Reforming Process Patents (Class 429/423)
  • Publication number: 20150044585
    Abstract: A fuel cell system includes: a fuel cell to generate electric power; a casing accommodating at least the fuel cell, the casing including an air inlet and an exhaust outlet; a supply passage connected to the air inlet, to introduce external air into the casing; an exhaust passage connected to the exhaust outlet, to exchange heat with the supply passage and discharge at least air inside the casing; an air supply device to introduce the external air into the casing; a temperature detector to detect a temperature; and a controller configured to control at least the air supply device. If the temperature detected by the temperature detector after the controller has caused the air supply device to operate is lower than or equal to a first predetermined temperature, the controller reduces an amount of air supplied by the air supply device and causes the air supply device to continue operating.
    Type: Application
    Filed: April 4, 2013
    Publication date: February 12, 2015
    Inventors: Junji Morita, Hiroshi Tatsui, Akinori Yukimasa, Hidetoshi Wakamatsu, Atsutaka Inoue
  • Publication number: 20150044586
    Abstract: To provide a fuel cell system that is advantageous for maintaining an S/C value in an appropriate region even when a rotational speed of the water pump is abnormal with respect to a target rotational speed region during a power generation operation of a fuel cell. When the rotational speed of the water pump is abnormal with respect to the target rotational speed region during the power generation operation of the fuel cell, the control unit repeats a short time increase and a short time decrease of the S/C value in a reforming reaction, by alternately repeating an increase in a short time (?T increase, within 10 seconds) and a decrease in a short time (?T decrease, within 10 seconds) of the rotational speed of the water pump with respect to an abnormal rotational speed, while continuing the power generation operation of the fuel cell, thereby averaging the S/C value.
    Type: Application
    Filed: March 11, 2013
    Publication date: February 12, 2015
    Applicants: AISIN SEIKI KABUSHIKI KAISHA, KYOCERA CORPORATION
    Inventor: Motohiko Yabutani
  • Publication number: 20150044587
    Abstract: To provide a solid oxide fuel cell system capable of avoiding the reduction of air electrodes. The present invention is a fuel cell system having: a fuel cell module, a fuel supply apparatus, a water supply apparatus, an air supply apparatus, a reformer, and a control section for controlling the extraction of power from a fuel cell module, whereby the controller includes a shutdown stop circuit for executing a shutdown stop when the fuel cell stack is above the oxidation suppression temperature, and after execution of a shutdown stop, during a period when pressure on the fuel electrode side is sufficiently higher than pressure on the air electrode side, and no reverse flow of air to the fuel electrode side is occurring, a temperature drop operation is executed whereby high temperature air remaining on the air electrode side is discharged.
    Type: Application
    Filed: March 25, 2013
    Publication date: February 12, 2015
    Inventors: Takuya Matsuo, Toshiharu Otsuka, Katsuhisa Tsuchiya, Yousuke Akagi, Megumi Shimazu, Chihiro Kobayashi, Mitsunobu Shiono, Koji Omoshiki
  • Publication number: 20150044588
    Abstract: A reformer is disclosed in one embodiment of the invention as including a channel to convey a preheated plurality of reactants containing both a feedstock fuel and an oxidant. A plasma generator is provided to apply an electrical potential to the reactants sufficient to ionize one or more of the reactants. These ionized reactants are then conveyed to a reaction zone where they are chemically transformed into synthesis gas containing a mixture of hydrogen and carbon monoxide. A heat transfer mechanism is used to transfer heat from an external heat source to the reformer to provide the heat of reformation.
    Type: Application
    Filed: April 1, 2014
    Publication date: February 12, 2015
    Applicant: Ceramatec, Inc.
    Inventors: Joseph J, Hartvigsen, Elangovan, Piotr Czernichowski, Michele Hollist, Michael Boettcher
  • Patent number: 8951683
    Abstract: A hydrogen generator of the present invention includes: a raw material supplying device (4) configured to supply a raw material; a water supplying device (3) configured to supply water; an evaporator (23) configured to evaporate the water supplied from the water supplying device (3) to generate steam; a reformer (20) having a reforming catalyst which generates a hydrogen-containing gas by a reforming reaction using the raw material and the steam; a valve (12) disposed on a gas passage to cause the reformer (20) to be communicated with an atmosphere and block the reformer (20) from the atmosphere, the gas passage being located downstream of the reformer (20); and a controller (11) configured to stop supplying the water from the water supplying device (3), then continue to supply the raw material from the raw material supplying device (4) with the valve (12) open, and stop supplying the raw material from the raw material supplying device (4) and close the valve (12) before an inside of the reformer (20) is purg
    Type: Grant
    Filed: March 2, 2010
    Date of Patent: February 10, 2015
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Yukimune Kani, Kunihiro Ukai, Yuji Mukai
  • Patent number: 8951686
    Abstract: A fuel processing apparatus includes: a reformer; a raw material supplying unit for supplying a raw material to the reformer and blocking the supply of the raw material; a steam supplying unit for supplying steam to the reformer and blocking the supply of the steam; a closing device for blocking a gas passage located downstream of the reformer; and a controller. The controller seals the reformer by blocking the supply of the raw material from the raw material supplying unit and the supply of the steam from the steam supplying unit and closing the closing device, and performs a pressure compensation operation by using both the supply of the steam from the steam supplying unit and the supply of the raw material from the raw material unit as pressure in the reformer decreases due to a temperature decrease.
