With Insulating Separator, Spacer Or Retainer Means Patents (Class 429/246)
  • Patent number: 11532853
    Abstract: Provided is a battery including a positive electrode, a negative electrode, an electrolytic solution, and a particle-containing resin layer that contains particles and a resin. A shape of the particles includes a plane, a plane rate of the particles is greater than 40% and equal to or less than 100%, and a refractive index of the particles is equal to or greater than 1.3 and less than 2.4.
    Type: Grant
    Filed: April 29, 2020
    Date of Patent: December 20, 2022
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Kazuhito Hatta, Keiichi Kagami, Nobuaki Shimosaka, Keizo Koga
  • Patent number: 11527748
    Abstract: In accordance with some embodiments of the present invention, an electrode was provided. The electrode includes an electrode composite layer and a porous insulating layer on the electrode composite layer. The electrode composite layer contains an active material. A surface roughness Rz of the electrode composite layer is smaller than an average film thickness of the porous insulating layer.
    Type: Grant
    Filed: January 24, 2020
    Date of Patent: December 13, 2022
    Assignee: RICOH COMPANY, LTD.
    Inventors: Eiko Hibino, Hiromichi Kuriyama, Satoshi Nakajima, Shigeo Takeuchi, Toru Ushirogochi, Hideo Yanagita, Keigo Takauji, Miku Ohkimoto
  • Patent number: 11522197
    Abstract: An object of the present invention is to provide a nonaqueous electrolyte secondary battery that allows more suitably suppressing short circuits between a positive electrode collector and a negative electrode active material layer, even when the battery generates heat. Provided is a nonaqueous electrolyte secondary battery 1 that includes a positive electrode and a negative electrode. The positive electrode includes a positive electrode collector, a positive electrode active material layer, and an insulating layer provided on another part of the surface of the positive electrode collector, so as to be adjacent to the positive electrode active material layer. The insulating layer contains an inorganic filler and a binder. A penetration strength of the insulating layer in a thickness direction perpendicular to the surface of the positive electrode collector is 0.05 N/mm2 or higher.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: December 6, 2022
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takanobu Yamada, Tetsuya Kaneko
  • Patent number: 11522253
    Abstract: An object to provide a nonaqueous electrolyte secondary battery that allows more suitably suppressing short circuits between a positive electrode collector and a negative electrode active material layer, even when the battery generates heat. A nonaqueous electrolyte secondary battery includes a positive electrode, a negative electrode, and a separator. The positive electrode includes a positive electrode collector, a positive electrode active material layer, and an insulating layer provided on another part of the surface of the positive electrode collector, adjacent to the positive electrode active material layer. The insulating layer contains an inorganic filler and a binder; and is configure to exhibit a value of 13% or less of a thermal shrinkage factor in a direction parallel to the surface of an evaluation sample of an insulating layer formed to a square shape having a length of each side of 5 cm and heated at 150° C. for 1 hour.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: December 6, 2022
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takanobu Yamada, Tetsuya Kaneko
  • Patent number: 11509019
    Abstract: The present application relates to an electrochemical device. The electrochemical device includes: at least one electrode, the at least one electrode having a first surface; and a fiber coating layer, the fiber coating layer including a fiber and being disposed on the first surface. The electrochemical device has the advantages of high energy density, strong liquid retention ability, good drop resistance, good chemical stability and the like since its fiber coating layer has small thickness, high porosity and stronger interfacial adhesion to the electrode.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: November 22, 2022
    Assignee: NINGDE AMPEREX TECHNOLOGY LIMITED
    Inventors: Yibo Zhang, Xiang Li, Bin Wang, Ying Shao
  • Patent number: 11508966
    Abstract: This disclosure provides a battery including a cathode, an anode positioned opposite the cathode and a carbon interface layer. The carbon interface layer includes an electrically insulating flaky carbon layer conformally encapsulating the anode. A plurality of carbon nano-onions (CNOs) defining a plurality of interstitial pore volumes are interspersed throughout the electrically insulating flaky carbon layer. An electrolyte is in contact with the carbon interface layer and the cathode. A separator is positioned between the anode and the cathode. The electrically insulating flaky carbon layer can include graphene oxide (GO). The plurality of interstitial pore volumes can be configured to transport lithium (Li) ions between the anode and the cathode via the plurality of interstitial pore volumes in a bulk phase of the electrolyte. The carbon interface layer can be configured to inhibit growth of Li dendritic structures from the anode towards the cathode.
    Type: Grant
    Filed: September 9, 2020
    Date of Patent: November 22, 2022
    Assignee: Lyten, Inc.
