Fuel Cell With Liquid Electrolyte Patents (Class 429/498)
  • Patent number: 8283090
    Abstract: An electrochemical cell is described that includes (a) a first electrode; (b) a second electrode; and (c) a channel contiguous with at least a portion of the first and the second electrodes. When a first liquid is contacted with the first electrode, a second liquid is contacted with the second electrode, and the first and the second liquids flow through the channel, a parallel laminar flow is established between the first and the second liquids. Electronic devices containing such electrochemical cells and methods for their use are also described.
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: October 9, 2012
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Larry J. Markoski, Jeffrey S. Moore, Joseph W. Lyding
  • Publication number: 20120248029
    Abstract: A curable composition comprising: (i) 2.5 to 50 wt % crosslinker comprising at least two acrylamide groups; (ii)12 to 65 wt % curable ionic compound comprising an ethylenically unsaturated group and a cationic group; (iii) 10 to 70 wt % solvent; (iv) 0 to 10 wt % of free radical initiator; and (v) lithium and/or calcium salt. The compositions are useful for preparing ion exchange membranes.
    Type: Application
    Filed: December 9, 2010
    Publication date: October 4, 2012
    Applicant: FUJIFILM MANUFACTURING EUROPE BV
    Inventors: Harro Antheunis, Jacko Hessing, Bastiaan Van Berchum
  • Publication number: 20120231363
    Abstract: The invention concerns the use as a redox a catalyst and/or mediator in a fuel cell catholyte solution of the compound of Formula (I) wherein: X is selected from hydrogen and from various functional groups; R1-8 are independently selected from hydrogen and various functional groups; wherein R1 and X and/or R5 and X may together form an optionally substituted ring structure; wherein R1 and R2 and/or R2 and R3 and/or R3 and R4 and/or R4 and R8 and/or R8 and R7 and/or R7 and R6 and/or R6 and R5 may together form an optionally substituted ring structure; wherein (L) indicates the optional presence of a linking bond or group between the two neighbouring aromatic rings of the structure, and when present may form an optionally substituted ring structure with one or both of R4 and R8; and wherein at least one substituent group of the structure is a charge-modifying substituent.
    Type: Application
    Filed: August 5, 2010
    Publication date: September 13, 2012
    Applicant: ACAL ENERGY LIMITED
    Inventors: Kathryn Knuckey, David Rochester, Andrew Martin Creeth
  • Patent number: 8263251
    Abstract: An insulating plate of a nonaqueous electrolyte secondary cell is interposed between a cell element and a cover member in a nonaqueous electrolyte secondary cell including the cell element formed by stacking cathodes and anodes through separators, a cell can including a can body which houses the cell element and the cover member which closes an opening of the can body to seal the cell element, and an electrolyte injected into the cell can. The insulating plate includes a plate-shaped insulating plate body having insulating property, an injection hole which passes through the insulating plate body in the thickness direction and through which the electrolyte can be injected, and a filter member permeable to only the electrolyte and provided on one of the surfaces of the insulating plate body so as to cover the injection hole.
    Type: Grant
    Filed: August 31, 2009
    Date of Patent: September 11, 2012
    Assignee: Sony Corporation
    Inventors: Yasuo Fukase, Katsuhiko Watanabe
  • Publication number: 20120219880
    Abstract: A liquid electrolyte fuel cell comprises means to define an electrolyte chamber, and electrodes on opposite sides of the electrolyte chamber. The electrode comprises an electrically conductive sheet (10) through which are defined a multiplicity of through-pores or holes (14). These may be formed by laser drilling through the sheet. The electrode would normally also include a layer (16) of catalytic material. The margin (15) of the sheet is not perforated or porous, to simplify sealing.
    Type: Application
    Filed: July 21, 2010
    Publication date: August 30, 2012
    Applicant: AFC Energy PLC
    Inventors: Hugh Liam Sutherland, Alex Sean Blake, John Sansum, Gene Stacey Lewis
  • Patent number: 8236463
    Abstract: An electrode for use in a flow cell is presented. The electrode includes a metal plate for collecting current in the electrode that is bonded between a first and second plate.
