With Insulating Separator, Spacer Or Retainer Means Patents (Class 429/246)
  • Publication number: 20150147641
    Abstract: Use of a flexible, nonconductive, porous, and thermally tolerant ceramic material as a separator in a lithium-ion battery or lithium-sulfur battery is described. The separator can be made of aluminum oxide and provides excellent mechanical and thermal properties that prevent wear and puncture of the separator caused by particles removed from the electrodes during the charging and discharging process. The separator is designed to mitigate effects of melt shrinkage and facilitate the lithium ion transport, in contrast to separators that include a polymeric material, thus preventing short-circuiting between the positive and the negative electrode. Improved wetting and filling of the separator with electrolyte solution are provided, for improved rate capability of the battery (fast charging and discharging). The separator further reduces the potential for thermal runaway in Li batteries.
    Type: Application
    Filed: November 22, 2013
    Publication date: May 28, 2015
    Applicant: GM Global Technology Operations LLC
    Inventors: Mahmoud H. Abd Elhamid, Xingcheng Xiao, Mei Cai
  • Patent number: 9040201
    Abstract: Electrode protection in electrochemical cells, and more specifically, electrode protection in both aqueous and non-aqueous electrochemical cells, including rechargeable lithium batteries, are presented. In one embodiment, an electrochemical cell includes an anode comprising lithium and a multi-layered structure positioned between the anode and an electrolyte of the cell. A multi-layered structure can include at least a first single-ion conductive material layer, and at least a first polymeric layer positioned between the anode and the single-ion conductive material. The invention also can provide an electrode stabilization layer positioned within the electrode to control depletion and re-plating of electrode material upon charge and discharge of a battery.
    Type: Grant
    Filed: June 14, 2013
    Date of Patent: May 26, 2015
    Assignee: Sion Power Corporation
    Inventors: John D. Affinito, Yuriy V. Mikhaylik, Yordan M. Geronov, Christopher J. Sheehan
  • Patent number: 9040188
    Abstract: Embodiments of the present invention facilitate a winding process and enable auxiliary current collectors to be securely fixed to a main current collector, thereby minimizing deformation during battery charging and discharging and maintaining sufficient strength. The jelly roll includes a first auxiliary current collector, a second auxiliary current collector, a mandrel insulating layer, and an electrode plate. The first auxiliary current collector and the second auxiliary current collector are spaced apart from each other and each has a mandrel protrusion on an opposite end portion. The mandrel insulating layer insulates the auxiliary current collectors from each other and insulates the auxiliary current collectors from an exterior. The electrode plate is formed by layering a separator, a first electrode plate, a separator and a second electrode plate and is wound on an external surface of the mandrel insulating layer.
    Type: Grant
    Filed: June 3, 2011
    Date of Patent: May 26, 2015
    Assignee: Samsung SDI Co., Ltd.
    Inventor: Ja-Hoon Cho
  • Publication number: 20150140401
    Abstract: A rechargeable battery includes positive and negative electrodes and first and second separator portions. The positive electrode includes a positive metal foil and a positive active material layer. A positive active material-free portion is formed on a first end of the positive electrode. The positive active material layer extends to a second end. The negative electrode includes a negative metal foil and a negative active material layer. A negative active material-free portion is formed on a third end of the negative electrode. The negative active material layer extends to a fourth end. Each of the first and second separator portions includes a strong bonding portion and a weak bonding portion. The strong bonding portion is located proximate to the first end and extends along the first end. The weak bonding portion is located proximate to the second end and extends along the second end.
    Type: Application
    Filed: May 30, 2013
    Publication date: May 21, 2015
    Applicant: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventor: Atsushi Minagata
  • Publication number: 20150132659
    Abstract: An electricity-storing device includes a first electrode, a second electrode of opposite polarity as the first electrode, and a separator.
    Type: Application
    Filed: January 16, 2015
    Publication date: May 14, 2015
    Inventors: Kenji TANAKA, Kazuaki MATSUO, Kazuhide TOZUKA, Kazuya OKABE
  • Publication number: 20150125750
    Abstract: An electrode plate and an electrode assembly, a storage battery, and a capacitor comprising the electrode plate are provided. The electrode plate consists of at least two positive plates or at least two negative plates and an insulating film sandwiched between the at least two positive plates or the at least two negative plates. The electrode plate can improve the electric field intensity, and the charge time of the storage battery comprising the electrode plate is greatly reduced when compared with that of a battery with an existing structure.
