negative electrode 12 and the positive electrode 11, and a non-aqueous electrolyte. The negative electrode 12 includes a coating layer 17 on a surface thereof facing the positive electrode 11, the coating layer containing carbon particles each having fluorine-containing fine particles on the surface thereof, for the purpose of improving both the discharge performance and the high temperature storage characteristics.
    Type: Application
    Filed: April 14, 2010
    Publication date: October 28, 2010
    Inventor: Yoko SANO
  • Patent number: 7807072
    Abstract: An inkjet printable electrode composition, an electrode including the electrode composition, and a secondary battery including the electrode. The inkjet printable electrode composition includes oxide, a conducting agent, a wetting agent, a binder and an aqueous solvent, in which the viscosity of the binder is in a range of 2 to 20 cps in a 1 wt % aqueous solution of the binder. The inkjet printing electrode composition includes a binder having an appropriate viscosity to allow ink to be easily ejected when the ink is inkjet-printed, and thus, a uniform, thin, and planarized pattern may be formed onto a collector by inkjet printing, without clogging of a nozzle, and thus electrode and secondary battery may be formed at low costs.
    Type: Grant
    Filed: May 12, 2008
    Date of Patent: October 5, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae-man Choi, Moon-seok Kwon, Seung-sik Hwang, Han-su Kim, Jin-hwan Park
  • Patent number: 7794880
    Abstract: The invention provides fluorinated multi-layered carbon nanomaterials and methods for their production. In one aspect of the invention, the carbon nanomaterials are partially fluorinated and retain some unreacted carbon. The invention also provides electrodes and electrochemical devices incorporating the fluorinated carbon nanomaterials of the invention. In one aspect of the invention, the electrochemical has a first electrode including the at least partially fluorinated carbon materials of the invention and a second electrode including a source of lithium ions.
    Type: Grant
    Filed: November 16, 2006
    Date of Patent: September 14, 2010
    Assignees: California Institute of Technology, Centre National de la Recherche Scientifique (C.N.R.S), Universite Blaise Pascal
    Inventors: Rachid Yazami, André Hamwi
  • Patent number: 7776470
    Abstract: Improvements in the performance of lithium electrochemical cells comprising a first cathode active material of a relatively high energy density but of a relatively low rate capability, for example CFx, contacted to one side of a current collector and with a second cathode active material having a relatively low energy density but of a relatively high rate capability, for example SVO, contacted to the opposite current collector side are described. An exemplary cathode has the configuration: SVO/first current collector/CFx/second current collector/SVO, and wherein the anodic coulombic capacity does not exceed the total coulombic capacities of the SVO and CFx by greater than 25%. Manganese oxide (MnO2) is another typically used cathode active material in lieu of SVO, and the present invention is applicable to lithium cells of that system as well.
    Type: Grant
    Filed: September 26, 2006
    Date of Patent: August 17, 2010
    Assignee: Greatbatch Ltd.
    Inventors: Hong Gan, Robert S. Rubino, Esther S. Takeuchi
  • Patent number: 7771497
    Abstract: The traditional method of building a CFx/current collector/SVO assembly is by the application of a static pressing force. However, the density of the electrode and, particularly the CFx component, can be increase by using a cyclic pressing protocol. That is where the active materials are formed into a blank or contacted to a current collector by the use of at least two pressing events separated by a period when the pressure is removed. Not only does this cyclic pressing protocol increase the density of the CFx material, it also provides an electrode that is relatively flat, and not cupped. Conventional pressing techniques often result in badly cupped electrodes, especially when disparate active materials are contacting opposite sides of the current collector. Cupping consequently reduces the effective volumetric energy density of the electrode or necessitates the addition of a process step of flattening of the cathode, if at all possible.
    Type: Grant
    Filed: January 19, 2006
    Date of Patent: August 10, 2010
    Assignee: Greatbatch Ltd.