    Type: Grant
    Filed: October 8, 2009
    Date of Patent: August 7, 2012
    Assignee: Deeya Energy, Inc.
    Inventors: Saroj Kumar Sahu, Suresh Kumar Surapalan Nair, Ali Firouzi
  • Patent number: 8222367
    Abstract: A proton conducting hydrocarbon-based polymer has acid groups on side chains attached to the main chain, where the acid groups are between 7 and 12 atoms away from the main chain. Another polymer includes a semi-fluorinated aromatic hydrocarbon main chain and side chains that include at least one —CF2— group and an acid group. Another polymer includes an aromatic hydrocarbon main chain and side chains that include at least one —CH2-CF2— group and an acid group. Another aromatic polymer includes acid groups attached to both the main chain and the side chains where less than about 65 weight percent of the acid groups are attached to the side chains. Another aromatic polymer includes side chains attached to the main chain that include at least one aryl ring, and acid groups attached to both the main chain and to the aryl groups. Another polymer includes an aliphatic hydrocarbon main chain, side chains that include at least one deactivating aryl ring, and acid groups attached to the deactivating aryl rings.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: July 17, 2012
    Assignee: Battelle Memorial Institute
    Inventors: Ramanathan S. Lalgudi, Bhima R. Vijayendran, Jeffrey Cafmeyer, Jay R. Sayre
  • Patent number: 8221610
    Abstract: An electrochemical method for providing hydrogen using ammonia, ethanol, or combinations thereof, comprising: forming an anode comprising a layered electrocatalyst, the layered electrocatalyst comprising at least one active metal layer deposited on a carbon support; providing a cathode comprising a conductor; disposing a basic electrolyte between the anode and the cathode; disposing a fuel within the basic electrolyte; and applying a current to the anode causing the oxidation of the fuel, forming hydrogen at the cathode.
    Type: Grant
    Filed: May 4, 2008
    Date of Patent: July 17, 2012
    Assignee: Ohio University
    Inventor: Gerardine G. Botte
  • Patent number: 8216741
    Abstract: A fuel cell capable of operating under a high temperature environment and under a low humidity environment and a method for generating an electric power with use of the fuel cell. The fuel cell comprises an electrolyte membrane, an anode electrode, and an cathode electrode. In each of the anode electrode and the cathode electrode, a catalyst is held on a catalyst support, and an electrolyte covers the catalyst and the catalyst support. The cathode electrolyte is composed of SnO2, NH3, H2O, and H3PO4. A molar ratio X represented by X?NH3/SnO2 is not less than 0.2 and not more than 5, and a molar ratio Y represented by Y?P/Sn is not less than 1.6 and not more than 3.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: July 10, 2012
    Assignee: Panasonic Corporation
    Inventors: Tomoyuki Komori, Takashi Otsuka, Atsushi Omote
  • Publication number: 20120171599
    Abstract: Provided is a fuel cell for being implanted which enables a long time operation while reducing its size so as to be implanted in a living body. The fuel cell to be adopted includes: a container which contains a fuel such as glucose and an electrolyte solution therein; a pair of electrodes which are arranged in the container and have a noble metal catalyst fixed thereon; an aeration portion which is formed on at least one part of the outer surface of the container and has air permeability and waterproofness; and septa and for injecting the fuel from the outside into the container or discharging it from the container.
    Type: Application
    Filed: March 9, 2012
    Publication date: July 5, 2012
    Applicant: OLYMPUS CORPORATION
    Inventors: Takayuki KISHIDA, Toshimasa AKAGI, Hiroki HIBINO
  • Publication number: 20120135334
    Abstract: A partial flow cell may include a cathode chamber, an anode chamber, and a separator arrangement sandwiched between the cathode and anode chambers. The separator arrangement may be configured to permit ionic flow between electroactive materials disposed within the cathode and anode chambers. One of the cathode and anode chambers may be configured to permit an electroactive material to flow through the chamber during operation. The other of the cathode and anode chambers may be configured to hold an electroactive material fixed within the chamber during operation.