    Type: Grant
    Filed: January 27, 2010
    Date of Patent: February 10, 2015
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Seiji Fujihara, Yukimune Kani, Tomoyuki Nakajima, Hidenobu Wakita
  • Publication number: 20150037697
    Abstract: Provided is a power conversion system having a solid-oxide fuel cell capable of stably generating electricity from hydrogen generated by an organic hydride. The power conversion system includes a solid-oxide fuel cell, a reactor for producing hydrogen and a dehydrogenation product from an organic hydride by dehydrogenation reaction, and a heat engine for generating motive power. The power conversion system separates the hydrogen produced by the reactor, and supplies the hydrogen as fuel to the solid-oxide fuel cell. Exhaust heat of the heat engine is supplied to both the solid-oxide fuel cell and the reactor.
    Type: Application
    Filed: December 3, 2012
    Publication date: February 5, 2015
    Applicant: Hitachi, Ltd.
    Inventors: Atsushi Shimada, Takao Ishikawa, Masatoshi Sugimasa
  • Publication number: 20150024294
    Abstract: In order to provide a fuel cell device, including a fuel cell stack that includes electrochemically active cathode/electrolyte/anode units, and a reformer for producing a fuel gas for the fuel cell stack from a starting fuel, wherein the fuel cell stack is configured to have the fuel gas produced by the reformer and an oxidizing agent supplied to it, in which the thermomechanical loads in the heating phase are lessened and/or it is made possible to shorten the heating phase, it is proposed that the fuel cell device should include at least one heat transfer device which is configured to have the fuel gas and the oxidizing agent flow through it, upstream of the cathode/electrolyte/anode units of the fuel cell stack.
    Type: Application
    Filed: October 3, 2014
    Publication date: January 22, 2015
    Inventors: Thomas Kiefer, Andreas Zimmer, Moritz Pausch
  • Publication number: 20150024297
    Abstract: The present teachings provide apparatus and methods for mixing a reformable fuel and/or steam with an oxygen-containing gas and/or steam to provide a gaseous reforming reaction mixture suitable for reforming with a reformer and/or a fuel cell stack of a fuel cell unit and/or fuel cell system.
    Type: Application
    Filed: July 18, 2014
    Publication date: January 22, 2015
    Inventors: Caine Finnerty, Paul DeWald
  • Patent number: 8932774
    Abstract: The present invention relates to a catalyst for producing gaseous hydrogen current or hydrogen-rich currents through hydrocarbon reforming with water vapor. Said catalyst comprises at least one support, an active phase and at least two promoting agents, and is characterized in that it is a metal-type-supported solid in which the active phase comprises at least one transition metal chosen from group VIII, and at least one promoting agent chosen from the alkaline-earth or transition metals; and the support comprises at least one mixed oxide with a basic nature, and at least one promoting agent chosen from among the lanthanides group. The invention also has as an object the process for preparing the catalyst, as well as its use in the process for obtaining the hydrogen or hydrogen-rich gas from hydrocarbons, in different operating conditions and using various types of hydrocarbons.
    Type: Grant
    Filed: July 13, 2011
    Date of Patent: January 13, 2015
    Assignee: Abengoa Hidrogeno, S.A.
    Inventors: Francisco Vicente Melo Faus, Natalia Morlanes Sánchez, Isidoro Morales Osorio, Belén Sarmiento Marrón, Marianela Martín Betancourt
  • Patent number: 8927162
    Abstract: The present invention comprises fuel cells 84 disposed within a fuel cell module 2, a reformer 20, a reformer temperature sensor 148 for detecting a reforming state temperature, and a control section 110 for controlling the operation of the fuel cell module. The control section prohibits the normal startup POX and executes a restart control different from the normal startup POX when the reforming state temperature is at least in a high temperature region within the POX temperature band in a state in which the operation of the solid oxide fuel cell module is stopped.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: January 6, 2015
    Assignee: Toto Ltd.
    Inventors: Yousuke Akagi, Naoki Watanabe, Shuichiro Saigan, Nobuo Isaka
  • Patent number: 8920989
    Abstract: Fuel reforming apparatus and fuel cell systems including the same are provided. The fuel reforming apparatus includes a reactor main body; a catalyst reaction region inside the reactor main body for generating a reforming gas containing hydrogen by promoting at least a partial oxidation (POX) reaction of a reactant containing a hydrocarbon fuel and an oxidant; and a heat-insulating member inside the reactor main body surrounding the catalyst reaction region for insulating heat generated by the POX reaction.
    Type: Grant
    Filed: February 29, 2008
    Date of Patent: December 30, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventor: In-Hyuk Son
  • Patent number: 8920991
    Abstract: Embodiments are disclosed that relate to increasing heat transfer in a steam reformer. For example, one disclosed embodiment provides a steam reformer including an outer wall and an inner wall which includes a step extending outward toward the outer wall and downward toward a bottom of the steam reformer at a position between a top of the steam reformer and the bottom of the steam reformer. The steam reformer further includes a reaction chamber disposed between the outer wall and the inner wall.