    Inventors: Jeffrey Bell, You Li, Jesse Baucom, John Thorne, Qianwen Huang, Anurag Kumar, Jerzy Gazda, Bruce Lanning, Michael W. Stowell, Prashanth Jampani Hanumantha, James McKinney, George Clayton Gibbs
  • Patent number: 11508958
    Abstract: A non-aqueous electrolyte secondary battery disclosed herein includes a positive electrode, a negative electrode, and a non-aqueous electrolyte. The positive electrode includes a positive electrode current collector, and a positive electrode active material layer, an insulating layer, and a boundary layer which are provided on the positive electrode current collector. The boundary layer is positioned between the positive electrode active material layer and the insulating layer, and is in contact with the positive electrode active material layer and the insulating layer. The positive electrode active material layer contains a positive electrode active material. The insulating layer contains an inorganic filler. The boundary layer contains the positive electrode active material contained in the positive electrode active material layer and the inorganic filler contained in the insulating layer. The boundary layer contains hydrated alumina. The non-aqueous electrolyte contains lithium fluorosulfonate.
    Type: Grant
    Filed: August 24, 2020
    Date of Patent: November 22, 2022
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Tetsuri Nakayama
  • Patent number: 11456460
    Abstract: A nonaqueous electrolyte secondary battery includes a negative electrode plate, a negative electrode current collector lead joined to the inner peripheral end of the negative electrode plate, and a negative electrode current collector-exposed part where a negative electrode active material layer is not formed at the outer peripheral-side end. The negative electrode current collector-exposed part at the outer peripheral end comes in contact with a battery case, and in a plane vertical to the axis of an electrode body, a line connecting the axis and the center of a positive electrode current collector lead does not coincide with a line connecting the axis and the center between the coating end of the outer peripheral-side negative electrode active material layer of the negative electrode plate and the terminal part of the outer peripheral-side positive electrode plate.
    Type: Grant
    Filed: February 19, 2020
    Date of Patent: September 27, 2022
    Assignees: PANASONIC HOLDINGS CORPORATION, SANYO Electric Co., Ltd.
    Inventors: Tasuku Ishiguro, Atsushi Mizawa
  • Patent number: 11417888
    Abstract: An electrode including an electrode active material and a ceramic hydrofluoric acid (HF) scavenger is provided. The ceramic hydrofluoric acid (HF) scavenger includes M2SiO3, MAlO2, M2O—Al2O3—SiO2, or combinations thereof, where M is lithium (Li), sodium (Na), or combinations thereof. Methods of making the electrode are also provided.
    Type: Grant
    Filed: September 17, 2019
    Date of Patent: August 16, 2022
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Xingcheng Xiao, Jin Liu, Jiagang Xu, Mei Cai, Sherman H. Zeng
  • Patent number: 11398351
    Abstract: A multilayer ceramic capacitor includes a multilayer body and first and second external electrodes. The first and second external electrodes include first and second underlying electrode layers, first and second main-surface-side resin layers, and first and second plated layers, respectively. The first and second main-surface-side resin layers cover respective ends of the first and second underlying electrode layers on a first main surface and cover respective portions of a first side surface and a second side surface continuously from the first main surface.
    Type: Grant
    Filed: June 25, 2020
    Date of Patent: July 26, 2022
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventor: Hidetaka Sugiyama
  • Patent number: 11394085
    Abstract: A system and method for providing a ceramic-based separator onto an electrode is disclosed. A separator is formed on the electrode via a dry, solvent-free application of a ceramic-based separator to the electrode. An electrode is provided to an application area via a feed mechanism and a separator layer is then applied to the electrode that is comprised of a binder including at least one of a thermoplastic material and a thermoset material and an electrically non-conductive separator material, with the separator layer being applied to the electrode via a dry dispersion application.
    Type: Grant
    Filed: June 28, 2021
    Date of Patent: July 19, 2022
    Assignee: Eskra Technical Products, Inc.
    Inventors: Michael David Eskra, Paula Margaret Ralston
  • Patent number: 11367889
    Abstract: An electrochemical stack includes a solid electrolyte membrane as one of the components of a membrane electrode assembly. The membrane may have been formed during stack assembly via an in situ reaction.
    Type: Grant
    Filed: August 3, 2017
    Date of Patent: June 21, 2022
    Assignee: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: Divyaraj Desai, Scott A. Elrod, Jessica Louis Baker Rivest
  • Patent number: 11362389
    Abstract: A pouch type secondary battery in which an electrode lead of the pouch type secondary battery and an electrode lead of an adjacent different pouch type secondary battery are welded together to construct a battery module is provided. The electrode lead of the pouch type secondary battery includes a length extended part so that, after cutting a welded part of the electrode leads of the pouch type secondary battery and the adjacent different pouch type secondary battery to form electrode leads of remaining length, the electrode leads of remaining length are welded together again. A battery module and method of reusing the battery module are also provided.
    Type: Grant
    Filed: February 19, 2018
    Date of Patent: June 14, 2022
    Assignee: LG ENERGY SOLUTION, LTD.
    Inventors: Hee-Jun Jin, Sung-Won Seo, Yoon-Koo Lee, Eun-Ah Ju, Jeong-O Mun
  • Patent number: 11342591
    Abstract: A method for manufacturing an electrode assembly is provided. The method includes a preparation step of preparing a plurality of separators and a plurality of electrodes; an electrode unit manufacturing step of manufacturing an electrode unit having a structure in which the separators and the electrodes are alternately disposed; a pre-sealing step of forming a pre-sealing part in which at least a partial region of each separator of the plurality of separators within the electrode unit are attached to each other; and a separator cutting step of cutting a region of the pre-sealing part. An apparatus for performing the method is also provided.