    Type: Application
    Filed: March 15, 2013
    Publication date: May 7, 2015
    Inventor: Hejun Yu
  • Publication number: 20150125733
    Abstract: This invention relates to low-cost, electroactive-polymer incorporated fine-fiber composite membranes for use as overcharge and/or overdischarge protection separators in non-aqueous electrochemical cells and the methods for making such membranes.
    Type: Application
    Filed: May 14, 2013
    Publication date: May 7, 2015
    Applicant: The Regents of the University of California
    Inventors: Guoying Chen, Thomas J. Richardson
  • Publication number: 20150118565
    Abstract: A novel lithium battery cathode, a lithium ion battery using the same and processes and preparation thereof are disclosed. The battery cathode is formed by force spinning. Fiber spinning allows for the formation of core-shell materials using material chemistries that would be incompatible with prior spinning techniques. A fiber spinning apparatus for forming a coated fiber and a method of forming a coated fiber are also disclosed.
    Type: Application
    Filed: May 7, 2012
    Publication date: April 30, 2015
    Applicant: The Board of Regents, The University of Texas System
    Inventors: Nelson S. Bell, Nancy A. Missert, Karen Lozano, Yatinkumar N. Rane
  • Publication number: 20150118570
    Abstract: Batteries, separators, battery packs, electronic devices, electromotive vehicles, power storage apparatus, and electric power systems are provided. In one embodiment, a battery includes a positive electrode, a negative electrode, and an electrolytic solution holding layer between the positive electrode and the negative electrode. The electrolytic solution holding layer includes a porous polymer compound, and an electrolytic solution is held in the porous polymer compound. The porous polymer compound includes a vinylidene fluoride polymer selected from the group consisting of (1) a vinylidene fluoride homopolymer and (2) a copolymer including a vinylidene fluoride monomer unit and a hexafluoropropylene monomer unit. The average molecular weight of the vinylidene fluoride polymer is 500,000 or more to less than 1.5 million, and the air permeability of the porous polymer compound is 500 seconds/100 cc or less.
    Type: Application
    Filed: January 7, 2015
    Publication date: April 30, 2015
    Inventor: Atsushi Nishimoto
  • Publication number: 20150111078
    Abstract: A square lithium secondary battery includes a wound body in which a collective sheet in which a positive electrode sheet and a negative electrode sheet overlap each other with a first separator interposed therebetween is wound while a second separator is put inside the collective sheet. An active material mixture layer on one or both surfaces of at least one of the positive electrode sheet and the negative electrode sheet includes a region with a plurality of openings and a region with no opening. At least a bent portion of the collective sheet is covered with the region with the plurality of openings.
    Type: Application
    Filed: December 23, 2014
    Publication date: April 23, 2015
    Inventors: Kunio HOSOYA, Kunio KIMURA
  • Publication number: 20150111108
    Abstract: Provided is a secondary battery adopting an all-solid-state secondary cell structure with a storage layer sandwiched between a positive electrode layer and a negative electrode layer and which is superior to a conventional secondary battery with respect to at least one of volume, manufacturing, and positioning. The present invention provides a secondary battery including a single-layer secondary cell having a folded structure that a sheet-shaped single-layer secondary cell with a storage layer sandwiched between a positive electrode layer and a negative electrode layer is folded in two or four.
    Type: Application
    Filed: April 25, 2013
    Publication date: April 23, 2015
    Inventors: Takuo Kudoh, Kiyoyasu Hiwada, Shozo Izumo, Tomokazu Saito, Akira Nakazawa
  • Patent number: 9012060
    Abstract: In accordance with an embodiment of the invention, an assembly of tubular cell insulator casings is provided. The assembly includes a plurality of tubular cell insulator casings, wherein each cell insulator casing is open at a top end and configured to surround at least one of a plurality of electrically interconnected electrochemical cells, wherein said plurality of tubular cell insulator casings comprises a monolithic unit. The battery pack also includes a plurality of insulator plugs and a sump plate configured to support said plurality of insulator plugs.
    Type: Grant
    Filed: December 26, 2012
    Date of Patent: April 21, 2015
    Assignee: General Electric Company
    Inventors: John Raymond Krahn, Kristopher John Frutschy, Narayan Subramanian, William Patrick Waters, Daniel Qi Tan, William Hubert Schank
  • Publication number: 20150099185
    Abstract: Lithium ion batteries, electrodes, nanofibers, and methods for producing same are disclosed herein. Provided herein are batteries having (a) increased energy density; (b) decreased pulverization (structural disruption due to volume expansion during lithiation/de-lithiation processes); and/or (c) increased lifetime. In some embodiments described herein, using high throughput, water-based electrospinning process produces nanofibers of high energy capacity materials (e.g., ceramic) with nanostructures such as discrete crystal domains, mesopores, hollow cores, and the like; and such nanofibers providing reduced pulverization and increased charging rates when they are used in anodic or cathodic materials.