    Type: Grant
    Filed: January 18, 2012
    Date of Patent: December 30, 2014
    Assignee: Doosan Fuel Cell America, Inc.
    Inventors: Brian Sonnichsen, Bob Sorensen
  • Publication number: 20140375117
    Abstract: A system (0) includes an electrical load system (54) with a load network battery (82), and a fuel cell system (1). Operation is simplified, especially during start of the fuel cell system (1) if the fuel cell system (1) has a system battery (56). A system voltage across the system battery (56) can be supplied to electrical system loads (80) of the fuel cell system (1) and, via a load voltage converter (77) and at least one additional voltage converter (86), to the load system (54) and secondary electrical loads (84, 85).
    Type: Application
    Filed: July 9, 2012
    Publication date: December 25, 2014
    Applicant: EBERSPAECHER CLIMATE CONTROL SYSTEMS GMBH & CO.KG
    Inventors: Andreas Kaupert, Valentin Notemann, Karsten Reiners, Markus Willkommen
  • Publication number: 20140377677
    Abstract: Disclosed are a fuel unit for a hydrogen generator and methods for producing the fuel unit and the hydrogen generator. A fuel sheet (50) is made by disposing a plurality of fuel pellets (50A-50J) containing a hydrogen-containing material on a substrate (52), and one or more fuel sheets are formed into a non-cylindrical fuel sheet assembly my moving (e.g., bending) a portion of the fuel sheet (50) to position pellets adjacent to each other such that adjacent sides of the adjacent pellets lie in essentially parallel planes. A non-cylindrical fuel unit is produced from one or more of the fuel sheet assemblies. Fuel units can be replaceably disposed in a hydrogen generator, and fuel pellets can be selectively heated to produce hydrogen gas as needed.
    Type: Application
    Filed: September 5, 2014
    Publication date: December 25, 2014
    Inventors: Craig Huddleston, Thomas Kmetich, Richard Langan, Chad Law, Michael Stallard, Jason Stimits, Mark Vandayburg
  • Patent number: 8916304
    Abstract: A hydrogen generator includes: a reformer (102) configured to generate a hydrogen-containing gas by a reforming reaction using a raw material; a combustor (104) configured to heat the reformer; an air supplying device (106) configured to supply combustion air to the combustor; a first heat exchanger (108) configured to recover heat from a flue gas discharged from the combustor; a first heat medium passage (110) through which a first heat medium flows, the first heat medium receiving the heat recovered from the flue gas in the first heat exchanger; a first pump (112) configured to cause the first heat medium in the first heat medium passage to flow; a heat accumulator (140) configured to store the heat recovered by the first heat medium; and a controller (114) configured to cause the first pump to operate in a cooling step that is a step of cooling down at least the reformer by supplying the air from the air supplying device to the combustor in a state where the combustor is not carrying out combustion during
    Type: Grant
    Filed: November 20, 2009
    Date of Patent: December 23, 2014
    Assignee: Panasonic Corporation
    Inventors: Yoshio Tamura, Kiyoshi Taguchi, Yoshikazu Tanaka, Shigeki Yasuda
  • Patent number: 8911912
    Abstract: A fuel cell system (100) includes: a hydrogen generator (2) including a reformer (3); a combustor (5) configured to supply heat to the reformer (3); a fuel cell (1); a first channel (10); a second channel (8); a third channel (16) through which an oxidation gas flows, the oxidation gas being supplied to the first channel (10) extending between a branch portion (10a) and the fuel cell (1); a first on-off valve (7a) provided on the first channel (10) located downstream of a meeting portion (10c); a second on-off valve (6) provided on the second channel (8); an oxidation gas supply unit (15) provided on the third channel (16); and a controller (200) configured such that when the first on-off valve (7a) is closed and the second on-off valve (6) is opened, and a hydrogen-containing gas is discharged from the hydrogen generator (2) at the time of start-up, the controller (200) activates the oxidation gas supply unit (15) to supply the oxidation gas through the third channel (16) to the first channel (10) located do
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: December 16, 2014
    Assignee: Panasonic Corporation
    Inventors: Akinori Yukimasa, Shigeki Yasuda, Naohisa Tanabe, Hidetoshi Wakamatsu
  • Patent number: 8906569
    Abstract: A heat exchanger for operating at an outlet of a hot fuel cell feeding the heat exchanger with oxidizer gas and with fuel gas, the heat exchanger including: a first flow circuit for oxidizer gas; a second flow circuit for fuel gas; a pre-mixer chamber fed both with oxidizer gas and with fuel gas from at least the second circuit; a combustion chamber fed with the gaseous mixture from the pre-mixer chamber and with oxidizer gas from the first circuit; and a flow circuit for flue gas, receiving the flue gas coming from the combustion chamber. The first flow circuit for oxidizer gas, the second flow circuit for fuel gas, the combustion chamber, and the flow circuit for flue gas are immersed in a common cooling fluid.