    Inventor: Ashish Shah
  • Patent number: 7759008
    Abstract: Sodium ion batteries are based on sodium based active materials selected among compounds of the general formula AaMb(XY4)cZd, wherein A comprises sodium, M comprises one or more metals, comprising at least one metal which is capable of undergoing oxidation to a higher valence state, Z is OH or halogen, and XY4 represents phosphate or a similar group. The anode of the battery includes a carbon material that is capable of inserting sodium ions. The carbon anode cycles reversibly at a specific capacity greater than 100 mAh/g.
    Type: Grant
    Filed: February 7, 2005
    Date of Patent: July 20, 2010
    Assignee: Valence Technology, Inc.
    Inventors: Jeremy Barker, M. Yazid Saidi, Jeffrey Swoyer
  • Patent number: 7700192
    Abstract: A method for the production of fluorinated carbon nanostructures such as carbon black is disclosed, wherein a plasma is generated in a plasma chamber and a fluorocarbon, or a fluorocarbon containing mixture, is supplied to the plasma to convert at least some of the fluorocarbon into a fluorinated carbon material. Direct pyrolysis of a fluorocarbon, or a mixture containing this, provides a one-step method for producing fluorinated carbon nanostructures with a formula CFx, where 0.06<x<0.15, the particles having a relatively narrow spread of diameters, and exhibiting excellent hydrophobicity.
    Type: Grant
    Filed: October 3, 2005
    Date of Patent: April 20, 2010
    Assignee: C-Tech Innovation Limited
    Inventors: Edward Stephen Matthews, Xiaoming Duan, Richard Llewellyn Powell
  • Publication number: 20100035093
    Abstract: An electrochemical device comprising a chemically modified graphene material is disclosed.
    Type: Application
    Filed: April 27, 2009
    Publication date: February 11, 2010
    Inventors: Rodney S. Ruoff, Meryl Stoller
  • Patent number: 7611804
    Abstract: A nonaqueous secondary battery comprising an electrode body which comprises a positive electrode and a negative electrode laminated with a separator interposed between them, and a nonaqueous electrolyte, wherein said negative electrode comprises graphite as a negative electrode active material, and has a coating density of at least 1.70 g/cm3, pore diameter of the maximum of less than 0.5 ?m, and the logarithmic value of differential intrusion of at least 0.14 cm3/g at the pore diameter of the maximum.
    Type: Grant
    Filed: March 30, 2005
    Date of Patent: November 3, 2009
    Assignee: Hitachi Maxell, Ltd.
    Inventors: Hideo Sakata, Hayato Higuchi, Fusaji Kita
  • Publication number: 20090258294
    Abstract: Subfluorinated graphite fluorides of formula CFx wherein x is in the range of 0.06 to 0.63, e.g., 0.10 to 0.46, are used as electrode materials in electrochemical devices that convert chemical energy to electrical current, e.g., batteries. The invention additionally provides methods of manufacturing electrodes with the subfluorinated graphite fluorides, as well as primary and secondary batteries containing such electrodes.
    Type: Application
    Filed: June 23, 2009
    Publication date: October 15, 2009
    Applicants: CALIFORNIA INSTITUTE OF TECHNOLOGY, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
    Inventors: Rachid YAZAMI, Andre HAMWI
  • Publication number: 20090208834
    Abstract: The present invention includes three-dimensional secondary battery cells comprising an electrolyte, a cathode, an anode, and an auxiliary electrode. The cathode, the anode, and the auxiliary electrode have a surface in contact with the electrolyte. The anode and the cathode are electrolytically coupled. The auxiliary electrode is electrolytically coupled and electrically coupled to at least one of the anode or the cathode. Electrically coupled means directly or indirectly connected in series by wires, traces or other connecting elements. The average distance between the surface of the auxiliary electrode and the surface of the coupled cathode or the coupled anode is between about 1 micron and about 10,000 microns. The average distance means the average of the shortest path for ion transfer from every point on the coupled cathode or anode to the auxiliary electrode.
