Metal-ceramic Composite Or Mixture (e.g., Cermet, Etc.) Patents (Class 429/486)
  • Patent number: 10707496
    Abstract: A method for depositing a layer of material on a metallic support for fuel cells or electrolysis cells includes the steps of preparing the surface of the metallic support, preparing an apparatus for an electrolytic bath, with the relative actuation means of the apparatus, including an aqueous solution with the cations necessary to obtain at least one material, dipping the metallic support into the electrolytic bath, and commanding the actuation means of the electrolytic bath so as to selectively carry out the electrochemical deposition of at least one layer of material on the metallic support, the layer of material includes an anti-corrosion protective ceramic material and/or a ceramic material with catalytic properties.
    Type: Grant
    Filed: August 13, 2014
    Date of Patent: July 7, 2020
    Assignee: SOFCPOWER S.P.A.
    Inventors: Dario Montinaro, Massimo Bertoldi, Vincenzo Maria Sglavo, Pradnyesh Satardekar
  • Patent number: 10326157
    Abstract: A solid oxide fuel cell comprising a cathode, an electrolyte, a functional layer and an anode support. The anode support comprises A-B-C: A is a nitrate, an oxide, a salt or a carbonate selected from the group of: alkali, alkaline oxide, alkaline earth metal or combinations thereof, B is selected from the group of: Fe, Ni, Cu, Co or combinations thereof, and C is selected from the group of: PSZ, YSZ, SSZ, SDC, Ce doped SSZ, GDC or combinations thereof. In the solid oxide fuel cell A ranges from about 0 to about 20 wt % of the anode support, B ranges from about 0.1 to about 70 wt % of the anode support and C ranges from about 0.1 to about 60 wt % of the anode support.
    Type: Grant
    Filed: April 12, 2016
    Date of Patent: June 18, 2019
    Assignee: Phillips 66 Company
    Inventors: Mingfei Liu, Ting He, Ying Liu, David M. Bierschenk, Michael Keane
  • Patent number: 10256495
    Abstract: A fuel cell includes a pair of interconnectors (ICs); a cell main body provided between the ICs and including an electrolyte, a cathode and an anode formed on respective surfaces of the electrolyte; and a current collection member provided between at least one of the cathode and the anode and the IC for electrically connecting the cathode and/or the anode and the IC. The current collection member has a connector abutment portion which abuts the IC, a cell main body abutment portion abutting the cell main body, and a connection portion connecting the connector abutment portion and the cell main body abutment portion, the portions being continuously formed. Between the cell main body and the IC, a spacer is provided so as to separate the connector abutment portion and the cell main body abutment portion.
    Type: Grant
    Filed: August 7, 2012
    Date of Patent: April 9, 2019
    Assignee: NGK SPARK PLUG CO., LTD.
    Inventors: Nobuyuki Hotta, Daisuke Komatsu, Naoto Matsui, Shinobu Okazaki, Hideki Uematsu, Hiroya Ishikawa
  • Patent number: 10115974
    Abstract: In some embodiments, a solid oxide fuel cell comprising an anode, an electrolyte, cathode barrier layer, a nickelate composite cathode separated from the electrolyte by the cathode barrier layer, and a cathode current collector layer is provided. The nickelate composite cathode includes a nickelate compound and second oxide material, which may be an ion conductor. The composite may further comprise a third oxide material. The composite may have the general formula (LnuM1vM2s)n+1(Ni1-tNt)nO3n+1-A1-xBxOy-CwDzCe(1-w-z)O2-?, wherein A and B may be rare earth metals excluding ceria.
    Type: Grant
    Filed: June 7, 2016
    Date of Patent: October 30, 2018
    Assignee: LG FUEL CELL SYSTEMS INC.
    Inventors: Hwa Young Jung, Minjae Jung, Zhien Liu, Rich Goettler
  • Patent number: 10115973
    Abstract: In some embodiments, a solid oxide fuel cell comprising an anode, an electrolyte, cathode barrier layer, a nickelate composite cathode separated from the electrolyte by the cathode barrier layer, and a cathode current collector layer is provided. The nickelate composite cathode includes a nickelate compound and second oxide material, which may be an ion conductor. The composite may further comprise a third oxide material. The composite may have the general formula (LnuM1vM2s)n+1(Ni1-tNt)nO3n+1-A1-xBxOy—CwDzCe(1-w-z)O2-?, wherein A and B may be rare earth metals excluding ceria.
    Type: Grant
    Filed: June 7, 2016
    Date of Patent: October 30, 2018
    Assignee: LG FUEL CELL SYSTEMS INC.
    Inventors: Hwa Young Jung, Minjae Jung, Zhien Liu, Rich Goettler
  • Patent number: 10062909
    Abstract: In some examples, a fuel cell comprising an anode; an electrolyte; cathode barrier layer; and a nickelate composite cathode separated from the electrolyte by the cathode barrier layer; and a cathode current collector layer. The nickelate composite cathode includes a nickelate compound and an ionic conductive material, and the nickelate compound comprises at least one of Pr2NiO4, Nd2NiO4, (PruNdv)2NiO4, (PruNdv)3Ni2O7, (PruNdv)4Ni3O10, or (PruNdvMw)2NiO4, where M is an alkaline earth metal doped on an A—site of Pr and Nd. The ionic conductive material comprises a first co-doped ceria with a general formula of (AxBy)Ce1?x?yO2, where A and B of the first co-doped ceria are rare earth metals. The cathode barrier layer comprises a second co-doped ceria with a general formula (AxBy)Ce1?x?yO2, where at least one of A or B of the second co-doped ceria is Pr or Nd.