    Type: Application
    Filed: May 6, 2011
    Publication date: May 31, 2012
    Applicant: ZINC AIR INCORPORATED
    Inventor: Richard M. Bendert
  • Publication number: 20120135316
    Abstract: Novel imidazolium salts of formula (I) are described in which R is a C1-C14 alkyl group, optionally substituted by one or more fluorine atoms, or a C2-C18 alkoxyalkyl group, R? is an alkyl group containing at least 8 carbon atoms, at least 6 of which are partially or entirely fluorinated, R? is hydrogen or C1-C3 alkyl, Z is an organic or inorganic anion, and Q is further defined. The compounds of formula (I) are liquid crystals over a wide temperature range, and are characterised by high conductivity, hydrophobicity and stability. These properties made them ideally suitable for use in devices based on electrochemical reactions, such as solar cells, fuel cells, electrochemical sensors, lithium batteries and capacitors, etc.
    Type: Application
    Filed: June 10, 2010
    Publication date: May 31, 2012
    Applicant: DAUNIA SOLAR CELL S.R.L.
    Inventors: Giuseppe Resnati, Pierangelo Metrangolo, Antonio Abate, Francesco Matteucci
  • Patent number: 8187737
    Abstract: Electrochemical cells (100, 500, 600) for converting chemical energy into electrical energy, such as batteries (102), flow cells (502) and fuel cells (602) with a cylindrical rotating ion-permeable filter (120, 414, 520, 620) that generates Taylor Vortex Flows (144, 146, 404, 544, 546, 664, 666) and Circular Couette Flows (148, 150, 568, 570, 668, 670) in thixotropic catholytes and anolytes between a cylindrical current collector (106, 506, 606, 108, 508, 608) and the filter (120, 414, 520, 620) are disclosed.
    Type: Grant
    Filed: September 18, 2011
    Date of Patent: May 29, 2012
    Assignee: Global Energy Science, LLC
    Inventor: Halbert Fischel
  • Patent number: 8187560
    Abstract: Steam, partial oxidation and pyrolytic fuel reformers (14 or 90) with rotating cylindrical surfaces (18, 24 or 92, 96) that generate Taylor Vortex Flows (28 or 98) and Circular Couette Flows (58, 99) for extracting hydrogen from hydrocarbon fuels such as methane (CH4), methanol (CH3OH), ethanol (C2H5OH), propane (C3H8), butane (C4H10), octane (C8H18), kerosene (C12H26) and gasoline and hydrogen-containing fuels such as ammonia (NH3) and sodium borohydride (NaBH4) are disclosed.
    Type: Grant
    Filed: May 20, 2010
    Date of Patent: May 29, 2012
    Assignee: Global Energy Science, LLC
    Inventor: Halbert Fischel
  • Publication number: 20120121993
    Abstract: Disclosed herein are electrolyte formulations containing methoxybenzene (also known as anisole or phenoxymethane) for use in lithium-air semi-fuel cells. Lithium-air semi-fuel cells contain a metallic lithium anode and an air (oxygen) fuel cell type porous carbon cathode. The reaction product in the cathode is lithium oxide (Li2O) and/or lithium peroxide (Li2O2). This reaction product is sparingly soluble in common lithium-air cell solvents, and therefore the cathode pores become blocked over time, leading to cell end-of-life. Methoxybenzene is an organic solvent that demonstrates an increased solubility of Li2O, which minimizes the clogging of the cathode. Lithium-air semi-fuel cells with electrolytes containing methoxybenzene demonstrate higher discharge capacities per the same weight, than the cells having electrolytes without methoxybenzene. Higher energy density semi-fuel cells are thus achieved.
    Type: Application
    Filed: November 12, 2010
    Publication date: May 17, 2012
    Inventors: David Chua, Owen Crowther, Benjamin Meyer, Mark Salomon
  • Publication number: 20120115069
    Abstract: The present invention relates to a redox flow battery which has an electrolyte which comprises at least one ionic liquid.
    Type: Application
    Filed: February 15, 2010
    Publication date: May 10, 2012
    Applicant: FRAUNHOFER-GESELLSCHAFT ZUR FORDERUNG DER ANGEWANDTEN FORSCHUNG E.V.