    Type: Application
    Filed: May 12, 2008
    Publication date: August 20, 2009
    Inventors: Murali Ramasubramanian, Robert M. Spotnitz
  • Publication number: 20090186275
    Abstract: Novel process for the preparation of finely divided, nano-structured, olivine lithium metal phosphates (LiMPO.sub.4) (where metal M is iron, cobalt, manganese, nickel, vanadium, copper, titanium and mix of them) materials have been developed. This so called Polyol” method consists of heating of suited precursor materials in a multivalent, high-boiling point multivalent alcohol like glycols with the general formula HO—(—C2H4O—).sub.n-H where n=1-10 or HO—(—C3H6O—).sub.n.-H where n=1-10, or other polyols with the general formula HOCH2—(—C3H5OH—).sub.n-H where n=1-10, like for example the tridecane-1,4,7,10,13-pentaol. A novel method for implementing the resulting materials as cathode materials for Li.-ion batteries is also developed.
    Type: Application
    Filed: April 6, 2006
    Publication date: July 23, 2009
    Inventors: Ivan Exnar, Thierry Drezen
  • Publication number: 20090123844
    Abstract: A lithium primary battery including a positive electrode, a negative electrode, an organic electrolyte, and a separator interposed between the positive electrode and the negative electrode: the negative electrode including a negative electrode active material; the negative electrode active material being at least one selected from the group consisting of lithium metal and a lithium alloy; at least a surface layer portion of the negative electrode including a composite of amorphous carbon material and the negative electrode active material; and the surface layer portion facing the positive electrode with the separator interposed therebetween.
    Type: Application
    Filed: October 7, 2005
    Publication date: May 14, 2009
    Applicant: MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.
    Inventors: Kenichi Morigaki, Susumu Yamanaka, Tohru Hitomi, Shinji Fujii, Toshihiko Ikehata
  • Patent number: 7531274
    Abstract: A new cathode design has a first cathode active material of a relatively low energy density but of a relatively high rate capability contacted to the outer sides of first and second cathode current collectors and a second cathode active material having a relatively high energy density but of a relatively low rate capability in contact with the inner sides of the current collectors. The first and second current collectors have a thickness in the range of from about 0.001 inches to about 0.002 inches. A conventional Li/SVO cell powering an implantable medical device has the cathode with a current collector of about 0.003 inches. Even though the present current collectors are about one-half as thick as that of a conventional cell, their combined thickness means that the cell has no reduction in current carrying capacity.
    Type: Grant
    Filed: August 28, 2006
    Date of Patent: May 12, 2009
    Assignee: Greatbatch Ltd.
    Inventors: Mark J. Roy, Hong Gan, Paul T. Hallifax
  • Publication number: 20090117461
    Abstract: The present invention relates to a method for production of electrodes for Li-primary and Li-ion batteries based of using two types of binder. The first binder is soluble in organic solvent and second binder is insoluble in organic solvent during the process of slurry preparation. Combination of the slurry composition and conditions of the electrode temperature treatment decrease the cathode production complexity, improve electrochemical characteristics of the electrode, increase adhesion properties and flexibility of coating, and reduce the interface resistance between the current collector and electrode mass.
    Type: Application
    Filed: October 27, 2008
    Publication date: May 7, 2009
    Applicant: Enerize Corporation
    Inventors: Elena M. Shembel, Nataliya Globa, Andrey Ryabchuk
  • Patent number: 7503943
    Abstract: Disclosed is an improved type of fluorinated carbon (CFx) for use in electrical storage devices such as batteries and capacitors. The CFx is coated with a conductive material such as gold or carbon using vapor deposition. The resulting material exhibits better conductivity with concomitant lower impedance, higher electrical stability, and improved potential throughout the useful life of the device, as compared to uncoated CFx. The improved conductivity reduces the amount of nonactive material (e.g., carbon black) that needs to be added, thus improving the volumetric energy density. In addition, cells made with the subject CFx exhibit more constant voltages and higher overall voltage (2.0 volts with a lithium metal anode) throughout their useful life. Chemical or physical vapor deposition techniques to deposit a variety of metals or carbon may be used to create the improved CFx. The coated CFx may be used in primary or secondary batteries, as well as capacitors and hybrid devices.