    Type: Grant
    Filed: October 28, 2016
    Date of Patent: August 28, 2018
    Assignee: LG FUEL CELL SYSTEMS, INC.
    Inventors: Zhien Liu, Hwa Young Jung, Zhengliang Xing, Richard W. Goettler
  • Patent number: 10033059
    Abstract: A fuel cell comprises an anode, a cathode, and a solid electrolyte layer. The solid electrolyte layer includes a first region disposed on the anode and a second region disposed between the first region and the cathode. The ratio of the ceria-based material in the first region is less than or equal to 0.5%. The ratio of the tetragonal crystal zirconia in the first region is greater than or equal to 3.0%. The atomic weight ratio of nickel to zirconia in the first region is less than or equal to 3.0 at %. The ratio of the ceria-based material in the second region is greater than or equal to 1.0%. The ratio of the tetragonal crystal zirconia in the second region is less than or equal to 0.1%.
    Type: Grant
    Filed: November 14, 2016
    Date of Patent: July 24, 2018
    Assignee: NGK INSULATORS, LTD.
    Inventors: Makoto Ohmori, Ayano Kobayashi, Shinji Fujisaki
  • Patent number: 10003083
    Abstract: In some examples, a fuel cell including an anode; electrolyte; and cathode separated from the anode by the electrolyte, wherein the cathode includes a Pr-nickelate based material with (Pr1-xAx)n+1(Ni1-yBy)nO3n+1+? as a general formula, where n is 1 as an integer, A is an A-site dopant including of a metal of a group formed by one or more lanthanides, and B is a B-site dopant including of a metal of a group formed by one or more transition metals, wherein the A and B-site dopants are provided such that there is an increase in phase-stability and reduction in degradation of the Pr-nickelate based material, and A is at least one metal cation of lanthanides, La, Nd, Sm, or Gd, B is at least one metal cation of transition metals, Cu, Co, Mn, Zn, or Cr, where: 0<x<1, and 0<y?0.4.
    Type: Grant
    Filed: July 21, 2015
    Date of Patent: June 19, 2018
    Assignees: LG Fuel Cell Systems, Inc., University of South Carolina
    Inventors: Hwa Young Jung, Zhengliang Xing, Zhien Liu, Richard W. Goettler, Xiao-Dong Zhou, Emir Dogdibegovic
  • Patent number: 9831517
    Abstract: A unit cell includes an air inlet/outlet that is formed on a frame unit rather than being installed in a fuel electrode (anode) to simplify a sealing process, and accordingly, a continuous process using a tape casting technique may be performed. In addition, an electrolyte material that is in contact with an air electrode (cathode) in the frame unit is optimized to improve ion conductivity and a porosity of an upper layer material of the fuel electrode unit is optimized to increase fuel diffusion from a gas channel to an electrolyte layer. In addition, a sealing process performed inside the unit cell or between the unit cells of the stack is stabilized and strongly maintained, and thus a fuel cell using the unit cell and the stack disclosed herein may have excellent economic feasibility and high energy efficiency.
    Type: Grant
    Filed: August 27, 2015
    Date of Patent: November 28, 2017
    Assignee: KOEA INSTITUTE OF ENERGY RESEARCH
    Inventors: Ji Haeng Yu, Jong Hoon Joo, Chung-Yul Yoo
  • Patent number: 9716277
    Abstract: A high permeable porous substrate for a solid oxide fuel cell and a production method to produce the substrate are provided. The high permeable porous substrate for a solid oxide fuel cell includes a porous substrate body and a plurality of channels. The plurality of channels penetrate the first surface of the porous substrate body and does not penetrate the second surface of the porous substrate body. In addition, a production method for the high permeable porous substrate of a solid oxide fuel cell is also provided.
    Type: Grant
    Filed: April 8, 2015
    Date of Patent: July 25, 2017
    Assignee: INSTITUTE OF NUCLEAR ENERGY RESEARCH ATOMIC ENERGY COUNCIL, EXECUTIVE YUAN
    Inventors: Chang-Sing Hwang, Chun-Huang Tsai, Chun-Liang Chang, Zong-Yang Chuang Shie, Sheng-Fu Yang, Te-Jung Huang, Shih-Wei Cheng
  • Patent number: 9680157
    Abstract: A bonding layer used to join individually formed fuel cell units together to create a solid oxide fuel cell stack can include particles contained within a carrier material. The particles can have at least one material component in common with a porous electrode of a first type and a bimodal particle size distribution. In some embodiments, the particles of a first mode of the bimodal particle size distribution are small enough to fit at least partially into the porosity of the electrodes bonded together, while the particles of the second mode of the bimodal particle size distribution are larger than the porosity of the electrodes.
    Type: Grant
    Filed: September 30, 2014
    Date of Patent: June 13, 2017
    Assignee: SAINT-GOBAIN CERAMICS & PLASTICS, INC.