    Type: Grant
    Filed: October 31, 2018
    Date of Patent: May 24, 2022
    Assignee: LG ENERGY SOLUTION, LTD.
    Inventors: Il Un Chu, Sang Wook Kim, Dong Hyeuk Park, Nam Hyuck Kim, Su Ho Jeon
  • Patent number: 11342551
    Abstract: There is provided a secondary zinc battery including: a unit cell including; a positive-electrode plate including a positive-electrode active material layer and a positive-electrode collector; a negative-electrode plate including a negative-electrode active material layer containing zinc and a negative-electrode collector; a layered double hydroxide (LDH) separator covering or wrapping around the entire negative-electrode active material layer; and an electrolytic solution. The positive-electrode collector has a positive-electrode collector tab extending from one edge of the positive-electrode active material layer, and the negative-electrode collector has a negative-electrode collector tab extending from the opposite edge of the negative-electrode active material layer and beyond a vertical edge of the LDH separator. The unit cell can thereby collects electricity from the positive-electrode collector tab and the negative-electrode collector tab.
    Type: Grant
    Filed: March 16, 2020
    Date of Patent: May 24, 2022
    Assignee: NGK Insulators, Ltd.
    Inventors: Junki Matsuya, Yuichi Gonda, Takeshi Yagi, Kenshin Kitoh
  • Patent number: 11287478
    Abstract: A separator damage detecting apparatus detects a separator damage of a secondary battery by applying a voltage while pressing an electrode assembly having a structure in which a positive electrode plate, a separator and a negative electrode plate are stacked, to induce a temporary short circuit of a positive electrode plate and a negative electrode plate. The separator damage detecting apparatus includes a short circuit measuring unit configured to apply a voltage to the electrode assembly and detect a leakage current; and a pressing jig configured to roll-press at least one surface of the electrode assembly or consecutively press predetermined regions of the at least one surface of the electrode assembly.
    Type: Grant
    Filed: April 11, 2019
    Date of Patent: March 29, 2022
    Assignee: LG ENERGY SOLUTION, LTD.
    Inventors: Hoon Min, Chan-Woo Park, Byung-Soo Kim
  • Patent number: 11283135
    Abstract: A membrane includes a porous membrane or layer made of a polymeric material having a plurality of surface treated (or coated) particles (or ceramic particles) having an average particle size of less than about 1 micron dispersed therein. The polymeric material may be selected from the group consisting of polyolefins, polyamides, polyesters, co-polymers thereof, and combinations thereof. The particles may be selected from the group consisting of boehmite (AlOOH), SiO2, TiO2, Al2O3, BaSO4, CaCO3, BN, and combinations thereof, or the particles may be boehmite. The surface treatment (or coating) may be a molecule having a reactive end and a non-polar end. The particles may be pre-mixed in a low molecular weight wax before mixing with the polymeric material. The membrane may be used as a battery separator.
    Type: Grant
    Filed: April 1, 2019
    Date of Patent: March 22, 2022
    Assignee: Celgard, LLC
    Inventors: C. Glen Wensley, Lie Shi
  • Patent number: 11242440
    Abstract: This polyolefin microporous membrane has a TD thermal shrinkage at 120° C. of 8% or less, and the TD thermal shrinkage at 130° C. thereof is 3 to 5 times greater than the TD thermal shrinkage at 120° C. and at least 12% greater than the TD thermal shrinkage at 120° C.
    Type: Grant
    Filed: January 31, 2018
    Date of Patent: February 8, 2022
    Assignee: Asahi Kasei Kabushiki Kaisha
    Inventors: Akihisa Yamashita, Masaki Katayama
  • Patent number: 11239504
    Abstract: Articles and methods including layers for protection of electrodes in electrochemical cells are provided. As described herein, a layer, such as a protective layer for an electrode, may comprise a plurality of particles (e.g., crystalline inorganic particles, amorphous inorganic particles). In some embodiments, at least a portion of the plurality of particles (e.g., inorganic particles) are fused to one another. For instance, in some embodiments, the layer may be formed by aerosol deposition or another suitable process that involves subjecting the particles to a relatively high velocity such that fusion of particles occurs during deposition. In some embodiments, the layer (e.g., the layer comprising a plurality of particles) is an ion-conducting layer.
    Type: Grant
    Filed: September 30, 2019
    Date of Patent: February 1, 2022
    Assignee: Sion Power Corporation
    Inventors: Michael G. Laramie, Yuriy V. Mikhaylik, Hui Du, Joern Kulisch, Marina Safont-Sempere, Klaus Leitner, Holger Schneider
  • Patent number: 11233242
    Abstract: The present invention relates to a positive electrode slurry composition, and a positive electrode for a secondary battery and a lithium secondary battery which include the positive electrode slurry composition, and particularly, to a positive electrode slurry composition which includes a positive electrode active material, a fluorine-containing polymer, a conductive agent, a solvent, and a polymer or oligomer containing a unit represented by Formula 1, and a positive electrode for a lithium secondary battery and a lithium secondary battery which include the positive electrode slurry composition.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: January 25, 2022
    Assignee: LG Energy Solution, Ltd.