    Type: Grant
    Filed: March 22, 2006
    Date of Patent: March 17, 2009
    Assignee: Quallion LLC
    Inventors: Hisashi Tsukamoto, Kaname Takeya, Hiroyuki Yumoto, M. Elizabeth Bush
  • Patent number: 7498101
    Abstract: A nonaqueous electrolyte secondary battery is provided with a positive electrode including a positive-electrode active material, a negative electrode including a negative-electrode active material, and a nonaqueous electrolyte solution. The negative electrode further includes carbon fibers and carbon flakes. The synergistic effects of the improved retention of the electrolyte solution by the carbon fibers and the improved conductivity between the active material particles by the carbon flakes facilitate doping/undoping of lithium in a high-load current mode and increase the capacity of the battery in the high-load current mode.
    Type: Grant
    Filed: November 29, 2006
    Date of Patent: March 3, 2009
    Assignee: Sony Corporation
    Inventors: Akira Yamaguchi, Shinji Hatake, Masayuki Nagamine, Atsuo Omaru
  • Publication number: 20090029237
    Abstract: The present invention provides electrochemical cells capable of good electronic performance, particularly high specific energies, useful discharge rate capabilities and good cycle life. Electrochemical cells of the present invention are versatile and include primary and secondary cells useful for a range of important applications including use in portable electronic devices. Electrochemical cells of the present invention also exhibit enhanced safety and stability relative to conventional state of the art primary lithium batteries and lithium ion secondary batteries. For example, electrochemical cells of the present invention include secondary electrochemical cells using anion charge carriers capable of accommodation by positive and negative electrodes comprising anion host materials, which entirely eliminate the need for metallic lithium or dissolved lithium ion in these systems.
    Type: Application
    Filed: March 2, 2007
    Publication date: January 29, 2009
    Inventor: Rachid Yazami
  • Publication number: 20080155812
    Abstract: A cathode material for a lithium primary battery can include a low surface area lithiated manganese dioxide, a mixture of lithiated manganese dioxide and CFx, or both. The cathode materials can provide high capacity and voltage with low gassing.
    Type: Application
    Filed: March 14, 2008
    Publication date: July 3, 2008
    Inventors: William L. Bowden, Klaus Brandt, Ignacio Chi, Ou Mao, Brian McGoven, Rimma A. Sirotina
  • Patent number: 7389580
    Abstract: A method and system for fabricating solid-state energy-storage devices including fabrication films for devices without an anneal step. A film of an energy-storage device is fabricated by depositing a first material layer to a location on a substrate. Energy is supplied directly to the material forming the film. The energy can be in the form of energized ions of a second material. Supplying energy directly to the material and/or the film being deposited assists in controlling the growth and stoichiometry of the film. The method allows for the fabrication of ultrathin films such as electrolyte films and dielectric films.
    Type: Grant
    Filed: March 27, 2007
    Date of Patent: June 24, 2008
    Assignee: Cymbet Corporation
    Inventors: Mark L. Jenson, Victor H. Weiss
  • Patent number: 7358010
    Abstract: A novel cathode composition for use in a metal/fluorinated carbon battery is produced by mixing fluorinated carbons made from anisotropic and isotropic carbon, where the anisotropic carbon is carbon fiber and the isotropic carbon is graphite. This cathode composition has higher specific capacity and higher discharge rate capability than commonly used industrial products made using fluorinated petroleum cokes or similar materials. In addition this composition undergoes much less swelling (increase in volume) during discharge when compared with the commonly used fluorinated carbon.