    Inventor: Morteza Zandi
  • Patent number: 9457317
    Abstract: An oxidation catalyst is disclosed, which contains Ce and Ga, and a Ce—Ga composite oxide containing a solid solution in which a part of Ce is substituted with Ga. This oxidation catalyst is obtained in such a manner that pH of a mixed solution obtained by mixing a Ce-containing solution and a Ga-containing solution together is adjusted, and a precipitate obtained by coprecipitating Ce and Ga is dried and baked.
    Type: Grant
    Filed: August 7, 2008
    Date of Patent: October 4, 2016
    Assignee: NISSAN MOTOR CO., LTD.
    Inventors: Hideaki Morisaka, Yasunari Hanaki
  • Patent number: 9178243
    Abstract: The invention provides a porous support for integrating electrochemical reaction cells with high-density, having a plurality of through-holes, an electrochemical reaction cell stack and an electrochemical reaction system comprising the porous support for integrating electrochemical reaction cells with high-density, and the invention relates to a support for integrating electrochemical reaction cells with high-density, in which a plurality of through-holes provided in a porous support act as structural supports for electrochemical reaction cells, to an electrochemical reaction cell stack in which electrochemical reaction unit cells are integrated at a high density using the porous support, to an electrochemical reaction system comprising the electrochemical reaction cell stack, and to a manufacturing method thereof, and the present invention enables to provide a porous support for integrating electrochemical reaction cells with high-density, an electrochemical reaction cell stack and an electrochemical reactio
    Type: Grant
    Filed: February 23, 2007
    Date of Patent: November 3, 2015
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Toshiaki Yamaguchi, Toshio Suzuki, Yoshinobu Fujishiro, Masanobu Awano
  • Patent number: 9017897
    Abstract: A sintered solid composite material is disclosed that includes a metal and a calcium alumina compound. The metal can be a noble metal. This composite material can bond to a ceramic material, and an article is disclosed that includes a first ceramic layer bonded to a second layer of the composite material of metal and calcium alumina compound. The ceramic can be a mixed ionic and electronic conductor (MEIC), and/or have a perovskite crystal structure, and/or be a mixed oxide comprising lanthanum, strontium, cobalt, iron and oxygen. The article can be used as an electrode such as a cathode of a solid oxide fuel cell.
    Type: Grant
    Filed: December 13, 2012
    Date of Patent: April 28, 2015
    Assignee: Delphi Technologies, Inc.
    Inventors: Kailash C. Jain, Joseph V. Bonadies, Matthew Osterhout, Rod R. Stilgenbauer
  • Patent number: 9017898
    Abstract: A fuel cell (10) includes an anode (11), a solid electrolyte layer (12), a barrier layer (13), and a cathode (14). The anode (11) includes a transition metal and an oxygen ion conductive material. In the interface region (R) within 3 micrometers from the interface with the solid electrolyte layer (12) of the anode (11) after reduction, the content rate of silicon is less than or equal to 200 ppm, the content rate of phosphorous is less than or equal to 50 ppm, the content rate of chrome is less than or equal to 100 ppm, the content rate of boron is less than or equal to 100 ppm, and the content rate of sulfur is less than or equal to 100 ppm.
    Type: Grant
    Filed: April 25, 2013
    Date of Patent: April 28, 2015
    Assignee: NGK Insulators, Ltd.
    Inventors: Yohei Miura, Makoto Ohmori, Ayano Kobayashi, Takafumi Terahai
  • Publication number: 20150064596
    Abstract: A process for forming a metal supported solid oxide fuel cell is provided. The process can include the steps of: a) applying a green anode layer including nickel oxide and a rare earth-doped ceria to a metal substrate; b) prefiring the anode layer under non-reducing conditions to form a composite; c) firing the composite in a reducing atmosphere to form a sintered cermet; d) providing an electrolyte; and e) providing a cathode; wherein the reducing atmosphere comprises an oxygen source, a metal supported solid oxide fuel cell formed during this process, fuel cell stacks and the use of these fuel cells.
    Type: Application
    Filed: October 14, 2013
    Publication date: March 5, 2015
    Applicant: Ceres Intellectual Property Company Limited
    Inventors: Robert Leah, Mike Lankin, Robin Pierce, Adam Bone
  • Publication number: 20150064597
    Abstract: A process for forming a metal supported solid oxide fuel cell, the process comprising the steps of: a) applying a green anode layer including nickel oxide, copper oxide and a rare earth-doped ceria to a metal substrate; b) firing the green anode layer to form a composite including oxides of nickel, copper, and a rare earth-doped ceria; c) providing an electrolyte; and d) providing a cathode. Metal supported solid oxide fuel cells comprising an anode a cathode and an electrolyte, wherein the anode includes nickel, copper and a rare earth-doped ceria, fuel cell stacks and uses of these fuel cells.
    Type: Application
    Filed: October 14, 2013
    Publication date: March 5, 2015
    Applicant: Ceres Intellectual Property Company Limited
    Inventors: Robert Leah, Mike Lankin, Robin Pierce, Adam Bone
  • Patent number: 8962218
    Abstract: A multilayer contact approach for use in a planar solid oxide fuel cell stack includes at least 3 layers of an electrically conductive perovskite which has a coefficient of thermal expansion closely matching the fuel cell material. The perovskite material may comprise La1-xEx Co0.6Ni0.4O3 where E is a alkaline earth metal and x is greater than or equal to zero. The middle layer is a stress relief layer which may fracture during thermal cycling to relieve stress, but remains conductive and prevents mechanical damage of more critical interfaces.