    Inventors: Joo Sung Lee, Yun Feng Xue, Myung Soo Ko, In Seong Chang
  • Patent number: 11158857
    Abstract: A lithium electrode including: a lithium metal layer; an aluminum oxide layer on the lithium metal layer; and a carbon layer on the aluminum oxide layer, and a lithium secondary battery including the same. The aluminum oxide layer can prevent a direct reaction between a non-aqueous electrolyte and a lithium metal layer, and particularly, since the aluminum oxide layer does not have electrical conductivity, lithium deposition occurs between the lithium metal layer and aluminum oxide layer. Thus lithium metal is not deposited on the protection layer. In addition, the carbon layer functions for producing a stable solid electrolyte interface film thereon.
    Type: Grant
    Filed: August 14, 2018
    Date of Patent: October 26, 2021
    Assignee: LG CHEM, LTD.
    Inventors: Kyung Hwa Woo, Jeong Woo Shon, Jong Keon Yoon, Hoejin Hah
  • Patent number: 11145861
    Abstract: Disclosed are methods for pre-conditioning or pre-treating the surface of a metal (e.g., lithium) electrode such that the cycle life and efficiency of the electrode within an electrochemical cell are improved through the prevention of dendrite growth. The pretreatment process includes the use of an alternating current to modify the surface properties of the metal electrode, such that a more uniform flux of metal ions is transferred across the electrode-electrolyte Interface in subsequent electrodeposition and electrodissolution processes. As a result, an electrode treated with such a process exhibits improved performance and durability, including markedly lower overpotentials and largely improved metal (e.g., lithium) retention in strip plate tests as compared with untreated electrodes.
    Type: Grant
    Filed: April 17, 2017
    Date of Patent: October 12, 2021
    Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Neil P. Dasgupta, Kevin N. Wood, Kuan-Hung Chen, Eric Kazyak
  • Patent number: 11133508
    Abstract: The present disclosure provides a secondary battery and an electrode plate. The electrode plate includes a current collector, an active material layer, and a first protective layer. The current collector includes an insulating layer and a conductive layer disposed on the insulating layer. The conductive layer has a main body portion covered by the active material layer and a protrusion portion uncovered by the active material layer. The first protective layer is disposed on a side of the protrusion portion facing away from the insulating layer. The electrode plate further includes a conductive structure, which has a connecting portion fixed on the main body portion, and a first extending portion exceeding an end of the protrusion portion away from the main body portion. The first protective layer is disposed on a side of the connecting portion close to the active material layer along a height direction.
    Type: Grant
    Filed: April 3, 2019
    Date of Patent: September 28, 2021
    Inventors: Yaru Zhou, Qingrui Xue, Zige Zhang, Miao Jiang, Jing Li, Wei Li, Long Wang
  • Patent number: 11133562
    Abstract: The invention relates to integrated electrode separators (IES), and their use in lithium ion batteries as replacements for free standing separators. The IES results from coating an electrode with a fluoropolymer aqueous-based emulsion or suspension, and drying the coating to produce a tough, porous separator layer on the electrodes. The aqueous fluoropolymer coating may optionally contain dispersed inorganic particles and other additives to improve electrode performance such as higher ionic conduction or higher temperature use. The IES provides several advantages, including a thinner, more uniform separator layer, and the elimination of a separate battery component (separator membrane) for a simpler and cost-saving manufacturing process. The aqueous separator coating can be used in combination with a solvent cast electrode as well as an aqueous cast electrode either in two separate process steps, or in a one-step process.
    Type: Grant
    Filed: November 1, 2013
    Date of Patent: September 28, 2021
    Assignee: Arkema Inc.
    Inventors: John Schmidhauser, Scott R. Gaboury, Ramin Amin-Sanayei, Christophe Roger, Wensheng He, Rosemary Heinze
  • Patent number: 11108118
    Abstract: The present application discloses a cell and an electrochemical device. The cell includes: a first electrode sheet, a first electrode tab, a second electrode sheet, and a second electrode tab. The first electrode sheet includes a first current collector and a first active material layer. The first current collector includes a first end portion, and two sides of the first end portion are provided with the first active material layer. The second electrode sheet includes a second current collector and a second active material layer. The first end portion has a width being one third of a width of the first electrode tab. In a first direction, the cell has a thickness t at the first end portion, the cell has a thickness T at the first electrode tab or the second electrode tab, and t is greater than or equal to 95% of T.