    Type: Grant
    Filed: June 20, 2003
    Date of Patent: April 15, 2008
    Assignee: LODESTAR Inc.
    Inventors: Geliard Mikhailovich Korshunov, Natalya Vladimirovna Polyakova, Vladimir Alexandrovich Vulf, Vladimir Yuryevich Zakharov
  • Patent number: 7314685
    Abstract: A titanium substrate having a thickened outer oxidation layer provided thereon by a treatment process performed either in an air atmosphere at elevated temperatures or through electrolytic oxidation (anodization), is discribed. The thusly conditioned titanium substrate serving as a cathode current collector for an electrode incorporated into an electrochemical cell exhibits improved electrical performance in comparison to the prior art techniques, i.e., electrically conducted carbon coated titanium screen and use of highly corrosion resistant materials, upon subsequent elevated temperature exposure.
    Type: Grant
    Filed: October 7, 2003
    Date of Patent: January 1, 2008
    Assignee: Greatbatch Ltd.
    Inventors: W. Richard Brown, Christine A. Frysz, Sally Ann Smesko, Esther S. Takeuchi
  • Publication number: 20070281213
    Abstract: An electrochemical cell includes an anode, a cathode and an electrolyte operatively associated with the anode and the cathode. The cathode comprises a blend of a first electrochemically active fluorinated carbon material and one or more additional electrochemically active fluorinated carbon materials. The fluorinated carbon materials provide an electrochemical cell voltage characteristic that may be used to predict remaining energy capacity as the electrochemical cell discharges during service. Advantageously, the cathode does not require other electrochemically active materials to achieve the desired voltage characteristic, thereby preserving the favorable energy density properties of fluorinated carbon.
    Type: Application
    Filed: June 2, 2006
    Publication date: December 6, 2007
    Applicant: GENTCORP LTD.
    Inventor: Michael Pyszczek
  • Patent number: 7294435
    Abstract: Disclosed is a positive electrode active material for a nonaqueous electrolyte secondary battery containing at least a lithium-transition metal composite oxide of a spinel structure, in which at least one kind of element which may become tetravalent exists on at least a surface of the lithium-transition metal composite oxide, and concentration of the element which may become tetravalent on the surface of the lithium-transition metal composite oxide is higher than concentration of the element which may become tetravalent inside the lithium-transition metal composite oxide. A use of this positive electrode active material can improve cycle characteristics and high rate characteristics without reducing the charge-discharge capacity of the lithium-transition metal composite oxide.
    Type: Grant
    Filed: May 17, 2004
    Date of Patent: November 13, 2007
    Assignee: Nichia Corporation
    Inventors: Yoshifumi Miyamoto, Kenichi Kobayashi
  • Patent number: 7144655
    Abstract: A method and system for fabricating solid-state energy-storage devices including fabrication films for devices without an anneal step. A film of an energy-storage device is fabricated by depositing a first material layer to a location on a substrate. Energy is supplied directly to the material forming the film. The energy can be in the form of energized ions of a second material. Supplying energy directly to the material and/or the film being deposited assists in controlling the growth and stoichiometry of the film. The method allows for the fabrication of ultrathin films such as electrolyte films and dielectric films.
    Type: Grant
    Filed: October 20, 2005
    Date of Patent: December 5, 2006
    Assignee: Cymbet Corporation
    Inventors: Mark Lynn Jenson, Victor Henry Weiss
  • Patent number: 7068036
    Abstract: A model for estimating the discharge profile of a Li/CFx cell is described. The model uses as inputs the load at which the cell is subjected to and the planar surface area to estimate current density. Then, current density is used to estimate cell voltage at each 2% depth-of-discharge.
    Type: Grant
    Filed: October 28, 2004
    Date of Patent: June 27, 2006
    Assignee: WiWilson Greatbatch Technologies, Inc.