    Type: Grant
    Filed: January 14, 2011
    Date of Patent: February 24, 2015
    Assignee: Versa Power Systems, Ltd.
    Inventors: Xinge Zhang, Anthony Wood, Michel Riou
  • Publication number: 20150050579
    Abstract: The present invention relates to a medium and high-temperature carbon-air cell, which include a solid oxide fuel cell, a CO2 separation membrane and a carbon fuel. The solid oxide fuel cell is a tubular solid oxide fuel cell with one end closed, the carbon fuel is placed inside the tubular solid oxide fuel cell, and the CO2 separation membrane is sealed at the open end of the solid oxide fuel cell. In the carbon-air cell, with carbon as fuel and oxygen in the air as an oxidizing gas, electrochemical reactions occur. The carbon-air cell of the present invention has a novel structural design, and can achieve electricity generation with the solid oxide fuel cell without externally charging a gas, and at the same time, CO2 generated inside the solid oxide fuel cell can be discharged from the system through the CO2 separation membrane in time.
    Type: Application
    Filed: March 26, 2013
    Publication date: February 19, 2015
    Applicant: NANJING UNIVERSITY OF TECHNOLOGY
    Inventors: Ran Ran, Huangang Shi, Binbin Yang, Guangming Yang, Chao Li, Zongping Shao
  • Patent number: 8956770
    Abstract: The invention relates to a method for optimizing the conductivity provided by the displacement of H+ protons and/or OH? ions in a conductive membrane made of a material permitting the insertion of steam into said membrane, wherein said method comprises the step of inserting under pressure gaseous flow containing the steam into said membrane in order to force said steam into said membrane under a certain partial pressure so as to obtained the desired conductivity at a given temperature, said partial pressure being higher than or equal to 1 bar, a drop in the operational temperature being compensated by an increase in said partial pressure in order to obtain the same desired conductivity. The invention can be used in particularly interesting applications in the fields of high-temperature water electrolysis for producing hydrogen, of the manufacture of fuel cells using hydrogen fuel, and of hydrogen separation and purification.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: February 17, 2015
    Assignees: Areva, Societe des Ceramiques Techniques, Armines, Centre National de la Recherche Scientifique
    Inventors: Béatrice Sala, Olivier Lacroix, Stéphanie Willemin, Kamal Rahmouni, Hisasi Takenouti, Arie Van Der Lee, Philippe Colomban, Patrice Goeuriot, Baroudi Benjeriou-Sedjerari
  • Patent number: 8932781
    Abstract: Embodiments of the present disclosure include chemical compositions, structures, anodes, cathodes, electrolytes for solid oxide fuel cells, solid oxide fuel cells, fuel cells, fuel cell membranes, separation membranes, catalytic membranes, sensors, coatings for electrolytes, electrodes, membranes, and catalysts, and the like, are disclosed.
    Type: Grant
    Filed: October 30, 2009
    Date of Patent: January 13, 2015
    Assignee: Georgia Tech Research Corporation
    Inventors: Lei Yang, Zhe Cheng, Ze Liu, Meilin Liu
  • Patent number: 8921007
    Abstract: A bonding layer, disposed between an interconnect layer and an electrode layer of a solid oxide fuel cell article, may be formed from a yttria stabilized zirconia (YSZ) powder having a monomodal particle size distribution (PSD) with a d50 that is greater than about 1 ?m and a d90 that is greater than about 2 ?m.
    Type: Grant
    Filed: November 14, 2012
    Date of Patent: December 30, 2014
    Assignee: Saint-Gobain Ceramics & Plastics, Inc.
    Inventors: Guangyong Lin, Yeshwanth Narendar, John D. Pietras, Qiang Zhao, Robert J. Sliwoski, Caroline Levy, Samuel S. Marlin, Aravind Mohanram
  • Patent number: 8846270
    Abstract: A solid oxide fuel cell (SOFC) includes a plurality of sub-cells. Each sub-cell includes a first electrode in fluid communication with a source of oxygen gas, a second electrode in fluid communication with a source of a fuel gas, and a solid electrolyte between the first electrode and the second electrode. The SOFC further includes an interconnect between the sub-cells. In one embodiment, the SOFC has a first surface in contact with the first electrode of each sub-cell and a second surface that is in contact with the second electrode of each sub-cell; and the interconnect consists essentially of a doped M-titanate based perovskite, wherein M is an alkaline earth metal. In another embodiment, the interconnect includes a first layer in contact with the first electrode of each sub-cell, and a second layer in contact with the second electrode of each sub-cell. The first layer includes an electrically conductive material selected from the group consisting of an metal, a metal alloy and a mixture thereof.
    Type: Grant
    Filed: August 29, 2013
    Date of Patent: September 30, 2014
    Assignee: Saint-Gobain Ceramics & Plastics, Inc.
    Inventor: Yeshwanth Narendar
  • Patent number: 8835077
    Abstract: The electrode material contains a complex oxide and at least one of ZrO2 and a compound comprising ZrO2. The complex oxide has a perovskite structure represented by a general formula ABO3. ZrO2 is contained in an amount of 0.3×10?2 wt % to 1 wt % relative to the entire electrode material.
    Type: Grant
    Filed: July 19, 2011
    Date of Patent: September 16, 2014
    Assignee: NGK Insulators, Ltd.