    Type: Application
    Filed: February 28, 2013
    Publication date: April 9, 2015
    Applicant: CORNELL UNIVERSITY
    Inventors: Yong Lak Joo, Nathaniel S. Hansen, Daehwan Cho, Kyoung Woo Kim
  • Publication number: 20150099153
    Abstract: According to one embodiment, a plate or electrode for a lead-acid battery includes a grid of lead alloy material, a paste of active material applied to the grid of lead alloy material, and a nonwoven fiber mat disposed at least partially within the paste of active material. The nonwoven fiber mat includes a plurality of fibers, a binder material that couples the plurality of fibers together, and a conductive material disposed at least partially within the nonwoven fiber mat so as to contact the paste of active material. In some embodiments, the nonwoven fiber mat may have an electrical resistant of less than about 100,000 ohms per square to enable electron flow on a surface of the nonwoven fiber mat.
    Type: Application
    Filed: October 3, 2013
    Publication date: April 9, 2015
    Applicant: JOHNS MANVILLE
    Inventors: Zhihua Guo, Souvik Nandi, Jawed Asrar, Albert G. Dietz
  • Publication number: 20150099155
    Abstract: According to one embodiment, a nonwoven fiber mat for reinforcing a plate or electrode of a lead-acid battery includes a plurality of glass fibers and an acid resistant binder that couples the plurality of glass fibers together. The nonwoven fiber mat also includes a wetting component that is applied to the glass fibers and/or nonwoven fiber mat to increase the wettability of the nonwoven fiber mat such that the nonwoven fiber mat exhibits an average water wick height of at least 0.5 cm after exposure to water for 10 minutes conducted according to method ISO8787. The wetting component may be dissolvable in an acid solution of the lead-acid battery such that a significant portion of the nonwoven fiber mat is lost due to dissolving of the wetting component.
    Type: Application
    Filed: October 8, 2013
    Publication date: April 9, 2015
    Applicant: JOHNS MANVILLE
    Inventors: Zhihua Guo, Souvik Nandi, Jawed Asrar, Albert G. Dietz, III
  • Publication number: 20150099189
    Abstract: Embodiments of the invention provide a lead-acid battery having a positive electrode, a negative electrode, and a separator positioned between the electrodes to electrically insulate the electrodes. Battery includes a nonwoven fiber mat positioned adjacent an electrode. Mat includes a mixture of first glass fibers having diameters between 8 ?m to 13 ?m and second glass fibers having diameters of at least 6 ?m and a silane sizing. An acid resistant binder bonds the glass fibers to form mat. A wetting component is applied to increase the wettability such that mat exhibits an average water wick height of at least 1.0 cm after exposure to water for 10 minutes. A conductive material is disposed on a surface of mat such that when mat is adjacent an electrode, the conductive material contacts the electrode. An electrical resistance of less than 100,000 ohms per square enables electron flow about mat.
    Type: Application
    Filed: September 17, 2014
    Publication date: April 9, 2015
    Inventors: Michael Ketzer, Gerold Albert, Zhihua Guo, Souvik Nandi, Jawed Asrar, Albert G. Dietz, III
  • Patent number: 8999578
    Abstract: A positive electrode active material for a lithium secondary battery, the material represented by the formulas: LiNi(1-x-y)CoxAlyO2 or LiNi(1-x-y)CoxMnyO2 (0.1<x?0.15 and 0.03<y<0.1), and whose X-ray diffraction peak intensity ratio 1(2?=45 degrees)/I(2?=18 degrees) of an X-ray diffraction peak intensities found in the vicinity of an X-ray diffraction-scanning angle 2? of about 45 degrees, to an X-ray diffraction peak intensity found in the vicinity of an X-ray diffraction-scanning angle 2? of about 18 degrees, is in the range of from 46% to 51%. The positive electrode active material is fabricated by mixing Ni(1-x-y)CoxAlyO2 or Ni(1-x-y)CoxMnyO2 (0.1<x?0.15 and 0.03<y<0.1) with lithium hydrates (LiOH.H2O); and calcinating the mixture at a temperature of 750° C., for more than 30 hrs, under an oxygen atmosphere.
    Type: Grant
    Filed: July 15, 2008
    Date of Patent: April 7, 2015
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Jungjoon Park, Suho Song
  • Patent number: 8999585
    Abstract: A nonaqueous electrolyte secondary battery includes a positive electrode, a negative electrode, a porous insulating layer, and nonaqueous electrolyte. The porous insulating layer is interposed between the positive electrode and the negative electrode. The nonaqueous electrolyte is contained at least in the porous insulating layer. The mixture layer of the positive electrode and the porous insulating layer each include a structure retainer.