    Inventors: Kenneth C. Syracuse, Esther S. Takeuchi
  • Patent number: 7056358
    Abstract: A method for powering an implantable medical device with a lithium electrochemical cell having a sandwich cathode electrode of SVO/CFx/SVO active materials is described. A preferred cathode is of a ?-SVO/CFx/?-SVO or (?+?)-SVO/CFx/(?+?)-SVO sandwich configuration.
    Type: Grant
    Filed: May 9, 2003
    Date of Patent: June 6, 2006
    Assignee: Wilson Greatbatch Technologies, Inc.
    Inventors: Hong Gan, Esther S. Takeuchi
  • Patent number: 7052802
    Abstract: Disclosed is an improved type of fluorinated carbon (CFx) for use in electrical storage devices such as batteries and capacitors. The CFx is coated with a conductive material such as gold or carbon using vapor deposition. The resulting material exhibits better conductivity with concomitant lower impedance, higher electrical stability, and improved potential throughout the useful life of the device, as compared to uncoated CFx. The improved conductivity reduces the amount of nonactive material (e.g., carbon black) that needs to be added, thus improving the volumetric energy density. In addition, cells made with the subject CFx exhibit more constant voltages and higher overall voltage (2.0 volts with a lithium metal anode) throughout their useful life. Chemical or physical vapor deposition techniques to deposit a variety of metals or carbon may be used to create the improved CFx. The coated CFx may be used in primary or secondary batteries, as well as capacitors and hybrid devices.
    Type: Grant
    Filed: October 15, 2002
    Date of Patent: May 30, 2006
    Assignee: Quallion LLC
    Inventors: Hisashi Tsukamoto, Kaname Takeya, Hiroyuki Yumoto, M. Elizabeth Bush
  • Patent number: 6949312
    Abstract: An electrode material for an anode of a rechargeable lithium battery, containing a particulate comprising an amorphous Sn.A.X alloy with a substantially non-stoichiometric ratio composition. For said formula Sn.A.X, A indicates at least one kind of an element selected from a group consisting of transition metal elements, X indicates at least one kind of an element selected from a group consisting of O, F, N, Mg, Ba, Sr, Ca, La, Ce, Si, Ge, C, P, B, Pb, Bi, Sb, Al, Ga, In, Tl, Zn, Be, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, As, Se, Te, Li and S, where the element X is not always necessary to be contained. The content of the constituent element Sn of the amorphous Sn.A.X alloy is Sn/(Sn+A+X)=20 to 80 atomic %.
    Type: Grant
    Filed: September 17, 1999
    Date of Patent: September 27, 2005
    Assignee: Canon Kabushiki Kaisha
    Inventors: Soichiro Kawakami, Masaya Asao
  • Patent number: 6926991
    Abstract: A new cathode design has a first cathode active material of a relatively low energy density but of a relatively high rate capability contacted to a first cathode current collector and a second cathode active material having a relatively high energy density but of a relatively low rate capability in contact with a second cathode current collector, is described. The first and second cathode current collectors are connected to a common terminal lead. The present cathode design is useful for powering an implantable medical device requiring a high rate discharge application.
    Type: Grant
    Filed: December 23, 2002
    Date of Patent: August 9, 2005
    Assignee: Wilson Greatbatch Technologies, Inc.
    Inventors: Hong Gan, Esther S. Takeuchi
  • Patent number: 6783888
    Abstract: The minimization or elimination of swelling in lithium cells containing CFx as part of the cathode electrode and discharged under high rate applications is described. When CFx materials are synthesized from fibrous carbonaceous materials, in comparison to petroleum coke, cell swelling is greatly reduced, and in some cases eliminated. Preferred precursors are carbon fibers and MCMB.
    Type: Grant
    Filed: May 17, 2001
    Date of Patent: August 31, 2004
    Assignee: Wilson Greatbatch Ltd.