    Inventors: Ayano Kobayashi, Shinji Fujisaki, Makoto Ohmori
  • Patent number: 8828618
    Abstract: Electrode materials systems for planar solid oxide fuel cells with high electrochemical performance including anode materials that provide exceptional long-term durability when used in reducing gases and cathode materials that provide exceptional long-term durability when used in oxygen-containing gases. The anode materials may comprise a cermet in which the metal component is a cobalt-nickel alloy. These anode materials provide exceptional long-term durability when used in reducing gases, e.g., in SOFCs with sulfur contaminated fuels. The cermet also may comprise a mixed-conducting ceria-based electrolyte material. The anode may have a bi-layer structure. A cerium oxide-based interfacial layer with mixed electronic and ionic conduction may be provided at the electrolyte/anode interface.
    Type: Grant
    Filed: December 7, 2007
    Date of Patent: September 9, 2014
    Assignee: NexTech Materials, Ltd.
    Inventors: Michael J. Day, Scott L. Swartz, Matthew M. Seabaugh, Paul H. Matter, Jared R. Archer
  • Publication number: 20140242495
    Abstract: A solid oxide fuel cell (SOFC) includes a cathode electrode, a solid oxide electrolyte, and an anode electrode having a first region located adjacent to a fuel inlet and a second region located adjacent to a fuel outlet. The anode electrode includes a cermet having a nickel containing phase and a ceramic phase. The first region of the anode electrode contains a lower ratio of the nickel containing phase to the ceramic phase than the second region of the anode electrode.
    Type: Application
    Filed: May 6, 2014
    Publication date: August 28, 2014
    Applicant: BLOOM ENERGY CORPORATION
    Inventor: Emad El Batawi
  • Publication number: 20140242493
    Abstract: A direct carbon fuel cell DCFC system (5), the system comprising an electrochemical cell, the electrochemical cell (10) comprising a cathode (30), a solid state first electrolyte (25) and an anode (20), wherein, the system further comprises an anode chamber containing a second electrolyte (125) and a fuel (120). The system, when using molten carbonate as second electrolyte, is preferably purged with CO2 via purge gas inlet (60).
    Type: Application
    Filed: October 25, 2012
    Publication date: August 28, 2014
    Applicant: University Court of the University of St. Andrews
    Inventors: John Thomas Sirr Irvine, Gael Corre, Cairong Jiang
  • Patent number: 8815466
    Abstract: In various aspects, provided are solid oxide fuel cells with an operational temperature of less than about 500° C. that can provide, in various embodiments, a power density of greater than about 0.1 W/cm2 and/or have an ionic conductivity of greater than about 0.00001 ohm?1 cm?1. In various embodiments, provided are solid oxide fuel cells comprising a solid oxide electrolyte layer that is both an electronic and ionic conductor. In various aspects, provided are methods of making solid oxide fuel cells. In various aspects, provided are solid oxide materials comprising a polycrystalline ceramic layer less than about 100 nm thick having a ionic conductivity of greater than about 0.00001 ohm?1 cm?1 at a temperature less than about 500° C.
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: August 26, 2014
    Assignee: President and Fellows of Harvard College
    Inventors: Shriram Ramanathan, Alexander C. Johnson
  • Patent number: 8771901
    Abstract: The present disclosure is directed to an integrated SOFC stack including, a first cell having a cathode layer, an electrolyte layer overlying the cathode layer, and an anode layer overlying the electrolyte layer. The SOFC stack also includes a second cell having a cathode layer, an electrolyte layer overlying the cathode layer, and an anode overlying the electrolyte layer. The SOFC stack further includes a ceramic interconnect layer between the first cell and the second cell, the ceramic interconnect layer having a first high temperature bonding region along the interfacial region between the first cell and the ceramic interconnect layer. The ceramic interconnect layer also includes a second high temperature bonding region along the interfacial region between the second cell and the ceramic interconnect layer.
    Type: Grant
    Filed: April 4, 2007
    Date of Patent: July 8, 2014
    Assignee: Saint-Gobain Ceramics & Plastics, Inc.
    Inventors: William J. Donahue, Oh-Hun Kwon, F. Michael Mahoney, John D. Pietras
  • Publication number: 20140170529
    Abstract: A sintered solid composite material is disclosed that includes a metal and a calcium alumina compound. The metal can be a noble metal. This composite material can bond to a ceramic material, and an article is disclosed that includes a first ceramic layer bonded to a second layer of the composite material of metal and calcium alumina compound. The ceramic can be a mixed ionic and electronic conductor (MEIC), and/or have a perovskite crystal structure, and/or be a mixed oxide comprising lanthanum, strontium, cobalt, iron and oxygen. The article can be used as an electrode such as a cathode of a solid oxide fuel cell.
    Type: Application
    Filed: December 13, 2012
    Publication date: June 19, 2014
    Applicant: DELPHI TECHNOLOGIES, INC.
    Inventors: Kailash C. JAIN, Joseph V. BONADIES, Matthew OSTERHOUT, Rod R. STILGENBAUER
  • Patent number: 8748056
    Abstract: A solid oxide fuel cell (SOFC) includes a cathode electrode, a solid oxide electrolyte, and an anode electrode having a first portion and a second portion, such that the first portion is located between the electrolyte and the second portion. The anode electrode comprises a cermet comprising a nickel containing phase and a ceramic phase. The first portion of the anode electrode contains a lower porosity and a lower ratio of the nickel containing phase to the ceramic phase than the second portion of the anode electrode.