    Type: Grant
    Filed: December 13, 2010
    Date of Patent: December 9, 2014
    Assignee: SNECMA
    Inventors: Come Loevenbruck, Dominique Indersie, Abdelkrim Boukhalfa, Benoit Talbot
  • Patent number: 8906564
    Abstract: The possibility of carbon deposition from a raw material gas is made lower than before in a pressure compensating operation carried out after stopping the stop process of a hydrogen generator and a fuel cell system including the hydrogen generator.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: December 9, 2014
    Assignee: Panasonic Corporation
    Inventors: Akinori Yukimasa, Junji Morita, Akinari Nakamura
  • Patent number: 8900764
    Abstract: To provide a solid oxide fuel cell device capable of smooth transition from a startup state to an electrical generating state. The present invention is a solid oxide fuel cell device (1) for generating electricity, having a fuel cell module (2); a reformer (20), a fuel supply device (38); a water supply device (28), a generating oxidant gas supply device (45), and a controller (110) for controlling the fuel supply device and water supply device at the time of startup when the fuel cell module solid oxide fuel cell unit is raised to a temperature at which electrical generation is possible, inducing in the reformer a SR in which only a steam reforming reaction occurs; wherein the control section maintains the fuel supply flow rate in the SR immediately prior to electrical generation at an electrical generation standby fuel supply flow rate determined according to solid oxide fuel module usage conditions and smaller than the fuel supply flow rate at the time of SR startup.
    Type: Grant
    Filed: May 27, 2010
    Date of Patent: December 2, 2014
    Assignee: Toto Ltd.
    Inventors: Katsuhisa Tsuchiya, Toshiharu Otsuka, Tsukasa Shigezumi, Toshiharu Ooe, Kiyotaka Nakano, Yoshiyuki Kawamura
  • Patent number: 8903554
    Abstract: A forward-looking method and system is provided for determining an economically optimal energy dispatching schema to meet the combined demands of heating, cooling and electrical by an energy plant and a facilities plant. The optimal energy dispatching schema is determined for each of a plurality of incremental time segments defined in a forward-looking time period by optimizing these loads. The schema can be used for real time energy dispatching by the energy plant, in an existing energy plant optimization, and/or a new energy plant planning and design over the forward looking time period or any other forward-looking time period.
    Type: Grant
    Filed: February 15, 2012
    Date of Patent: December 2, 2014
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventor: Joseph C Stagner
  • Patent number: 8895201
    Abstract: The invention relates to a high-temperature fuel cell system having a start burner. Such fuel cell systems are in particular operated at temperatures between 650° C. and 1000° C. due to the ion-conductive properties of the electrolytes used. It is necessary for this reason to carry out a heating before the actual operation of the systems, which takes place by an external supply of energy. The exhaust gas of a start burner of the high-temperature fuel cell system is supplied to a heat exchanger or to two heat exchangers in a series connection for the preheating of an oxidizing agent which can be supplied to at least one fuel cell at the cathode side.
    Type: Grant
    Filed: July 9, 2010
    Date of Patent: November 25, 2014
    Assignee: Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
    Inventors: Sebastian Reuber, Christian Schlemminger, Mareike Wolter, Thomas Pfeifer
  • Publication number: 20140342255
    Abstract: A fuel cell is disclosed with a self-regulated oxygen supply used in conjunction with a self-pumping fuel supply (e.g., a self-pumping anode). The cathode side of the fuel cell includes a gas diffusion electrode interposed between the fuel chamber and the oxidant chamber (e.g., H2O2), the gas diffusion electrode having a catalyst layer formed thereon. An oxygen gas capturing substrate is disposed in the oxidant chamber and is spaced apart from the gas diffusion electrode. The gas capturing substrate has first and second sides containing a plurality of holes extending there between. The first side of the substrate faces the oxidant and the second side faces the gas diffusion electrode. The substrate contains a catalyst on the second side of the substrate or within an inner surface of the holes.
    Type: Application
    Filed: January 9, 2013
    Publication date: November 20, 2014
    Inventors: Chang-Jin Kim, Prosenjit Sen, Janet I. Hur
  • Patent number: 8883359
    Abstract: A method of driving a fuel cell system is disclosed. The method of driving the fuel cell system may include supplying water to a reformer by pressing a pump pipe to pressing members to move the pressing members in a first direction, stopping power generation including stopping a supply of fuel and oxidant to the reformer, and discharging water in the reformer by moving the pressing members in a second direction opposite to the first direction while pressing the pump pipe with the pressing members. A fuel cell system is also disclosed. The fuel cell system includes a reformer, a fuel cell stack and a water transferring pump. The water transferring pump includes pressing members and a pump pipe. The pump pipe is in fluid communication with a water transferring pipe.
    Type: Grant
    Filed: November 3, 2010
    Date of Patent: November 11, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Woong-Ho Cho, Ming-Zi Hong, Dong-Hyun Kim, Dong-Rak Kim, Hyun Kim
  • Patent number: 8883360
    Abstract: A burner reformer is provided for a power generating system using fuel cell. A burner is contained inside the reformer. The reformer absorbs heat from the burner and other heat source to reduce heat loss and save connecting wires. The present invention avoids flashing back of hydrogen. When fuel is lean, flame would not easily die and the system can thus work stably.