    Inventors: Jens Noack, Jens Tübke, Karsten Pinkwart
  • Publication number: 20120115068
    Abstract: The present invention provides an air battery module comprising: a housing; a plurality of power sections incorporated in the housing; and an electrolytic solution which is filled in the housing to immerse the plurality of power sections and in which oxygen is dissolved, one of the power sections and another of the power sections sharing the electrolytic solution. The air battery module is capable of attaining downsizing and of obtaining high output.
    Type: Application
    Filed: May 8, 2009
    Publication date: May 10, 2012
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Shinji Nakanishi
  • Patent number: 8168339
    Abstract: A method for controlling an amount of a liquid electrolyte in a polymer-electrolyte membrane of a fuel cell is provided. The method comprises enriching one or more of a fuel flow and an air flow with a vapor of the liquid electrolyte, the liquid electrolyte being unreplenishable via an electrochemical reaction of the fuel cell. The method further comprises delivering the vapor of the liquid electrolyte to the fuel cell including the polymer-electrolyte membrane via one or more of the gas-permeable anode and or the gas-permeable cathode. In this manner, loss of liquid electrolyte from the PEM membrane of the fuel cell can be reduced, leading to improved fuel-cell endurance.
    Type: Grant
    Filed: October 19, 2011
    Date of Patent: May 1, 2012
    Assignee: ClearEdge Power, Inc.
    Inventors: Yang Song, Craig E. Evans, Nicolas DeFalco, Jason M. Tang
  • Patent number: 8147659
    Abstract: A gated electrode structure for altering a potential and electric field in an electrolyte near at least one working electrode is disclosed. The gated electrode structure may comprise a gate electrode biased appropriately with respect to a working electrode. Applying an appropriate static or dynamic (time varying) gate potential relative to the working electrode modifies the electric potential and field in an interfacial region between the working electrode and the electrolyte, and increases electron emission to and from states in the electrolyte, thereby facilitating an electrochemical, electrolytic or electrosynthetic reaction and reducing electrode overvoltage/overpotential.
    Type: Grant
    Filed: November 20, 2007
    Date of Patent: April 3, 2012
    Assignee: The Regents of the University of California
    Inventors: Rakesh K. Lal, Likun Shen, Umesh Kumar Mishra
  • Publication number: 20120074908
    Abstract: Disclosed herein is a metal-air battery having a cathode, an anode, and an electrolyte. The cathode has a cathode current collector and a composite of a porous carbon structure and a pseudocapacitive coating. The coating does not completely fill or obstruct a majority of the pores, and the pores can be exposed to a gas. The electrolyte is in contact with the anode and permeates the composite without completely filling or obstructing a majority of the pores.
    Type: Application
    Filed: September 26, 2011
    Publication date: March 29, 2012
    Applicant: The Government of the United States of America as represented by the Secretary of the Navy
    Inventors: Debra R Rolison, Jeffrey W. Long, Christopher N. Chervin
  • Publication number: 20120070766
    Abstract: Electrochemical cell system. The system includes a low Reynolds number microfluidic channel including spaced apart anode and cathode forming sides thereof. A fuel channel introduces a liquid fuel into the microfluidic channel for laminar flow along the anode and an oxidant channel introduces a concentrated liquid oxidant into the microfluidic channel for laminar flow along the cathode. An electrolyte channel introduces a liquid electrolyte into the microfluidic channel for laminar flow between the fuel and oxidant flows. Electrodes are connected to the anode and cathode for connection to an external load. In another embodiment, the anode is porous and a gaseous fuel such as hydrogen diffuses through the anode into the interior of the microfluidic channel.
    Type: Application
    Filed: September 21, 2010
    Publication date: March 22, 2012
    Applicant: Massachusetts Institute of Technology
    Inventor: William Braff
  • Patent number: 8137857
    Abstract: A fuel cell (8a) having a matrix (11) for containing phosphoric acid (or other liquid) electrolyte with an anode catalyst (12) on one side and a cathode catalyst (13) on the other side includes an anode substrate (16a) in contact with the anode catalyst and a cathode substrate (17a) in contact with the cathode catalyst, the anode substrate being thicker than the cathode substrate by a ratio of between 1.75 to 1.0 and 3.0 to 1.0. Non-porous, hydrophobic separator plate assemblies (19) provide fuel flow channels (20) and oxidant flow channels (21) as well as demarcating the fuel cells.