    Type: Grant
    Filed: March 15, 2019
    Date of Patent: August 31, 2021
    Assignee: NINGDE AMPEREX TECHNOLOGY LIMITED
    Inventors: Xiangrong Chen, Zhiyuan Liu, Huiqin Wang, Ying Wang
  • Patent number: 11101502
    Abstract: A battery includes a first portion and a second portion, in which the first portion includes a first positive electrode layer, a first negative electrode layer, and a first solid electrolyte layer located between the first positive electrode layer and the first negative electrode layer, in which the second portion includes a second positive electrode layer, a second negative electrode layer, and a second solid electrolyte layer located between the second positive electrode layer and the second negative electrode layer, in which the first portion and the second portion are in contact with each other, the second portion is more sharply bent than the first portion, and at least one of Cp1<Cp2, Ce1<Ce2, and Cn1<Cn2 is satisfied.
    Type: Grant
    Filed: January 25, 2019
    Date of Patent: August 24, 2021
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventor: Izuru Sasaki
  • Patent number: 11065460
    Abstract: In some examples, a battery assembly for an implantable medical device may include an electrode stack comprising a plurality of electrode plates. The plurality of electrode plates may comprise a first electrode plate including a first tab extending from the first electrode plate and a second electrode plate including a second tab extending from the second electrode plate, an alignment member extending through the first tab and the second tab, and a weld on a side of the electrode stack extending from the first tab to the second tab, wherein the weld penetrates into the alignment member.
    Type: Grant
    Filed: May 30, 2019
    Date of Patent: July 20, 2021
    Assignee: Medtronic, Inc.
    Inventors: Hailiang Zhao, Steven J. May
  • Patent number: 11063299
    Abstract: A secondary battery for cycling between a charged and a discharged state is provided. The secondary battery has an electrode assembly having a population of anode structures, a population of cathode structures, and an electrically insulating microporous separator material. The electrode assembly also has a set of electrode constraints that at least partially restrains growth of the electrode assembly. Members of the anode structure population have a first cross-sectional area, A1 when the secondary battery is in the charged state and a second cross-sectional area, A2, when the secondary battery is in the discharged state, and members of the cathode structure population have a first cross-sectional area, C1 when the secondary battery is in the charged state and a second cross-sectional area, C2, when the secondary battery is in the discharged state, where A1 is greater than A2, and C1 is less than C2.
    Type: Grant
    Filed: November 16, 2017
    Date of Patent: July 13, 2021
    Assignee: ENOVIX CORPORATION
    Inventors: Robert S. Busacca, Murali Ramasubramanian, Bruno A. Valdes, James D. Wilcox, Christopher J. Spindt, Geoffrey Matthew Ho, John F. Varni, Kim Han Lee, Richard J. Contreras, Thomas John Schuerlein, Ashok Lahiri
  • Patent number: 11050059
    Abstract: Particles including a core and a coat covering at least part of the core surface. The core has more than 50% of an acidic metal oxide and the core coating is based on a polymer, preferably based on a solid polymer with high electrochemical stability. The particle has a solubility rate (ds), in fixed time, of the metal oxide migrating towards the electrolyte, per cycle, which is less than 5 per 10000. The particles are obtained by mixing the polymer and a metal oxide, via dry process with addition of solvent. The electrodes constituting an electrode substrate at least partly coated with a mixture consisting of at least 40 of those particles have remarkable electrochemical properties, in particular regarding the lifetime of batteries in which they are incorporated.
    Type: Grant
    Filed: August 11, 2017
    Date of Patent: June 29, 2021
    Assignee: HYDRO-QUÉBEC
    Inventors: Patrick Charest, Michel Perrier, Martin Dontigny, Michel Petitclerc, Abdelbast Guerfi, Karim Zaghib
  • Patent number: 11050121
    Abstract: A system and method for providing a ceramic-based separator onto an electrode is disclosed. A separator is formed on the electrode via a dry, solvent-free application of a ceramic-based separator to the electrode. An electrode is provided to an application area via a feed mechanism and a separator layer is then applied to the electrode that is comprised of a binder including at least one of a thermoplastic material and a thermoset material and an electrically non-conductive separator material, with the separator layer being applied to the electrode via a dry dispersion application.
    Type: Grant
    Filed: March 7, 2016
    Date of Patent: June 29, 2021
    Assignee: Eskra Technical Products, Inc.
    Inventors: Michael David Eskra, Paula Margaret Ralston
  • Patent number: 11043718
    Abstract: A porous polyimide film has an acid value within a range of 7 mgKOH/g to 20 mgKOH/g determined by acid-base titration, contains a metal group including alkali metals excluding Li, an alkaline earth metals, and silicon at a total content of 100 ppm or less relative to the porous polyimide film, and has a moisture absorption ratio of 0.5% or less.
    Type: Grant
    Filed: September 5, 2019
    Date of Patent: June 22, 2021
    Assignee: FUJIFILM BUSINESS INNOVATION CORP.