    Type: Grant
    Filed: October 25, 2011
    Date of Patent: November 11, 2014
    Assignee: Institute of Nuclear Energy Research, Atomic Energy Council
    Inventors: Wen-Tang Hong, Cheng-Nan Huang, Yu-Ching Tsai, Hsueh-I Tan, Shih-Kun Lo, Ming-Dar Lin, Chen-Po Lai, Yung-Neng Cheng, Ruey-Yi Lee
  • Publication number: 20140329159
    Abstract: In the SOFC system, the fuel gas flow rate at the time of the start of start-up is set to the maximum fuel gas flow rate that is less than or equal to 1.3 times the maximum fuel gas flow rate FgMAX at the time of the rated power generation, the fuel gas flow rate F2 until the temperature T of the fuel cell stack reaches T1, at which the reduction of the oxidized Ni in the fuel cell stack is performed, is set to be less than or equal to F1, and thereafter, until the start of the power generation, fuel gas flow rate F3 is further reduced from F2, and the average fuel gas flow rate FAVE is set to be equal to or greater than 0.6 times the average fuel gas flow rate FgAVE at the time of the rated power generation.
    Type: Application
    Filed: November 6, 2012
    Publication date: November 6, 2014
    Inventors: Takeshi Ibuka, Yasushi Sato
  • Patent number: 8877395
    Abstract: A fuel cell system capable of improving performance and stability of the system by using stack off-gas includes: a power generation unit that generates power through an electrochemical reaction of a first fuel and a first oxidant; a reforming unit that supplies the first fuel to the power generation unit; a heating unit that receives second fuel and a second oxidant, combusts the second fuel, and is thermal-conductively coupled with the reforming unit; and a connection unit that connects the heating unit with the power generation unit to be in fluid communication and supplies off-gas of the power generation unit to the heating unit. The off-gas is supplied to the heating unit in a pulse type.
    Type: Grant
    Filed: May 27, 2010
    Date of Patent: November 4, 2014
    Assignee: Samsung SDI Co., Ltd
    Inventor: Woo-Cheol Shin
  • Publication number: 20140322622
    Abstract: In a method of preparing a ruthenium-containing catalyst on a non-conductive metal oxide support comprises dissolving one or more ruthenium precursor compounds in an liquid organic polyol, combining the thus obtained solution with (a) nano-powder(s) of one or more metal oxides in a ratio of moles metal oxide(s) to moles ruthenium atoms in the one or more ruthenium precursor compounds of about 0:1 to about 6:1, the metal oxide nano-powder(s) having a surface area of from about 5 to about 300m2/g and a point of zero charge (PZC) of pH 5.5 or higher, agitating the thus obtained mixture, adding pre-shaped alumina sup port pellets to the agitated mixture, which is than heated at a temperature of about 50° C.
    Type: Application
    Filed: May 15, 2012
    Publication date: October 30, 2014
    Applicant: CELLERA, INC.
    Inventor: Debasish Chakraborty
  • Publication number: 20140315112
    Abstract: During system start-up in S11, an ATR process begins, and the hydrogen-enriched fuel gas is generated by the autothermal reaction. In S12, a cell temperature T is compared to a minimum reduction start temperature T1 of the cell support and, in the case of T?T1, the process proceeds to S13. In S13 a hydrogen concentration of the fuel gas is set to 50% or less. In S14, the cell temperature T is compared to a maximum reduction start temperature T2 of the cell support, and in the case of T>T2, the process proceeds to step S15. In S15, the temperatures of the reformer and the fuel cell stack are continuously raised, while gradually increasing the hydrogen concentration.
    Type: Application
    Filed: November 6, 2012
    Publication date: October 23, 2014
    Inventors: Takeshi Ibuka, Yasushi Sato
  • Publication number: 20140315111
    Abstract: An object of the invention is to improve durability of a SOFC system and secure favorable power generation performance during the actual useful service period of the system. In the SOFC system, a fuel gas flow rate to a fuel cell stack is set at F1 at the time of start-up. At a time point when a temperature T of the fuel cell stack reaches a first temperature T1 or higher after the temperature is started to increase, when it is determined that the stack temperature T at the time of the previous system stop is lower than or equal to a predetermined value Tb, the fuel gas flow rate is decreased to F2a (which is less than F1), and when it is determined that the stack temperature T is higher than the predetermined value Tb, the fuel gas flow rate is decreased to F2b (which is less than F2a) to slow the temperature increase rate. Furthermore, when the stack temperature T reaches T2, the fuel gas flow rate is returned to F1 so as to increase the fuel gas flow rate and then the process proceeds to the next process.