    Type: Grant
    Filed: October 10, 2007
    Date of Patent: June 10, 2014
    Assignee: Bloom Energy Corporation
    Inventors: Emad El Batawi, Darren Hickey, James McElroy
  • Patent number: 8722278
    Abstract: Disclosed is a solid oxide fuel cell that has a high initial power generation performance and a good power generation durability. The fuel cell comprises at least a fuel electrode, an electrolyte, an air electrode, and a current collecting part disposed on the air electrode, wherein the current collecting part comprises an electroconductive metal and an oxide, the electroconductive metal is silver and palladium, the oxide is a perovskite oxide, and the content of the oxide is more than 0 (zero) and less than 0.111 in terms of weight ratio to the electroconductive metal.
    Type: Grant
    Filed: October 15, 2009
    Date of Patent: May 13, 2014
    Assignee: Toto Ltd.
    Inventors: Hiroshi Niimi, Akira Kawakami, Yutaka Momiyama, Shuichiro Saigan
  • Patent number: 8715886
    Abstract: The invention is a novel solid oxide fuel cell (SOFC) stack comprising individual bi-electrode supported fuel cells in which an electrolyte layer is supported between porous electrodes. The porous electrodes may be made from graded pore ceramic tape that has been created by the freeze cast method followed by freeze-drying. Each piece of graded pore tape later becomes a graded pore electrode scaffold that, subsequent to sintering, is made into either an anode or a cathode. The electrode scaffold comprising the anode includes a layer of liquid metal. The pores of the electrode scaffolds gradually increase in diameter as the layer extends away from the electrolyte layer. As a result of this diameter increase, any forces that would tend to pull the liquid metal away from the electrolyte are reduced while maintaining a diffusion path for the fuel. Advantageously, the fuel cell of the invention may utilize a hydrocarbon fuel without pre-processing to remove sulfur.
    Type: Grant
    Filed: September 28, 2010
    Date of Patent: May 6, 2014
    Assignee: The United States of America as Represented by the Administrator of National Aeronautics and Space Administration
    Inventors: Thomas L Cable, John A Setlock, Serene C Farmer
  • Patent number: 8697313
    Abstract: The invention is a novel solid oxide fuel cell (SOFC) stack comprising individual bi-electrode supported fuel cells in which a thin electrolyte is supported between electrodes of essentially equal thickness. Individual cell units are made from graded pore ceramic tape that has been created by the freeze cast method followed by freeze drying. Each piece of graded pore tape later becomes a graded pore electrode scaffold that subsequent to sintering, is made into either an anode or a cathode by means of appropriate solution and thermal treatment means. Each cell unit is assembled by depositing of a thin coating of ion conducting ceramic material upon the side of each of two pieces of tape surface having the smallest pore openings, and then mating the coated surfaces to create an unsintered electrode scaffold pair sandwiching an electrolyte layer.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: April 15, 2014
    Assignee: The United States of America as Represented by the Administrator of National Aeronautics and Space Administration
    Inventors: Thomas L. Cable, Stephen W Sofie
  • Patent number: 8685589
    Abstract: A fuel cell and method for manufacturing the fuel cell are described herein. Basically, the fuel cell is formed from an electrode/electrolyte structure including an array of anode electrodes and cathode electrodes disposed on opposing sides of an electrolyte sheet, the anode and cathode electrodes being electrically connected in series, parallel, or a combination thereof by electrical conductors that traverse via holes in the electrolyte sheet. Several different embodiments of electrical conductors which have a specific composition and/or a specific geometry are described herein.
    Type: Grant
    Filed: March 12, 2008
    Date of Patent: April 1, 2014
    Assignee: Corning Incorporated
    Inventors: Michael E Badding, Jacqueline L Brown, Thomas D Ketcham, Susan L Schiefelbein, Dell J St Julien, Raja R Wusirika
  • Patent number: 8652707
    Abstract: Tubular ceramic structures of non-circular cross section, e.g., anode components of tubular fuel cells of non-circular cross section, are manufactured by applying ceramic-forming composition to the external non-circular surface of the heat shrinkable polymeric tubular mandrel component of a rotating mandrel-spindle assembly, removing the spindle from said assembly after a predetermined thickness of tubular ceramic structure of non-circular cross section has been built up on the mandrel and thereafter heat shrinking the mandrel to cause the mandrel to separate from the tubular ceramic structure of non-circular cross section.
    Type: Grant
    Filed: September 1, 2011
    Date of Patent: February 18, 2014
    Assignee: WATT Fuel Cell Corp.
    Inventors: Caine Finnerty, Benjamin Emley
  • Patent number: 8652703
    Abstract: The present invention relates to a method for manufacturing a metal-oxide-based ceramic, including, in order, the step of inserting, into a flash sintering device, a nanocrystalline powder comprising crystallites and crystallite agglomerates of a ceramic of formula, Zr1-xMxO2, where M is chosen from yttrium, scandium and cerium, or Ce1-xM?xO2, where M? is chosen from gadolinium, scandium, samarium and yttrium, where x lies between 0 and 0.2, the powder having an average crystallite size of between 5 and 50 nm, an average crystallite agglomerate size of between 0.5 and 20 ?m, and a specific surface area of between 20 and 100 m2/g. The invention further includes the step of flash sintering the powder by applying a pressure of between 50 and 150 MPa, at a temperature of between 850° C. and 1400° C., for a time of between 5 and 30 minutes.