    Type: Grant
    Filed: October 27, 2006
    Date of Patent: March 20, 2012
    Assignee: UTC Power Corporation
    Inventor: Richard D. Breault
  • Patent number: 8101296
    Abstract: A battery having a cathode, an anode, an electrolytic solution, and a separator is provided. An open circuit voltage per pair of cathode and anode in a perfect charging state lies within a range from 4.25V or more to 6.00V or less. The electrolytic solution contains: an additive of at least one kind selected from a group consisting of an acid anhydride and its derivative; and cyclic carbonic ester derivative having a halogen atom.
    Type: Grant
    Filed: January 16, 2008
    Date of Patent: January 24, 2012
    Assignee: Sony Corporation
    Inventors: Takashi Murakami, Tadahiko Kubota
  • Patent number: 8084568
    Abstract: The present invention relates to a poly(arylene ether) copolymer having an ion exchange group, particularly a positive ion exchange group, a method for manufacturing the same, and use thereof. In the poly(arylene ether) copolymer having the ion exchange group according to the present invention, physical characteristics, ion exchanging ability, metal ion adsorption ability and a processability are excellent, and thus the copolymer can be molded in various shapes and can be extensively applied to various fields such as recovering of organic metal, air purification, catalysts, water treatment, medical fields and separating of proteins.
    Type: Grant
    Filed: December 6, 2010
    Date of Patent: December 27, 2011
    Assignee: Hyundai Motor Company
    Inventors: Inchul Hwang, Nak Hyun Kwon, Young Taek Kim, Dong Il Kim, Ju Ho Lee
  • Patent number: 8071253
    Abstract: An electrochemical cell includes an electrolyte membrane containing an ionic conductor. The ionic conductor includes: (a) a cation expressed by one of Formulae (1) and (2): R1R2R3HX+??(1) where, in Formula (1), X indicates any one of N and P, and R1, R2 and R3 each indicate any one of alkyl groups C1 to C18 except a structure in which R1?R2?R3, R1R2HS+??(2) where, in Formula (2), R1 and R2 each indicate any one of alkyl groups C1 to C18 except a structure in which R1?R2; and (b) an anion expressed by Formula (3): R4YOm(OH)n?1O???(3) where, in Formula (3), Y indicates any one of S, C, N and P, R4 indicates any one of an alkyl group and a fluoroalkyl group, and m and n each indicate any one of 1 and 2.
    Type: Grant
    Filed: October 25, 2007
    Date of Patent: December 6, 2011
    Assignees: Nissan Motor Co., Ltd., National University Corporation Yokohama National University
    Inventors: Masayoshi Watanabe, Hirofumi Nakamoto, Tomokazu Yamane, Toshihiro Takekawa
  • Patent number: 8058383
    Abstract: The preparation of aromatic sulfonimide polymers useful as membranes in electrochemical cells is described.
    Type: Grant
    Filed: December 6, 2007
    Date of Patent: November 15, 2011
    Assignee: E. I. du Pont de Nemours and Company
    Inventor: Mark F. Teasley
  • Publication number: 20110262840
    Abstract: A composition useful for the fueling and refueling of electrochemical devices is described. The composition comprises an ion-conducting medium such as an electrolyte, and catalyst nanoparticles. Unlike traditional electrodes, such as those typically used in electrolyzers and fuel cells, the inventive composition may be quickly drained from the device and refilled to maintain maximum cell performance. In addition, the electro-catalytic charging composition can be stored as a solid for safe handling; for example in a portable cartridge.
    Type: Application
    Filed: June 30, 2011
    Publication date: October 27, 2011
    Applicant: QUANTUMSPHERE, INC.
    Inventors: Kevin Maloney, Robert Dopp
  • Patent number: 8043750
    Abstract: A method for controlling an amount of a liquid electrolyte in a polymer-electrolyte membrane of a fuel cell is provided. The method comprises enriching one or more of a fuel flow and an air flow with a vapor of the liquid electrolyte, the liquid electrolyte being unreplenishable via an electrochemical reaction of the fuel cell. The method further comprises delivering the vapor of the liquid electrolyte to the fuel cell including the polymer-electrolyte membrane via one or more of the gas-permeable anode and or the gas-permeable cathode. In this manner, loss of liquid electrolyte from the PEM membrane of the fuel cell can be reduced, leading to improved fuel-cell endurance.