    Type: Application
    Filed: November 6, 2012
    Publication date: October 23, 2014
    Inventors: Yasushi Sato, Takeshi Ibuka
  • Patent number: 8865358
    Abstract: Disclosed method of load-following operation of fuel-cell system comprises pre-determining functions F=f(P) and P=f?1(F), wherein P is the electric output and F is the fuel flow-rate required to output P. If reformable flow-rate FR<Fmin (the minimum flow-rate value), power generation is stopped. If FR?Fmin and if required output PD?maximum power output PM, (1) is performed; and if FR?Fmin and if PD>PM, (2) is performed. (1) If f(PD)?FR, the output is set at PD, and the fuel flow-rate is set at f(PD); and if f(PD)>FR, the output is set at the maximum value of P lower than PD and computed using P=f?1(FR), and the fuel flow-rate is set at FR. (2) If f(PM)?FR, the output is set at PM, and the fuel flow-rate is set at f(PM); and if f(PM)>FR, the output is set at the maximum value of P computed using P=f?1(FR), and fuel flow-rate is set at FR.
    Type: Grant
    Filed: June 25, 2010
    Date of Patent: October 21, 2014
    Assignee: JX Nippon Oil & Energy Corporation
    Inventor: Susumu Hatada
  • Publication number: 20140308596
    Abstract: A SOFC system houses a reformer and a fuel cell stack in a module case. Each cell forming the fuel cell stack is made of a porous material having a composition containing at least nickel metal, includes a cell support having a gas passage through which the fuel gas from the reformer flows from an lower end to an upper end on the inside thereof, and the excessive fuel gas is combusted at the upper end of the gas passage. Here, after the power generation stops, until the temperature of the upper end of the fuel cell stack falls below the minimum oxidation temperature of the nickel metal, the supply amount of the fuel gas to the fuel cell stack is controlled in terms of a heat flow rate within a range of 0.1 to 0.5 times that during the system rated power generation.
    Type: Application
    Filed: November 6, 2012
    Publication date: October 16, 2014
    Applicant: JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Takeshi Ibuka, Yasushi Sato
  • Publication number: 20140302413
    Abstract: In various aspects, systems and methods are provided for operating a molten carbonate fuel cell with an excess of reformable fuel relative to the amount of oxidation performed in the anode of the fuel cell. Instead of selecting the operating conditions of a fuel cell to improve or maximize the electrical efficiency of the fuel cell, an excess of reformable fuel can be passed into the anode of the fuel cell to increase the chemical energy output of the fuel cell. This can lead to an increase in the total efficiency of the fuel cell based on the combined electrical efficiency and chemical efficiency of the fuel cell.
    Type: Application
    Filed: June 26, 2014
    Publication date: October 9, 2014
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Paul J. Berlowitz, Timothy Andrew Barckholtz, Frank H. Hershkowitz
  • Publication number: 20140302414
    Abstract: In various aspects, systems and methods are provided for operating a molten carbonate fuel cell to reduce or minimize losses due to loss of heat energy. A molten carbonate fuel cell can be operated based on a desired ratio of heat generated by exothermic reactions in the fuel cell relative to heat consumed by endothermic reactions in the fuel cell and any optional integrated endothermic reaction stages.
    Type: Application
    Filed: June 26, 2014
    Publication date: October 9, 2014
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Paul J. Berlowitz, Timothy Andrew Barckholtz, Frank H. Hershkowitz
  • Patent number: 8852822
    Abstract: When terminating power generation by a fuel cell 3 in a fuel cell system 1, an amount of a raw fuel material introduced to a reforming catalyst 2a of a reformer 2 is reduced. Here, before the temperature of the reforming catalyst 2a is lowered to the un-reformed gas generation temperature, an amount of water supplied to the reforming catalyst 2a is controlled to increase the temperature of the reforming catalyst 2a. Thus, upon termination of power generation in the fuel cell 3, no un-reformed gas is generated and the reformed gas is supplied to the fuel cell 3.
    Type: Grant
    Filed: January 8, 2014
    Date of Patent: October 7, 2014
    Assignee: Nippon Oil Corporation
    Inventor: Tomotaka Ishida
  • Publication number: 20140295303
    Abstract: Problem: To suppress the occurrence of damage to fuel cell units caused by oxidation shrinkage of fuel electrodes. Solution Means: The invention is a solid oxide fuel cell for generating electricity by reacting hydrogen and oxidant gas in individual fuel cell units, wherein the individual fuel cell units comprise a fuel electrode, an oxidant gas electrode, and a solid electrolyte erected between fuel electrode and oxidant gas electrode; the fuel electrode comprises a composite material containing nickel, and the solid oxide fuel cell prevents shrinkage due to oxidation of the fuel electrode by maintaining the fuel electrode in an oxygen-free atmosphere until the temperature of the fuel electrode has dropped to 350° C. after electrical generation is stopped.
    Type: Application
    Filed: March 26, 2014
    Publication date: October 2, 2014
    Applicant: TOTO LTD.
    Inventors: Takuya MATSUO, Yousuke AKAGI, Megumi SHIMAZU, Chihiro KOBAYASHI, Mitsunobu SHIONO, Koji OMOSHIKI, Akira ISHIGURO, Yasuo KAKINUMA
  • Patent number: 8841039
    Abstract: The indirect internal reforming solid oxide fuel cell system includes an indirect internal reforming solid oxide fuel cell that has a first reformer which produces a reformed gas from a hydrocarbon-based fuel by using a steam reforming reaction, a solid oxide fuel cell which generates electric power by using the reformed gas obtained in the first reformer, and a container which houses the first reformer and the solid oxide fuel cell, the first reformer being disposed in a position to receive heat radiation from the solid oxide fuel cell; a second reformer which is disposed outside the container and produces a reformed gas by reforming a hydrocarbon-based fuel; and a line which leads the reformed gas obtained in the second reformer from the second reformer to an anode of the solid oxide fuel cell.