    Type: Grant
    Filed: July 18, 2008
    Date of Patent: April 7, 2015
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Yukihiro Okada, Yoshiyuki Muraoka
  • Patent number: 8999586
    Abstract: The present invention relates to an electrode for a non-aqueous electrolyte secondary battery, a non-aqueous electrolyte secondary battery using the electrode, and a method for manufacturing the non-aqueous electrolyte secondary battery. The electrode for a non-aqueous electrolyte secondary battery includes a material mixture layer containing an active material and a porous insulating layer. The insulating layer is formed on the material mixture layer. The insulating layer contains a resin having a cross-linked structure and inorganic particles. A mixed layer that includes components of the insulating layer and components of the material mixture layer is provided at the interface between the insulating layer and the material mixture layer.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: April 7, 2015
    Assignee: Hitachi, Ltd.
    Inventors: Toshiyuki Watanabe, Kunihiko Koyama, Takahiro Furutani, Eri Kojima
  • Patent number: 8999559
    Abstract: A secondary battery is disclosed. The secondary battery includes an adhesive configured to attach to the electrode plates so as to strengthen the battery against separation, to reduce production of dust, and to protect the battery from dust.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: April 7, 2015
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Ja-Kyung Cho, Dae-Kyu Kim, Chang-Bum Ahn
  • Publication number: 20150079478
    Abstract: In an electrode body for use in non-aqueous electrolyte secondary battery, a first end of a separator is located more interiorly than one positive electrode end of a positive electrode plate in a width direction, located more exteriorly than one end of a coated positive electrode portion of the positive electrode plate, and located more exteriorly than one end of a coated negative electrode portion of a negative electrode plate. The first end of the separator is thicker than an intermediate portion. A second end of the separator is located more interiorly than an other negative electrode end of the negative electrode plate in the width direction, located more exteriorly than the other end of the coated positive electrode portion of the positive electrode plate, and located more exteriorly than an other end of the coated negative electrode portion of the negative electrode plate. The second end of the separator is thicker than the intermediate portion.
    Type: Application
    Filed: November 24, 2014
    Publication date: March 19, 2015
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Tomohiro Nakano, Hideaki Fujita
  • Publication number: 20150072229
    Abstract: Provided is an alkaline battery comprising a positive electrode, a negative electrode, electrolyte, and a polyolefin separator/inlay interposed between the positive and negative electrodes, with the polyolefin separator/inlay having channels that allow for movement of gas. In one embodiment, the polyolefin separator inlay has channels that exist in two planes.
    Type: Application
    Filed: September 10, 2014
    Publication date: March 12, 2015
    Applicant: ENCELL TECHNOLOGY, INC.
    Inventor: Randy Gene OGG
  • Publication number: 20150072212
    Abstract: The separator of a nonaqueous electrolyte secondary battery is characterized by having a composite nanofiber fiber which is a nanosize fiber that contains two or more kinds of aqueous resins whose melting points are different.
    Type: Application
    Filed: January 25, 2013
    Publication date: March 12, 2015
    Inventors: Masateru Mikami, Toshifumi Nagino, Takao Kuromiya
  • Publication number: 20150072241
    Abstract: An electrode assembly includes a cell stack part having (a) a structure in which one kind of radical unit having a same number of electrodes and separators alternately disposed and integrally combined is repeatedly disposed, or (b) a structure in which at least two kinds of radical units having a same number of electrodes and separators alternately disposed and integrally combined are disposed in a predetermined order, and a fixing part extending from a top surface along a side to a bottom surface thereof for fixing the cell stack part. The one kind of radical unit has a four-layered structure in which first electrode, first separator, second electrode and second separator are sequentially stacked or a repeating structure in which the four-layered structure is repeatedly stacked, and each of the at least two kinds of radical units are stacked by ones to form the four-layered structure or the repeating structure.
    Type: Application
    Filed: November 19, 2014
    Publication date: March 12, 2015
    Applicant: LG CHEM, LTD.
    Inventors: Ah Reum JUNG, Ji Won PARK, Myung Hoon KO, Seung Ho NA, Jin Ho BAN
  • Publication number: 20150056520
    Abstract: An impregnated solid state composite cathode is provided. The cathode contains a sintered porous active material, in which pores of the porous material are impregnated with an inorganic ionically conductive amorphous solid electrolyte. A method for producing the impregnated solid state composite cathode involves forming a pellet containing an active intercalation cathode material; sintering the pellet to form a sintered porous cathode pellet; impregnating pores of the sintered porous cathode pellet with a liquid precursor of an inorganic amorphous ionically conductive solid electrolyte; and curing the impregnated pellet to yield the composite cathode.