    Inventors: Kosaku Yoshimura, Yasunobu Kashima, Hajime Sugahara, Hidekazu Hirose
  • Patent number: 11018370
    Abstract: The invention discloses a separator with a wide temperature range and a low heat shrinkage and a method for preparing the same. The invention belongs to the field of electrochemistry. The separator of the invention includes: an irradiation crosslinked fluoropolymer A with a melting point above 150° C. and/or a polymer B containing a benzene ring in its main chain; an ultrahigh molecular weight polyethylene having a molecular weight of 1.0×106-10.0×106, and a high density polyethylene having a density in the range of 0.940-0.976 g/cm3; the temperature difference between pore closing temperature and film breaking temperature of the separator is 80-90° C., preferably 85-90° C., the heat shrinkage of the separator is 2.0% or less.
    Type: Grant
    Filed: April 6, 2017
    Date of Patent: May 25, 2021
    Assignee: SHANGHAI ENERGY NEW MATERIALS TECHNOLOGY CO., LTD.
    Inventors: Alex Cheng, Lei Xiong, Honggui Deng, Fangbo He, Weiqiang Wang
  • Patent number: 10998599
    Abstract: A lithium secondary battery includes a plurality of electrode cells, each of which includes a first electrode, a second electrode having a different polarity from that of the first electrode and a separation layer interposed between the first electrode and the second electrode, and at least one ion permeation barrier between neighboring ones of the electrode cells. The ion permeation barrier has an air permeability less than that of the separation layer.
    Type: Grant
    Filed: February 6, 2018
    Date of Patent: May 4, 2021
    Assignee: SK Innovation Co., Ltd.
    Inventors: Yong Hyun Cho, Jae Woong Kim, Min Gu Kang, Young Hoon Do, Whee Sung Kim
  • Patent number: 10998536
    Abstract: A separator for a lithium battery having (a) a porous polymeric layer, such as a polyethylene layer; and (b) a nanoporous inorganic particle/polymer layer on both sides of the polymeric layer, the nanoporous layer having an inorganic oxide and one or more polymers; the volume fraction of the polymers in the nanoporous layer is about 15% to about 50%, and the crystallite size of the inorganic oxide is 5 nm to 90 nm.
    Type: Grant
    Filed: October 15, 2018
    Date of Patent: May 4, 2021
    Assignee: Optodot Corporation
    Inventors: David W. Avison, Steven A. Carlson, Benjamin Sloan
  • Patent number: 10985373
    Abstract: Provided is cathode active material layer for a lithium battery. The cathode active material layer comprises multiple cathode active material particles and an optional conductive additive that are bonded together by a binder comprising a high-elasticity polymer having a recoverable tensile strain from 5% to 700% (preferably from 10% to 100%) when measured without an additive or reinforcement in said polymer and a lithium ion conductivity no less than 10?5 S/cm (preferably and typically from 1.0×10?5 S/cm to 5×10?2 S/cm) at room temperature.
    Type: Grant
    Filed: February 27, 2017
    Date of Patent: April 20, 2021
    Assignee: Global Graphene Group, Inc.
    Inventors: Baofei Pan, Hui He, Aruna Zhamu, Bor Z. Jang
  • Patent number: 10971783
    Abstract: The present disclosure is directed to providing an electrode assembly which improves the thermal safety of a battery by preventing shrinking of a separator adjacent to electrode tabs. The electrode assembly includes a positive electrode plate having a positive electrode tab at one end thereof, a negative electrode plate having a negative electrode tab at one end thereof, and a separator interposed between the positive electrode plate and the negative electrode plate, wherein the positive electrode plate and the negative electrode plate are stacked so that each of the tabs may be positioned in the same direction, and the separator has a gradient in thickness so that the thickness of one side having the electrode tabs are larger than that of the other side.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: April 6, 2021
    Assignee: LG CHEM, LTD.
    Inventors: Dae-Soo Kim, Min-Kyung Kim
  • Patent number: 10971753
    Abstract: A negative electrode for a lithium metal battery, the negative electrode including: a lithium metal layer including lithium metal or a lithium metal alloy; and a protective layer on at least a portion of the lithium metal layer, wherein the protective layer includes a plurality of composite particles having a particle size of greater than about 1 micrometer to about 100 micrometers or less, wherein a composite particle of the plurality of composite particles comprises a particle comprising an organic particle, an inorganic particle, an organic-inorganic particle, or combination thereof; and a coating layer disposed on at least a portion of a surface of the particle, the coating layer including an ion conductive material including an ion conductive oligomer including an ion conductive unit, an ion conductive polymer including an ion conductive unit, or a combination thereof.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: April 6, 2021
    Assignees: SAMSUNG ELECTRONICS CO., LTD., SAMSUNG SDI CO., LTD.
    Inventors: Yonggun Lee, Saebom Ryu, Yooseong Yang, Toshinori Sugimoto, Taehwan Yu
  • Patent number: 10964952
    Abstract: A positive electrode for a non-aqueous electrolyte secondary battery includes a positive electrode current collector, a protective layer provided on a surface of the positive electrode current collector, and a positive electrode composite material layer containing a positive electrode active material provided on a surface of the protective layer. The protective layer includes an insulating filler, a binder, and a conductive material. The protective layer is composed of a central portion and an end portion in a plan view as seen from the stacking direction. The ratio of the conductive material in the end portion of the protective layer is smaller than the ratio of the conductive material in the central portion of the protective layer. The ratio Sc/S of the area Sc of the end portion of the protective layer to the total area S of the protective layer in plan view is 0.12 or more.