    Type: Grant
    Filed: December 28, 2011
    Date of Patent: September 23, 2014
    Assignee: Nippon Oil Corporation
    Inventor: Yukihiro Sugiura
  • Publication number: 20140272636
    Abstract: A reactant processing module with a hybrid autothermal reformer (HASR) can allow for control of both the amount of cathode recirculation and the amount of water sent to the HASR. At the beginning of life of the fuel cell, reactant processing module can operate on full cathode recirculation. As the fuel cell begins to age and become less efficient, the amount of nitrogen-heavy, vitiated air from the fuel cell cathode can be monitored by a control system and restricted using a valve. In order to compensate for the aforementioned restriction, the rate of input of the external air supply is increased to the HASR and the deficit in water is supplied in liquid form from a water reservoir and turned to steam within the HASR. The amount of liquid water input from the water reservoir that meets the need for continued efficient operation is relatively small.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 18, 2014
    Applicant: Combined Energies LLC
    Inventors: Donald Frank Rohr, John Anthony Vogel
  • Publication number: 20140260311
    Abstract: In various aspects, systems and methods are provided for operating a molten carbonate fuel cell assembly at increased power density. This can be accomplished in part by performing an effective amount of an endothermic reaction within the fuel cell stack in an integrated manner. This can allow for increased power density while still maintaining a desired temperature differential within the fuel cell assembly.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 18, 2014
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Paul J. Berlowitz, Timothy Andrew Barckholtz, Anita S. Lee
  • Publication number: 20140272628
    Abstract: In various aspects, systems and methods are provided for operating a molten carbonate fuel cell, such as a fuel cell assembly, with increased production of syngas while also reducing or minimizing the amount of CO2 exiting the fuel cell in the cathode exhaust stream. This can allow for improved efficiency of syngas production while also generating electrical power.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 18, 2014
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Paul J. Berlowitz, Timothy Andrew Barckholtz, Frank H. Hershkowitz
  • Publication number: 20140272634
    Abstract: In various aspects, systems and methods are provided for operating a molten carbonate fuel cell assembly at increased power density. This can be accomplished in part by performing an effective amount of an endothermic reaction within the fuel cell stack in an integrated manner. This can allow for increased power density while still maintaining a desired temperature differential within the fuel cell assembly.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 18, 2014
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Paul J. Berlowitz, Timothy Andrew Barckholtz, Frank H. Hershkowitz
  • Publication number: 20140272643
    Abstract: A reactor containing a heat exchanger is disclosed, which can be operated with co-current or counter-current flow. Also disclosed is a system that includes a reactor having a reformer and a vaporizer, a fuel supply, and a water supply. The reactor includes a source of combustion gas, a reformer operative to receive reformate, and a vaporizer operative to receive water. The reformer and vaporizer each include a stack assembly formed by a combination of separator shims and channel shims. The separator shims and channel shims are stacked in a regular pattern to form two sets of channels within the stack assembly. One set of channels will have vertical passageways at either end and a horizontal flowpath between them, while the other set of channels has only a horizontal flowpath.
    Type: Application
    Filed: March 12, 2014
    Publication date: September 18, 2014
    Applicant: Battelle Memorial Institute
    Inventors: Paul E. George, II, Vincent Contini, Matthew E. Goshe
  • Publication number: 20140272635
    Abstract: Systems and methods are provided for capturing CO2 from a combustion source using molten carbonate fuel cells (MCFCs). The fuel cells are operated to have a reduced anode fuel utilization. Optionally, at least a portion of the anode exhaust is recycled for use as a fuel for the combustion source. Optionally, a second portion of the anode exhaust is recycled for use as part of an anode input stream. This can allow for a reduction in the amount of fuel cell area required for separating CO2 from the combustion source exhaust and/or modifications in how the fuel cells are operated.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 18, 2014
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Paul J. Berlowitz, Timothy Andrew Barckholtz, Frank H. Hershkowitz, Alessandro Faldi, S. Allen Erickson
  • Publication number: 20140272642
    Abstract: In some examples, a method for treating a reforming catalyst, the method comprising heating a catalyst metal used for reforming hydrocarbon in a reducing gas mixture environment. The reducing gas mixture comprises hydrogen and at least one sulfur-containing compound. The at least one sulfur-containing compound includes one or more of hydrogen sulfide, carbonyl sulfide, carbonyl disulfide and organic sulfur-containing compounds such as thiophenes, thiophanes, sulfides (RSH), disulfides (RS2R?), tri-sulfides (RS3R?) and mercaptans (RSR?).
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: LG FUEL CELL SYSTEMS, INC.