    Type: Application
    Filed: March 1, 2013
    Publication date: February 26, 2015
    Inventors: Joykumar S. Thokchom, Davorin Babic, Lonnie G. Johnson, Lazbourne Alanzo Allie, David Ketema Johnson, William Rauch
  • Patent number: 8962179
    Abstract: Example embodiments relate to a secondary battery which is capable of trapping elution of copper or nickel into ions, the copper and nickel being used as a negative current collector when charging and discharging the battery.
    Type: Grant
    Filed: July 14, 2011
    Date of Patent: February 24, 2015
    Assignee: Samsung SDI Co., Ltd.
    Inventor: Chang-Bum Ahn
  • Patent number: 8956766
    Abstract: A non-aqueous electrolyte battery has a positive electrode, a negative electrode, an insulating layer present between the positive electrode and the negative electrode, and an electrolytic solution holding layer that composes the insulating layer and includes an electrolytic solution and a porous polymer compound, in which the electrolytic solution is held in the pores in the porous polymer compound and swells the porous polymer compound, the material of the porous polymer compound includes a vinylidene fluoride polymer, the vinylidene fluoride polymer is a vinylidene fluoride homopolymer or a copolymer including a vinylidene fluoride monomer unit and a hexafluoropropylene monomer unit, the mass composition ratio of the monomer units of the vinylidene fluoride polymer, or vinylidene fluoride monomer units:hexafluoropropylene monomer units, is 100:0 to 95:5, and the weight average molecular weight of the vinylidene fluoride polymer is 500,000 or more to less than 1.5 million.
    Type: Grant
    Filed: November 23, 2011
    Date of Patent: February 17, 2015
    Assignee: Sony Corporation
    Inventor: Atsushi Nishimoto
  • Publication number: 20150044552
    Abstract: [Object] To provide a nonaqueous electrolyte secondary battery having excellent output characteristics and excellent thermal stability. [Solution] A positive electrode including a positive electrode mixture layer containing a positive electrode active material represented by Li1.08Ni0.43Co0.26Mn0.24O2 having a layered structure, a negative electrode containing a negative electrode active material, a separator provided between the positive electrode and the negative electrode, and a nonaqueous electrolyte are included, in which a film composed of carbon black permeable to lithium ions is formed on a surface of the positive electrode active material, and the film contains lithium fluoride particles serving as metal halide particles.
    Type: Application
    Filed: February 28, 2013
    Publication date: February 12, 2015
    Applicant: SANYO Electric Co., Ltd.
    Inventors: Kazunari Okita, Tadayoshi Tanaka, Takatoshi Higuchi, Hiroyuki Fujimoto, Yoshinori Kida
  • Publication number: 20150044572
    Abstract: According to the invention there is provided a structural metallic rechargeable battery and a method of producing same. The battery uses one of an acid, alkaline or Li-ion chemistry and the battery has an anode structure, a cathode structure, each of which comprise a conductive foam which contains the active electrochemical reagents, and a structural separator which separates the conductive foams of anode from the cathode respectively. The anode structure and the cathode structure are each formed from a metal sheet or foil.
    Type: Application
    Filed: February 26, 2013
    Publication date: February 12, 2015
    Applicant: BAE SYSTEMS plc
    Inventors: Martyn John Hucker, Michael Dunleavy, Sajad Haq, Amy Elizabeth Dyke
  • Publication number: 20150044555
    Abstract: A method of manufacturing a rechargeable battery includes continuously supplying a first electrode plate, the first electrode plate including a plurality of first active material portions with gaps therebetween on a first current collector, continuously supplying a first separator and a second separator to respective surfaces of the first electrode plate, bending the first electrode plate with the first and second separators to form a zigzag structure with bent portions, supplying a second electrode plate to an inside of each bent portion of the zigzag structure, the second electrode plate including a second active material portion on a second current collector, aligning and stacking the first electrode plate, the first separator, the second separator, and the second electrode plate, and taping the aligned and stacked first electrode plate, first separator, second separator, and second electrode plate at an outermost side thereof.
    Type: Application
    Filed: October 22, 2014
    Publication date: February 12, 2015
    Inventor: Hyoung-No LEE
  • Publication number: 20150044527
    Abstract: A battery cell core is hermetically sealed inside a casing, with conductive paths formed in the casing that individually connect cell subsets of the core to a battery management circuit for detecting individual failing cell subsets and for changing the battery output voltage by forming series/parallel connections between the cell subsets. In one version, the casing has a metal can with an opening of the can being sealed by a non-conductive cap that is sealed and bonded along its periphery to the can walls. In one aspect, the cap has edge metallization along its periphery where it is sealed to the can walls. In another aspect, the conductive paths are formed in the non-conductive cap. Various other embodiments are also described and claimed.