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: October 25, 2011
    Assignee: ClearEdge Power, Inc.
    Inventors: Yang Song, Craig E. Evans, Nicolas DeFalco, Jason M. Tang
  • Patent number: 8026017
    Abstract: An electrolyte membrane assembly for use in a fuel cell or other electrochemical device includes an ion exchange membrane, a base electrolyte reservoir configured and operable to maintain a volume of a basic electrolyte solution in contact with at least some of the first face of the membrane, and an acid electrolyte reservoir configured and operable to maintain a volume of an acidic electrolyte in contact with at least a portion of the second face of the membrane. The membrane may be a cation exchange membrane or an anion exchange membrane. Also disclosed are fuel cells which incorporate the electrolyte membrane assembly.
    Type: Grant
    Filed: March 16, 2007
    Date of Patent: September 27, 2011
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Rongzhong Jiang, Charles Rong, Deryn Chu
  • Patent number: 8017261
    Abstract: Electrochemical cells (10), such as fuel cells (12) and fuel reformers (14), with rotating elements or electrodes (34, 24) that generate Taylor Vortex Flows (28, 50) and Circular Couette Flows (58) in fluids such as electrolytes and fuels are disclosed.
    Type: Grant
    Filed: May 20, 2010
    Date of Patent: September 13, 2011
    Assignee: Global Energy Science, LLC (California)
    Inventor: Fischel Halbert
  • Patent number: 7993796
    Abstract: A thin wafer comprising through holes filled at least partially with conductive carbon nanotubes generally oriented transversally to the wafer. A fuel cell comprising, in a thin wafer, a through hole filled with an electrolyte surrounded with barriers of carbon nanotubes generally oriented transversally to the wafer.
    Type: Grant
    Filed: December 22, 2005
    Date of Patent: August 9, 2011
    Assignee: STMicroelectronics SA
    Inventors: Mathieu Roy, Fabien Pierre
  • Patent number: 7985505
    Abstract: An apparatus is provided that relates to an electrochemical cell assembly. The apparatus is capable of controlling water loss from a fuel cell, at least in part by separating gas and liquid fluid flows. A variety of flow designs are provided that separate liquid electrolyte flow from reagent gas flow. Some flow designs may be suitable for one or more of fuel cells, rechargeable fuel cells, and batteries such as metal hydride batteries. Furthermore, some embodiments may include a single electrochemical cell, or plurality of cells arranged in parallel or in series. Some embodiments may also relate to methods of mitigating water loss from an electrochemical cell assembly.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: July 26, 2011
    Assignee: General Electric Company
    Inventors: Hai Yang, Jun Cai, Rihua Xiong, Chang Wei, Qunjian Huang, Andrew Philip Shapiro, Jinghua Liu, Shengxian Wang, Xianguo Yu
  • Publication number: 20110177428
    Abstract: Protic ionic liquids having a composition of formula (A?)(BH+) wherein A? is a conjugate base of an acid HA, and BH+ is a conjugate acid of a superbase B. In particular embodiments, BH+ is selected from phosphazenium species and guanidinium species encompassed, respectively, by the general formulas: The invention is also directed to films and membranes containing these protic ionic liquids, with particular application as proton exchange membranes for fuel cells.
    Type: Application
    Filed: January 20, 2010
    Publication date: July 21, 2011
    Applicant: UT-BATTELLE, LLC
    Inventors: Sheng Dai, Huimin Luo, Gary A. Baker
  • Publication number: 20110151349
    Abstract: A double-electrolyte fuel-cell is presented for generating electrical energy from chemical fuel. The fuel-cell includes an anode, a cathode as well as both an anion-conducting electrolyte and a cation-conducting electrolyte. A fuel-cell stack is also presented consisting of a plurality of double-electrolyte fuel-cells.
    Type: Application
    Filed: June 10, 2009
    Publication date: June 23, 2011
    Applicant: TECHNION RESEARCH & DEVELOPMENT FOUNDATION LTD.