    Inventors: Hong Gan, Sally Ann Smesko, Esther S. Takeuchi, Steven M. Davis
  • Patent number: 6767670
    Abstract: An alkali metal/solid cathode electrochemical cell, such as of a Li/SVO couple, having the cathode material supported on a titanium current collector screen coated with a carbonaceous material is described. The thusly-coated titanium current collector provides the cell with higher rate capability in comparison to cells of a similar chemistry having the cathode active material contacted to an uncoated titanium current collector.
    Type: Grant
    Filed: November 14, 2002
    Date of Patent: July 27, 2004
    Assignee: Wilson Greatbatch Technologies, Inc.
    Inventors: William M. Paulot, Mark J. Roy, Gary L. Freitag, Dominick J. Frustaci, Hong Gan, Esther S. Takeuchi
  • Publication number: 20040131943
    Abstract: A titanium substrate having a thickened outer oxidation layer provided thereon by a treatment process performed either in an air atmosphere at elevated temperatures or through electrolytic oxidation (anodization), is discribed. The thusly conditioned titanium substrate serving as a cathode current collector for an electrode incorporated into an electrochemical cell exhibits improved electrical performance in comparison to the prior art techniques, i.e., electrically conducted carbon coated titanium screen and use of highly corrosion resistant materials, upon subsequent elevated temperature exposure.
    Type: Application
    Filed: October 7, 2003
    Publication date: July 8, 2004
    Inventors: W. Richard Brown, Christine A. Frysz, Sally Ann Smesko, Esther S. Takeuchi
  • Patent number: 6743547
    Abstract: An electrode having the configuration: first active material/current collector/second active material is described. One of the electrode active materials in a cohesive form of active particles being firmly held together as part of the same mass is incapable of moving through the current collector to the other side thereof. However, in an un-cohesive form of active particles not being firmly held together as part of a mass, the one electrode active material is capable of communication through the current collector. The other or second active material is in a form in-capable of communication through the current collector, whether it is in a cohesive or un-cohesive powder form. Then, the assembly of first active material/current collector/second active material is pressed from either the direction of the first electrode active material to the second electrode active material, or visa versa.
    Type: Grant
    Filed: November 13, 2001
    Date of Patent: June 1, 2004
    Assignee: Wilson Greatbatch Ltd.
    Inventors: Hong Gan, Sally Ann Smesko, Esther S. Takeuchi
  • Patent number: 6737191
    Abstract: A new sandwich negative electrode design for a secondary cell is provided comprising a “sacrificial” alkali metal along with a carbonaceous anode material. In the case of a hard carbon anode material, the sacrificial alkali metal is preferably lithium and is sized to compensate for the initial irreversible capacity of this anode material. Upon activating the cells, the lithium metal automatically intercalates into the hard carbon anode material. That way, the sacrificial lithium is consumed and compensates for the generally unacceptable irreversible capacity of hard carbon. The superior cycling longevity of hard carbon now provides a secondary cell of extended use beyond that know for conventional secondary cells having only graphitic anode materials.
    Type: Grant
    Filed: November 8, 2001
    Date of Patent: May 18, 2004
    Assignee: Wilson Greatbatch Ltd.
    Inventors: Hong Gan, Robert S. Rubino, Esther S. Takeuchi
  • Publication number: 20040091783
    Abstract: This invention provides methods and materials for the manufacture of lithium ion rechargeable battery electrodes comprising fullerene compounds which have not been exposed to oxygen. Fullerene compounds are intercalated into carbonaceous materials to form electrodes having superior intercalation/deintercalation properties. Fullerene monomers, such as C60, C70, C74, C76, C78, C80, C84 and C80-100 and fluorinated derivatives thereof, are useful in the methods and materials of this invention. Materials incorporating C74 are particularly preferred. The invention also provides fullerene polymer materials useful for lithium ion electrodes with greatly improved electrochemical properties.
    Type: Application
    Filed: November 10, 2003
    Publication date: May 13, 2004
    Inventor: Dawson W. Cagle