    Inventor: John R. Budge
  • Patent number: 8835069
    Abstract: A fuel cell system includes a fuel cell module having a solid-oxide fuel cell and a reformer adapted to perform steam reforming of a fuel gas supplied to the solid-oxide fuel cell, a water supplying unit and a control unit. The controller unit is adapted to control, at least during start up of the fuel cell system switching of a pulse pump from a stop state to a pumping state to start pumping of water, and to change the pulse pump to a normal control state after performing a start-operation-control which sets a feed flow rate of the pulse pump higher for a predetermined time than a feed flow rate of the water during the normal control state.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: September 16, 2014
    Assignee: Toto Ltd.
    Inventors: Toshiharu Ooe, Kiyotaka Nakano, Yoshiyuki Kawamura, Katsuhisa Tsuchiya, Tsukasa Shigezumi
  • Publication number: 20140255808
    Abstract: A fuel cell system (1) includes a reformer (2), for generating a reformate gas, a fuel cell (3) for generating electric current from cathode air and reformate gas, an air supply (4), which draws in ambient air and splits this at least into reformer air and cathode air, sends the reformer air via a reformer air line (15) in the direction of the reformer and sends the cathode air via a cathode air line (16) in the direction of a cathode side (11). A recirculating line (20) connects an anode side (10) to the reformer (2). A hot gas delivery (24),which contains a hot gas path (26), is arranged in the recirculating line for driving the anode waste. A cooling air path (27), which is integrated into the cathode air line, through which the reformer air or cathode air flows, reduces thermal load of the hot gas delivery.
    Type: Application
    Filed: March 7, 2014
    Publication date: September 11, 2014
    Applicant: Eberspächer Climate Control Systems GmbH & Co. KG
    Inventors: Oleg DERING, Manfred STUTE
  • Patent number: 8821832
    Abstract: The invention relates to a fuel processor that produces hydrogen from a fuel. The fuel processor comprises a reformer and a heater. The reformer includes a catalyst that facilitates the production of hydrogen from the fuel; the heater provides heat to the reformer. Multipass reformer and heater chambers are described that reduce fuel processor size. Single layer fuel processors include reformer and heater chambers in a compact form factor that is well suited for portable applications. Some fuel processors described herein place an electrically resistive material in contact with a thermally conductive material to heat fuel entering the fuel processor. This is particularly useful during start-up of the fuel processor. Fuel processors described may also include features that facilitate assembly.
    Type: Grant
    Filed: December 5, 2011
    Date of Patent: September 2, 2014
    Assignee: UltraCell, L.L.C.
    Inventors: Jennifer E. Brantley, Ian W. Kaye, Arpad Somogyvari, Gerry Tucker, Fan Liang Chan
  • Patent number: 8822090
    Abstract: A fuel cell assembly including a fuel reforming unit for reforming a fuel supply for a series of fuel cells constituting a fuel cell stack. The reformed fuel supply is routed first to the anode of the fuel cell most adjacent the reforming unit, and thereafter to a manifold external to the stack. The manifold intakes that portion of the reformed fuel supply not fully exhausted after passing through the first anode and feeds such reformed fuel to successive fuel cells in series, thus providing staged fuel supply throughout the stack and optimal fuel utilization in producing electricity. The reforming unit includes a series of baffles for directing the reformed fuel supply to the first anode and to the manifold to maximize utilization of fuel consumed by cells in the stack.
    Type: Grant
    Filed: March 9, 2010
    Date of Patent: September 2, 2014
    Assignee: FuelCell Energy, Inc.
    Inventors: Zhiwen Ma, Mohammad Farooque, Ramakrishnan Venkataraman
  • Patent number: 8815455
    Abstract: A hydrogen generator includes: a water evaporation unit configured to mix water with a raw gas; a burner; a combustion exhaust gas flow channel provided on an inner side than the water evaporation unit and through which a combustion exhaust gas from the burner flows; a reforming catalyst layer configured to produce a reformed gas; and a carbon monoxide reduction unit configured to reduce an amount of carbon monoxide contained in the reformed gas. The water evaporation unit includes a flow channel member defining a flow channel through which the raw gas and the water flow. A pitch of the flow channel member is changed according to at least one of an amount of heat exchange between the combustion exhaust gas flow channel and the water evaporation unit and an amount of heat exchange between the water evaporation unit and the carbon monoxide reduction unit.
    Type: Grant
    Filed: May 13, 2009
    Date of Patent: August 26, 2014
    Assignee: Panasonic Corporation
    Inventors: Akira Maenishi, Yuuji Mukai, Hiroki Fujioka
  • Patent number: 8815461
    Abstract: A solid electrolyte fuel cell system includes a reformer to produce a hydrogen-rich reformed gas from fuel, oxygen and water, and a stack structure including a stack of fuel cell units each receiving supply of the reformed gas and air, and producing electricity. The fuel cell system further includes a reformed gas cooler to cool the reformed gas supplied from the reformer to the stack structure, and a temperature control section to control operation of the reformed gas cooler in accordance with an operating condition such as a request output of the stack structure. The reformed gas cooler includes a device such as a heat exchanger for cooling the reformed gas with a coolant such as air.
    Type: Grant
    Filed: November 28, 2008
    Date of Patent: August 26, 2014
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Kazufumi Takeuchi, Hiromichi Miwa, Masaharu Hatano, Keiko Kushibiki, Tatsuya Yaguchi