    Type: Grant
    Filed: June 16, 2010
    Date of Patent: February 18, 2014
    Assignees: Electricite de France, Universite Paul Sabatier Toulouse III
    Inventors: Mohsine Zahid, Mathilde Rieu, Claude Estournes, Pascal Lenormand, Florence Ansart
  • Patent number: 8642496
    Abstract: The present invention relates to a method for forming a catalyst comprising catalytic nanoparticles and a catalyst support, wherein the catalytic nanoparticles are embedded in the catalyst support, comprising forming the catalytic nanoparticles on carbon particle, dispersing the carbon particle in a solution comprising precursors of the catalyst support to form a suspension, heating the suspension to form a gel, subjecting the gel to incineration to form a powder, and sintering the powder to form the catalyst.
    Type: Grant
    Filed: July 13, 2011
    Date of Patent: February 4, 2014
    Assignee: Agency for Science, Technology and Research
    Inventors: Zetao Xia, Liang Hong, Wei Wang, Zhao Lin Liu
  • Patent number: 8628892
    Abstract: A solid oxide fuel cell supplied with a fuel gas and an oxidant gas, including a single cell 4 having a plate-like electrolyte 41, an cathode 42 formed on an upper surface of the electrolyte 41, and a anode 43 formed on a lower surface of the electrolyte 41; a conductive support substrate 2 supporting the single cell 4, and having through-holes 21 that form a supply path for the fuel gas or oxidant gas; and a gas-permeable welding layer 3 sandwiched between the single cell 4 and the support substrate 2, and welded to the single cell 4 and the support substrate 2.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: January 14, 2014
    Assignee: Dai Nippon Printing Co., Ltd.
    Inventor: Kuniaki Yoshikata
  • Patent number: 8617763
    Abstract: A solid oxide fuel cell (SOFC) includes a cathode electrode, a solid oxide electrolyte, and an anode electrode having a first portion and a second portion, such that the first portion is located between the electrolyte and the second portion. The anode electrode comprises a cermet comprising a nickel containing phase and a ceramic phase. The first portion of the anode electrode contains a lower porosity and a lower ratio of the nickel containing phase to the ceramic phase than the second portion of the anode electrode. The nickel containing phase in the second portion of the anode electrode comprises nickel and at least one other metal which has a lower electrocatalytic activity than nickel.
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: December 31, 2013
    Assignee: Bloom Energy Corporation
    Inventors: Tad Armstrong, Emad El Batawi, Eric Petersen
  • Patent number: 8603697
    Abstract: There is provided a dendritic catalyst layer for a solid polymer electrolyte fuel cell including: a solid polymer electrolyte membrane; electrodes; and catalyst layers each provided between the solid polymer electrolyte membrane and the respective electrode, the catalyst layer for a solid polymer electrolyte fuel cell includes a catalyst with a dendritic structure. The catalyst with a dendritic structure is formed through vacuum evaporation such as reactive sputtering, reactive electron beam evaporation, or ion plating. The catalyst layer for a solid polymer electrolyte fuel cell can improve catalytic activity, catalyst utilization, and substance transport performance in the catalyst layer.
    Type: Grant
    Filed: June 24, 2005
    Date of Patent: December 10, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventors: Kazuya Miyazaki, Kazuhiro Yamada, Yoshinobu Okumura
  • Patent number: 8580453
    Abstract: A solid oxide electrochemical device having a laminar composite electrode with improved electrochemical and mechanical performance, the laminar composite electrode comprising a porous support electrode layer, a thin and patterned structure layer, and a thin and dense electrolyte layer and methods for making.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: November 12, 2013
    Assignee: General Electric Company
    Inventors: Jie Guan, Gregory R. Lear, Matthew Walker
  • Patent number: 8574786
    Abstract: Anode catalysts for conversion of hydrocarbon feeds in solid oxide fuel cell membrane reactors. An anode catalyst may be a mixture of a metal with a metal oxide, for example a mixture of copper or copper-nickel alloy or copper-cobalt alloy with Cr2O3. Mixed oxides can be prepared by dissolving into water soluble salts of the different metals, chelating the metal ions with a chelating agent, neutralizing the solution, removing water by evaporation to form a gel which then is dried, and finally heating the dried gel to form a mixed oxide of the different metals. The chelating agent can be citrate ions, and ammonia can be added to the solution until the pH of the solution is about 8. The mixed oxide so formed then is reduced, for example by hydrogen, to form a composite comprising the metal (Cu, Cu—Co, Cu—Ni) and metal oxide, here Cr2O3.
    Type: Grant
    Filed: February 9, 2011
    Date of Patent: November 5, 2013
    Assignees: The Governors of the University of Alberta, Nova Chemicals Corporation
    Inventors: Jing-li Luo, Xian-zhu Fu, Nemanja Danilovic, Karl T. Chuang, Alan R. Sanger, Andrzej Krzywicki
  • Publication number: 20130273456
    Abstract: Disclosed are a solid oxide fuel cell, a method of fabricating the same, and a tape casting apparatus for fabricating an anode. The solid oxide fuel cell includes an electrolyte film sheet, a cathode, and an anode, and the anode includes a catalyst active layer sheet for inducing a reforming reaction of the supplied fuel. The catalyst active layer sheet is formed by a tape casting method using a plurality of pieces of slurry having different catalyst contents, and the catalyst content within the catalyst active layer sheet is gradually changed in a flow direction of the fuel. In the solid oxide fuel cell, a temperature deviation of a unit cell is minimized by uniformly reforming the fuel in the flow direction of the fuel, thereby improving mechanical and chemical durability.