    Type: Application
    Filed: August 8, 2014
    Publication date: February 12, 2015
    Inventors: Bernd J. Neudecker, Brian C. Menzel, Gregory A. Springer, Shawn W. Snyder, Timothy W. Scales, Victor William Santini
  • Patent number: 8951677
    Abstract: The present invention relates to microporous membranes comprising polymer and having well-balanced permeability and heat shrinkage, especially heat shrinkage at elevated temperature. The invention also relates to methods for making such membranes, and the use of such membranes as battery separator film in, e.g., lithium ion secondary batteries.
    Type: Grant
    Filed: June 8, 2010
    Date of Patent: February 10, 2015
    Assignee: Toray Battery Separator Film Co., Ltd.
    Inventors: Takeshi Ishihara, Satoshi Miyaoka, Koichi Kono, Patrick Brant
  • Publication number: 20150037638
    Abstract: A secondary battery includes a high-capacity electrode portion, a high-power electrode portion, an electrolyte and a battery case. The high-capacity electrode portion includes a first positive electrode plate, a first negative electrode plate opposite to the first positive electrode plate, and a separator between the first positive electrode plate and the first negative electrode plate. The high-power electrode portion includes a second positive electrode plate, a second negative electrode plate opposite to the second positive electrode plate, and a separator between the second positive electrode plate and the second negative electrode plate. The electrolyte contacts the high-capacity electrode portion and the high-power electrode portion. The battery case accommodates the high-capacity electrode portion, the high-power electrode portion and the electrolyte therein.
    Type: Application
    Filed: May 23, 2014
    Publication date: February 5, 2015
    Applicant: SAMSUNG SDI CO., LTD.
    Inventors: Hong Jeong KIM, JongKi LEE, Seok-Gyun CHANG, Eun KWAK
  • Publication number: 20150037685
    Abstract: Embodiments provide a battery cell including a porous membrane, the porous membrane including transformed semiconductor material. The porous membrane separates a first half-cell from a second half-cell of the battery cell. The porous membrane comprises channels allowing ions and/or an electrolyte to move between the first half-cell and the second half-cell.
    Type: Application
    Filed: July 31, 2013
    Publication date: February 5, 2015
    Inventors: Bernhard Goller, Michael Sorger, Magdalena Forster, Katharina Schmut
  • Patent number: 8945775
    Abstract: A main object of the present application is to provide a battery including an insulating member that insulates a battery case from an electrode body and is able to secure good injection performance of an electrolyte solution. The battery provided by the present application includes an electrode body provided with a positive electrode and a negative electrode, and a battery case that houses the electrode body together with an electrolyte solution. An insulating member that isolates the electrode body from the battery case is arranged between the electrode body and the battery case, and the insulating member is formed into a bag shape that encloses the electrode body and is made of a porous material having pores through which the electrolyte solution is able to flow.
    Type: Grant
    Filed: May 11, 2009
    Date of Patent: February 3, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Satoshi Suzuki
  • Patent number: 8940442
    Abstract: The present invention is intended for providing a porous film having excellent film uniformity, and is capable to contribute for improving cyclic and rate properties, which is provided on a surface of electrode used for a secondary battery and the like. The porous film of the present invention is characterized by including water soluble polymer having an average polymerization degree of 500 to 2500, an inorganic filler and water soluble particulate polymer. In the present invention particularly, it is preferable that said water soluble polymer is thickening polysaccharides, further said water-insoluble polymer is preferably selected from the group consisting of semisynthetic cellulose polymer, sodium salt and ammonium salt thereof.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: January 27, 2015
    Assignee: Zeon Corporation
    Inventors: Mayumi Fukumine, Yasuhiro Wakizaka
  • Patent number: 8936878
    Abstract: An insulating (nonconductive) microporous polymeric battery separator comprised of a single layer of enmeshed microfibers and nanofibers is provided. Such a separator accords the ability to attune the porosity and pore size to any desired level through a single nonwoven fabric. Through a proper selection of materials as well as production processes, the resultant battery separator exhibits isotropic strengths, low shrinkage, high wettability levels, and pore sizes related directly to layer thickness. The overall production method is highly efficient and yields a combination of polymeric nanofibers within a polymeric microfiber matrix and/or onto such a substrate through high shear processing that is cost effective as well. The separator, a battery including such a separator, the method of manufacturing such a separator, and the method of utilizing such a separator within a battery device, are all encompassed within this invention.