    Inventor: Yoed Tsur
  • Patent number: 7964319
    Abstract: An object of the present invention is to provide a fuel cell that operates in a temperature range of not lower than 100° C., and a method for manufacturing such a fuel cell. The fuel cell of the present invention has a proton conductive gel, an anode electrode, and a cathode electrode, the proton conductor being sandwiched between the anode electrode and the cathode electrode, in which the proton conductive gel is composed of SnO2, NH3, H2O, and H3PO4, and provided that the molar ratio represented by NH3/SnO2 is X, and the molar ratio represented by P/Sn is Y, X is not less than 0.2 and not greater than 5, and Y is not less than 1.6 and not greater than 3.
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: June 21, 2011
    Assignee: Panasonic Corporation
    Inventors: Takashi Ohtsuka, Tomoyuki Komori, Atsushi Omote, Yuji Zenitani
  • Patent number: 7938891
    Abstract: Carbon dioxide or other gases can be separated from gas streams using ionic liquid, such as in an electrochemical cell. For example, a membrane can contain sufficient ionic liquid to reduce ionic current density of at least one of protons and hydroxyl ions, relative to carbon-containing ionic current density. A gas stream containing carbon dioxide can be introduced on a cathode side, while a source of hydrogen gas can be introduced on the anode side of the membrane. Operation of an electrochemical cell with such a membrane can separate the carbon dioxide from the gas stream and provide it at a separate outlet.
    Type: Grant
    Filed: March 17, 2008
    Date of Patent: May 10, 2011
    Assignee: Palo Alto Research Center Incorporated
    Inventor: Karl Anthony Littau
  • Patent number: 7927731
    Abstract: A redox flow cell is presented that utilizes a porous membrane separating a first half cell and a second half cell. The porous membrane is chosen to have a figure of merit (FOM) is at least a minimum FOM. A method of providing a porous membrane for a flow cell can include determining a figure of merit; determining a first parameter from a pore size or a thickness for the porous membrane; determining a second parameter from the pore size or the thickness that is not the first parameter for the porous membrane, based on the figure of merit; and constructing a porous membrane having the pore size and the thickness.
    Type: Grant
    Filed: July 1, 2008
    Date of Patent: April 19, 2011
    Assignee: Deeya Energy, Inc.
    Inventor: Saroj Kumar Sahu
  • Patent number: 7927748
    Abstract: A fuel cell of the present invention comprises a cathode and an anode, one or both of the anode and the cathode including a catalyst comprising a bundle of longitudinally aligned graphitic carbon nanotubes including a catalytically active transition metal incorporated longitudinally and atomically distributed throughout the graphitic carbon walls of said nanotubes. The nanotubes also include nitrogen atoms and/or ions chemically bonded to the graphitic carbon and to the transition metal. Preferably, the transition metal comprises at least one metal selected from the group consisting of Fe, Co, Ni, Mn, and Cr.
    Type: Grant
    Filed: May 25, 2010
    Date of Patent: April 19, 2011
    Assignee: Uchicago Argonne, LLC
    Inventors: Di-Jia Liu, Junbing Yang, Xiaoping Wang
  • Publication number: 20110086291
    Abstract: Membrane, cell and device suitable for reverse electrodialysis for the purpose of generating electricity, and methods therefor, the membrane comprising a number of channels arranged on at least a first side of the membrane, wherein the channels are suitable for throughfeed of a fluid, wherein the dimensions of the channels are aimed at obtaining a laminar flow of the fluid in the channels.
    Type: Application
    Filed: March 16, 2009
    Publication date: April 14, 2011
    Inventors: Jan Valk, Jan Willem Post
  • Patent number: 7919204
    Abstract: A flow battery with thermal management is presented. The flow battery is housed in an enclosure where fluid is uniformly circulated about holding tanks of electrolyte to control the temperature inside the enclosure.
    Type: Grant
    Filed: October 9, 2009
    Date of Patent: April 5, 2011
    Assignee: Deeya Energy, Inc.