    Type: Application
    Filed: December 28, 2011
    Publication date: October 17, 2013
    Applicant: POSCO
    Inventors: Hongyoul Bae, Jung Hoon Song, Jin Soo Ahn, Young Min Park
  • Patent number: 8535848
    Abstract: The structured body intended for use for an anode (1) in fuel cells, includes a structure formed by macro-pores and an electrode material. The macro-pores form communicating spaces which are produced by using pore forming materials. The electrode material includes skeleton-like or net-like connected structures of particles which are connected by sintering and which form two reticular systems which interengage: a first reticular system made of ceramic material and a second reticular system which contains metals to effect an electrical conductivity. The electrode material has the properties so that, with a multiple change between oxidizing and reducing conditions, substantially no major property changes occur in the ceramic reticular system, and an oxidization or reduction of the metals occurs in the second reticular system.
    Type: Grant
    Filed: January 9, 2012
    Date of Patent: September 17, 2013
    Assignee: Hexis AG
    Inventors: Gilles Robert, Andreas Franz-Josef Kaiser, Emad Batawi
  • Patent number: 8518605
    Abstract: The invention relates to an anode for a high-temperature fuel cell having an anode substrate and/or a functional anode layer, comprising a porous ceramic structure having a first predominantly electron-conducting phase with the general empirical formula Sr1-xLnxTiO3 wherein Ln=Y, Gd to Lu and 0.03<x<0.2, and having a second predominantly ion-conducting phase component comprising yttrium or scandium-stabilized zirconium dioxide (YSZ or ScSZ). In the anode substrate and/or the functional anode layer, the ratio by volume of the first phase to the second phase ranges from 80:20 to 50:50, and particularly from 70:30 to 60:40. The porosity of the entire anode ranges between 15 and 50% by volume. The anode additionally comprises a catalyst in the amount of no more than 15% of the total volume, which is disposed on the surface of the pores of the ceramic structure.
    Type: Grant
    Filed: June 26, 2007
    Date of Patent: August 27, 2013
    Assignee: Forschungszentrum Juelich GmbH
    Inventors: Qingxi Fu, Frank Tietz, Hans-Peter Buchkremer, Detlev Stoever
  • Publication number: 20130196246
    Abstract: A fuel electrode for a solid oxide electrochemical cell includes: an electrode layer constituted of a mixed phase including an oxide having mixed conductivity and another oxide selected from the group including an aluminum-based oxide and a magnesium-based composite oxide, said another oxide having, supported on a surface part thereof, particles of at least one member selected from nickel, cobalt, and nickel-cobalt alloys.
    Type: Application
    Filed: March 14, 2013
    Publication date: August 1, 2013
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: KABUSHIKI KAISHA TOSHIBA
  • Patent number: 8497047
    Abstract: A solid oxide fuel cell stack obtainable by a process comprising the use of a glass sealant with composition 50-70 wt % SiO2, 0-20 wt % Al2O3, 10-50 wt % CaO, 0-10 wt % MgO, 0-6 wt % (Na2O+K2O), 0-10 wt % B2O3, and 0-5 wt % of functional elements selected from TiO2, ZrO2, F, P2O5, MoO3, Fe2O3, MnO2, La. Sr—Mn—O perovskite (LSM) and combinations thereof.
    Type: Grant
    Filed: March 12, 2010
    Date of Patent: July 30, 2013
    Assignee: Topsoe Fuel Cell A/S
    Inventors: Jørgen Gutzon Larsen, Christian Olsen, Marie Drejer Jensen
  • Publication number: 20130137010
    Abstract: A method of forming a solid, dense, hermetic lithium-ion electrolyte membrane comprises combing an amorphous, glassy, or low melting temperature solid reactant with a refractory oxide reactant to form a mixture, casting the mixture to form a green body, and sintering the green body to form a solid membrane. The resulting electrolyte membranes can be incorporated into lithium-ion batteries.
    Type: Application
    Filed: November 29, 2011
    Publication date: May 30, 2013
    Inventors: Bruce Gardiner Aitken, Michael Edward Badding, George Halsey Beall, Curtis Robert Fekety, Lanrik Wayne Kester, Robert Michael Morena, Zhen Song
  • Publication number: 20130087280
    Abstract: The present invention provides a fuel cell electrode, and a method for manufacturing a membrane-electrode assembly (MEA) using the same. The fuel cell electrode is formed by adding carbon nanotubes to reinforce the mechanical strength of the electrode, cerium-zirconium oxide particles to prevent corrosion of a polymer electrolyte membrane, and an alloy catalyst prepared by alloying a second metal (such as Ir, Pd, Cu, Co, Cr, Ni, Mn, Mo, Au, Ag, V, etc.) with platinum to prevent the dissolution, migration, and agglomeration of platinum.
    Type: Application
    Filed: December 9, 2011
    Publication date: April 11, 2013
    Applicant: HYUNDAI MOTOR COMPANY
    Inventor: Jae Seung Lee