    Type: Grant
    Filed: November 20, 2012
    Date of Patent: January 20, 2015
    Assignee: Dreamweaver International, Inc.
    Inventor: Brian G. Morin
  • Publication number: 20150017510
    Abstract: A non-aqueous electrolyte secondary battery of the invention has a power generating element with a single-cell layer which comprises a positive electrode including a positive electrode active material layer formed on a surface of a positive electrode collector, a negative electrode including a negative electrode active material layer formed on a surface of a negative electrode collector and a separator disposed between the positive electrode the negative electrode and containing a non-aqueous electrolyte, in which a value RA (=Rzjis (2)/Rzjis(1)) for the ratio between the surface roughness (Rzjis(1)) of the surface of the negative electrode active material layer on the side in contact with the separator and the surface roughness (Rzjis(2)) of the surface of the separator on the side in contact with the negative electrode active material layer is 0.15 to 0.85.
    Type: Application
    Filed: January 29, 2013
    Publication date: January 15, 2015
    Applicant: NISSAN MOTOR CO., LTD.
    Inventor: Miyuki Terado
  • Publication number: 20150017497
    Abstract: The invention is directed towards a cathode active segment for an electrochemical cell. The cathode active segment includes at least one cathode active material, a cross-sectional width including a first curvilinear surface, a second curvilinear surface, a longitudinal length, and at least one cathode mating surface. The at least one cathode mating surface extends along the longitudinal length of the cathode active segment.
    Type: Application
    Filed: July 11, 2013
    Publication date: January 15, 2015
    Inventor: William Fitler Morris
  • Patent number: 8932754
    Abstract: An electrode capable of preventing variations in electrical performance to stabilize performance and improve yields is provided. An electrode structure includes: an electrode including an current collector and an active material layer arranged on the current collector; and an electrode lead arranged on the active material layer, wherein a hole is arranged so as to penetrate the electrode and the electrode lead, and the electrode and the electrode lead are folded back around the hole in a direction away from the hole so that the electrode is placed inside, and the thickness of the active material layer in a region where the electrode lead is not arranged is uniform, and the thickness of the active material layer in a region where the electrode lead is arranged is nonuniform.
    Type: Grant
    Filed: February 25, 2008
    Date of Patent: January 13, 2015
    Assignee: Sony Corporation
    Inventors: Hironori Shibata, Akira Sasaki, Kazuhiko Soji
  • Publication number: 20150010828
    Abstract: Provided is a separator for an alkaline battery, capable of suppressing reduction in the characteristics of the alkaline battery after storage. The separator for an alkaline battery is interposed between the cathode and anode of the alkaline battery, is used to isolate the active material of both electrodes, and is configured by including 20-90 mass % cellulose fiber and having the remainder being an alkali-resistance synthetic fiber. The cellulose fiber includes a dissolving pulp.
    Type: Application
    Filed: January 16, 2013
    Publication date: January 8, 2015
    Applicant: NIPPON KODOSHI CORPORATION
    Inventors: Yoshiyo Kubo, Osamu Nakajima, Kentarou Ogawa
  • Patent number: 8927155
    Abstract: A non-aqueous electrolyte secondary battery includes a positive electrode, a negative electrode, an electrolyte, and a porous protective film formed on either one or both surfaces of the positive and negative electrodes. The porous protective film includes a binder, fine particles, and a surfactant.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: January 6, 2015
    Assignee: Sony Corporation
    Inventor: Junichi Tadano
  • Patent number: 8927156
    Abstract: An embodiment of the present invention relates to a power storage device which includes a positive electrode having a positive-electrode current collector with a plurality of first projections, a first insulator provided over each of the plurality of first projections, and a positive-electrode active material provided on a surface of the first insulator and the positive-electrode current collector with the plurality of first projections; a negative electrode having a negative-electrode current collector with a plurality of second projections, a second insulator provided over each of the plurality of second projections, and a negative-electrode active material provided on a surface of the second insulator and the negative-electrode current collector with the plurality of second projections; a separator provided between the positive electrode and the negative electrode; and an electrolyte provided in a space between the positive electrode and the negative electrode and containing carrier ions.
    Type: Grant
    Filed: February 3, 2010
    Date of Patent: January 6, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Konami Izumi
  • Publication number: 20140370360
    Abstract: A secondary battery includes a first electrode, a second electrode, an ion transmission member in contact with the first electrode and the second electrode, and a hole transmission member in contact with the first electrode and the second electrode. Suitably, the first electrode contains a composite oxide. The composite oxide contains alkali metal or alkali earth metal. The composite oxide contains a p-type composite oxide as a p-type semiconductor.