    Type: Grant
    Filed: September 24, 2018
    Date of Patent: March 30, 2021
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Koji Torita, Shuji Tsutsumi, Yusuke Fukumoto
  • Patent number: 10938066
    Abstract: A phosphodiester salt is added to the electrolytic solution to form a nonaqueous electrolytic solution for a secondary battery. The nonaqueous electrolytic solution has excellent storage characteristics in a temperature load environment. Deterioration of the charge-discharge characteristics of the nonaqueous electrolytic solution and increase in internal resistance of the nonaqueous electrolytic solution are suppressed during storage. A secondary battery having a positive electrode and a negative electrode makes use of this electrolytic solution.
    Type: Grant
    Filed: February 16, 2015
    Date of Patent: March 2, 2021
    Assignee: STELLA CHEMIFA CORPORATION
    Inventors: Toshitaka Sakaguchi, Yoshifumi Katsura, Tetsuo Nishida
  • Patent number: 10930914
    Abstract: A composition for a non-aqueous secondary battery porous membrane including inorganic particles and a particulate polymer, wherein a volume-average particle diameter d0 of the inorganic particles is 0.1 ?m or more and 1.0 ?m or less, a weight ratio between the inorganic particles and the particulate polymer is within a range of 95:5 to 50:50, and a volume-average particle diameter d1 of the particulate polymer and the volume-average particle diameter d0 of the inorganic particles satisfy d1/d0>1; and a non-aqueous secondary battery including the same.
    Type: Grant
    Filed: July 14, 2017
    Date of Patent: February 23, 2021
    Assignee: ZEON CORPORATION
    Inventor: Takumi Sugimoto
  • Patent number: 10916766
    Abstract: Provided is a rechargeable alkali metal-sulfur cell comprising an anode active material layer, an electrolyte, and a cathode active material layer containing multiple particulates of a sulfur-containing material selected from a sulfur-carbon hybrid, sulfur-graphite hybrid, sulfur-graphene hybrid, conducting polymer-sulfur hybrid, metal sulfide, sulfur compound, or a combination thereof and wherein at least one of the particulates is composed of one or a plurality of sulfur-containing material particles being embraced or encapsulated by a thin layer of a high-elasticity ultra-high molecular weight polymer having a recoverable tensile strain no less than 2%, a lithium ion conductivity no less than 10?6 S/cm at room temperature, and a thickness from 0.5 nm to 10 ?m This battery exhibits an excellent combination of high sulfur content, high sulfur utilization efficiency, high energy density, and long cycle life.
    Type: Grant
    Filed: April 10, 2017
    Date of Patent: February 9, 2021
    Assignee: Global Graphene Group, Inc.
    Inventors: Aruna Zhamu, Bor Z. Jang
  • Patent number: 10897047
    Abstract: A non-aqueous electrolyte secondary battery includes at least an electrode composite material layer, an intermediate layer, and an electrode current collector. Intermediate layer is interposed between electrode composite material layer and electrode current collector. Intermediate layer contains at least insulating particles and conductive particles. Each insulating particle has an arc shape in a cross section of intermediate layer along a thickness direction. More conductive particles are present on an outer-circumference side of each arc shape than on an inner-circumference side of the arc shape.
    Type: Grant
    Filed: August 23, 2018
    Date of Patent: January 19, 2021
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Ryo Hanazaki, Akihiro Ochiai, Yusuke Fukumoto, Harunari Shimamura
  • Patent number: 10897058
    Abstract: A secondary battery includes a first electrode assembly comprising a first separator in a serpentine form and first and second electrode plates that are respectively located on two surfaces of the first separator at different positions; and a second electrode assembly comprising a second separator in a serpentine form and third and fourth electrode plates that are respectively located on the second separator at different positions, wherein the first separator, to which the first and second electrode plates are combined, is bent with respect to ends of the first and second electrode plates so that the portion of the first separator is located on the second separator, and the second separator, on which the third and fourth electrode plates are combined, is bent with respect to ends of the third and fourth electrode plates so that the portion of the second separator is located on the first separator.
    Type: Grant
    Filed: March 14, 2018
    Date of Patent: January 19, 2021
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Jaekyung Cho, Jinho So, Daewook Ki, Gisung Kim
  • Patent number: 10886528
    Abstract: Provided is a lithium battery cathode electrode comprising multiple particulates of a cathode active material, wherein at least a particulate comprises one or a plurality of particles of a cathode active material being encapsulated by a thin layer of a sulfonated elastomer, wherein the encapsulating thin layer of sulfonated elastomer has a thickness from 1 nm to 10 ?m, a fully recoverable tensile strain from 2% to 800%, and a lithium ion conductivity from 10?7 S/cm to 5×10?2 S/cm. The encapsulating layer may further contain an electron-conducting additive and/or a lithium ion-conducting additive dispersed in the sulfonated elastomer.