    Type: Application
    Filed: June 25, 2013
    Publication date: December 18, 2014
    Inventors: Si MENGQUN, Zhou YING
  • Publication number: 20140370393
    Abstract: Provided is an energy storage device provided with a negative electrode including a negative substrate having a surface, and a negative composite layer formed on the surface of the negative substrate and including a negative active material; a positive electrode including a positive substrate, and a positive composite layer formed on the positive substrate and including a positive active material; and a separator placed between the positive electrode and the negative electrode. 10% cumulative diameter D10 in the particle size distribution of the negative active material on a volume basis is 1.3 ?m or more, and 90% cumulative diameter D90 in the particle size distribution of the negative active material on a volume basis is 8.9 ?m or less. The surface of the negative substrate has a center line roughness Ra of 0.205 ?m or more and 0.781 ?m or less, and has a center line roughness Ra to a ten-point mean height Rz of 0.072 or more and 0.100 or less.
    Type: Application
    Filed: June 16, 2014
    Publication date: December 18, 2014
    Inventors: Kenta Nakai, Akihiko MIYAZAKI, Tomonori KAKO, Sumio MORI
  • Publication number: 20140370381
    Abstract: A secondary battery includes: a negative electrode; a positive electrode containing a p-type semiconductor material; and an isolation layer configured to isolate the negative electrode from the positive electrode and including a hole transmission member. The isolation layer is layered by being applied to at least one of the negative electrode and the positive electrode. Preferably, the hole transmission member contains ?-alumina. Preferably, the isolation layer includes the same binding agent as the negative electrode or the positive electrode.
    Type: Application
    Filed: June 25, 2013
    Publication date: December 18, 2014
    Applicant: GREENFUL NEW ENERGY CO., LTD.
    Inventors: Si MENGQUN, Zhou YING
  • Publication number: 20140363744
    Abstract: A solid-state battery cell includes an anode, a cathode, and a solid electrolyte matrix. At least the anode or the cathode may include an active electrode material having pores. Further, an inner surface of the pores may be coated with a first surface-ion diffusion enhancement coating. The solid electrolyte matrix may further include an electrically insulating matrix for a solid electrolyte. The electrically insulating matrix may have pores or passages and an inner surface of the pores or the passages may be coated with a second surface-ion diffusion enhancement coating.
    Type: Application
    Filed: June 4, 2014
    Publication date: December 11, 2014
    Applicant: IMEC VZW
    Inventors: Philippe M. Vereecken, Cedric Huyghebaert
  • Publication number: 20140363713
    Abstract: The invention relates to an electrical energy storage cell comprising a multiplicity of first electrode elements with parallel surfaces, a multiplicity of second electrode elements with parallel surfaces which run parallel to the surfaces of the first electrode elements, which second electrode elements are galvanically isolated from the first electrode elements, a first planar contact element, which makes electrical contact with the multiplicity of first electrode elements, a second planar contact element, which makes electrical contact with the multiplicity of second electrode elements, at least one first planar contact connector, which makes electrical contact with the first contact element, a first pole contact, which makes electrical contact with the first planar contact connector, and a second pole contact, which is electrically connected to the second planar contact element.
    Type: Application
    Filed: November 14, 2012
    Publication date: December 11, 2014
    Inventors: Alexander Schmidt, Andy Tiefenbach, Volker Doege, Martin Kessler
  • Publication number: 20140363702
    Abstract: The electrode assembly of the present invention having an electrode layer including a positive electrode, a negative electrode, and a separator disposed between the positive electrode and the negative electrode includes a stacking portion where the electrode layer is overlapped and disposed, and a connection formed between the stacking portions to connect the stacking portions and having a smaller thickness than the stacking portion.
    Type: Application
    Filed: October 16, 2013
    Publication date: December 11, 2014
    Applicant: Samsung SDI Co., Ltd.
    Inventor: Bong-Young Kim
  • Publication number: 20140363732
    Abstract: A nonaqueous battery includes at least one positive electrode plate, at least one negative electrode plate and at least one separator formed of a microporous resin film and laminated between the positive electrode plate and the negative electrode plate. The separator has a square or rectangular shape with four sides, two of which are perpendicular to a machine direction of the microporous resin film and have been subjected to heat and the other two of which are parallel to the machine direction of the microporous resin film and have not been subjected to heat.
    Type: Application
    Filed: May 20, 2014
    Publication date: December 11, 2014
    Applicant: Automotive Energy Supply Corporation
    Inventors: Shinichiro SAKAGUCHI, Masatomo MIZUTA