    Type: Grant
    Filed: August 24, 2018
    Date of Patent: January 5, 2021
    Assignee: Global Graphene Group, Inc.
    Inventors: Baofei Pan, Hui He, Bor Z. Jang
  • Patent number: 10862093
    Abstract: Provided is a separator including: a substrate; and a surface layer formed on at least one surface of the substrate, and having a higher porosity than that of the substrate. It is preferable that the surface layer includes: a first layer having convexities and concavities existing as cavities; and a second layer formed between the first layer and the separator, and the second layer has a higher porosity than that of the substrate, and the first layer has a higher porosity than that of the second layer. In this case, it is preferable that the porosity of the substrate is from 25% to 40%, the porosity of the first layer is from 60% to 90%, and the porosity of the second layer is from 40% to 65%.
    Type: Grant
    Filed: February 21, 2014
    Date of Patent: December 8, 2020
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Kazuhito Hatta, Toshitsugu Ono
  • Patent number: 10847803
    Abstract: A lithium-ion secondary battery that includes an electricity-generating unit that includes: a positive electrode having a positive electrode collector, and a positive electrode mixture layer formed on a surface of the positive electrode collector; a negative electrode having a negative electrode collector, and a negative electrode mixture layer formed on a surface of the negative electrode collector; and a separator disposed between the positive electrode and the negative electrode. At least one of the positive electrode mixture layer and the negative electrode mixture layer has a high-density portion of high mixture density, and a low-density portion having a lower mixture density than the high-density portion and being in contact with the high-density portion. The low-density portion has a smaller area than the high-density portion when viewed in plan.
    Type: Grant
    Filed: January 25, 2018
    Date of Patent: November 24, 2020
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Kazufumi Miyatake, Toshifumi Nagino
  • Patent number: 10840553
    Abstract: Free-solvent-free lithium sulfonimide salt compositions that are liquid at room temperature, and methods of making free-solvent-free liquid lithium sulfonimide salt compositions. In an embodiment, the methods include mixing one or more lithium sulfonimide salts with one or more ether-based solvents and then removing the free solvent(s) under suitable vacuum, temperature, and time conditions so as to obtain a free-solvent-free liquid lithium sulfonimide salt composition that is liquid at room temperature. In an embodiment, the only solvent molecules that remain in the liquid lithium sulfonimide salt composition are adducted with lithium sulfonimide salt molecules. An example automated processing system for making free-solvent-free liquid lithium sulfonimide salts is also disclosed.
    Type: Grant
    Filed: August 2, 2019
    Date of Patent: November 17, 2020
    Assignee: SES Holdings Pte. Ltd.
    Inventors: Rajendra P. Singh, Shubha Nageswaran, Qichao Hu
  • Patent number: 10840502
    Abstract: Provided is an anode active material layer for a lithium battery. The anode active material layer comprises multiple anode active material particles and an optional conductive additive that are bonded together by a binder comprising a high-elasticity polymer having a recoverable or elastic tensile strain no less than 10% when measured without an additive or reinforcement in the polymer and a lithium ion conductivity no less than 10?5 S/cm at room temperature. The anode active material preferably has a specific lithium storage capacity greater than 372 mAh/g (e.g. Si, Ge, Sn, SnO2, Co3O4, etc.).
    Type: Grant
    Filed: February 24, 2017
    Date of Patent: November 17, 2020
    Assignee: Global Graphene Group, Inc.
    Inventors: Baofei Pan, Hui He, Aruna Zhamu, Bor Z. Jang
  • Patent number: 10804539
    Abstract: A negative electrode for a lithium-metal secondary battery and a lithium-metal secondary battery including the same are provided which have an excellent life characteristic and have less irregular resin phases formed on the surface the negative electrode. The negative electrode includes a polymer layer arranged in a lattice structure having vacant spaces, so that the specific surface area of the negative electrode can be increased, a uniform current density distribution can thereby be achieved, the negative electrode has excellent life characteristics, and the formation of irregular resin phases can be suppressed.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: October 13, 2020
    Assignee: LG CHEM, LTD.
    Inventors: Hee Won Choi, Sang Wook Woo, Oh Byong Chae, Eun Kyung Kim
  • Patent number: 10797277
    Abstract: A double-sealed thin film electrochemical pouch cell, comprising a cathode current collector, a cathode, an electrolyte, an anode, and an anode current collector, which is double-sealed by a first inner laminate layer forming a primary seal covered by a second outer polymer layer forming a secondary seal The second outer polymer layer comprises embedded particles to increase the thermal conductivity of the second outer polymer layer.
    Type: Grant
    Filed: November 17, 2017
    Date of Patent: October 6, 2020
    Assignee: ELECTROVAYA INC.
    Inventors: Rakesh Bhola, Rajshekar Das Gupta, Sankar Das Gupta