    Inventor: Saroj Kumar Sahu
  • Publication number: 20110045385
    Abstract: A fuel cell includes a fuel electrode, an oxygen electrode, an electrolytic solution, a fuel flow passage, etc. The fuel electrode and the oxygen electrode are composed of a catalyst layer, a diffusion layer, and a collector, respectively. A methanol aqueous solution, etc. is continuously supplied to the fuel flow passage. Catalyst particulates consisting of platinum, ruthenium, palladium, etc. are in a dispersed state in the electrolytic solution. If a portion of fuel, such as methanol, passes through the fuel electrode as unreacted, and diffuses through the electrolytic solution to move to the oxygen electrode, oxidation reduction reactions between the methanol, and the oxygen which moves to the fuel electrode from the oxygen electrode are efficiently caused by the catalyst particulates so as to cancel each other.
    Type: Application
    Filed: September 29, 2008
    Publication date: February 24, 2011
    Applicant: SONY CORPORATION
    Inventor: Kengo Makita
  • Publication number: 20110027671
    Abstract: A redox fuel cell comprising an anode and a cathode separated by an ion selective polymer electrolyte membrane; means for supplying a fuel to the anode region of the cell; means for supplying an oxidant to the cathode region of the cell; means for providing an electrical circuit between the anode and the cathode; a catholyte solution comprising a modified ferrocene species comprising at least one bridging unit between the cyclopentadienyl rings, the modified ferrocene species being at least partially reduced at the cathode in operation of the cell, and at least partially re-generated by reaction with the oxidant after such reduction at the cathode.
    Type: Application
    Filed: January 23, 2009
    Publication date: February 3, 2011
    Applicant: ACAL ENERGY LIMITED
    Inventors: Kathryn Knuckey, David Rochester
  • Publication number: 20110020728
    Abstract: The present invention provides an electrolyte having high conductivity even under high-temperature low-humidification conditions (e.g. at a temperature of 100 to 120° C. and a humidity of 20 to 50% RH) and thereby makes it possible to realize a higher performance fuel cell. The present invention is a fluoropolymer electrolyte having an equivalent weight (EW) of not less than 250 but not more than 700 and a proton conductivity of not lower than 0.10 S/cm as measured at a temperature of 110° C. and a relative humidity of 50% RH and comprising a COOZ group- or SO3Z group-containing monomer unit, wherein Z represents an alkali metal, an alkaline earth metal, hydrogen atom or NR1R2R3R4 in which R1, R2, R3 and R4 each independently represents an alkyl group containing 1 to 3 carbon atoms or hydrogen atom.
    Type: Application
    Filed: March 12, 2009
    Publication date: January 27, 2011
    Applicants: Asahi Kasei E-Materials Corporation, Daikin Industries, Ltd.
    Inventors: Kohei Kita, Takahiko Murai, Naoki Sakamoto, Naoto Miyake, Tadashi Ino, Noriyuki Shinoki, Masaharu Nakazawa, Masahiro Kondo, Takashi Yoshimura
  • Patent number: 7867658
    Abstract: Disclosed are developments in high temperature fuel cells including ionic liquids with high temperature stability and the storage of inorganic acids as di-anion salts of low volatility. The formation of ionically conducting liquids of this type having conductivities of unprecedented magnitude for non-aqueous systems is described. The stability of the di-anion configuration is shown to play a role in the high performance of the non-corrosive proton-transfer ionic liquids as high temperature fuel cell electrolytes. Performance of simple H2(g) electrolyte/O2(g) fuel cells with the new electrolytes is described. Superior performance both at ambient temperature and temperatures up to and above 200° C. are achieved. Both neutral proton transfer salts and the acid salts with HSO?4 anions, give good results, the bisulphate case being particularly good at low temperatures and very high temperatures.
    Type: Grant
    Filed: May 3, 2004
    Date of Patent: January 11, 2011
    Assignee: Arizona Board of Regents for and on behalf of Arizona State University
    Inventors: C. Austen Angell, Wu Xu, Jean-Philippe Belieres, Masahiro Yoshizawa
  • Publication number: 20100323278
    Abstract: A phosphoric acid fuel cell according to one embodiment includes an array of microchannels defined by a porous electrolyte support structure extending between bottom and upper support layers, the microchannels including fuel and oxidant microchannels; fuel electrodes formed along some of the microchannels; and air electrodes formed along other of the microchannels. A method of making a phosphoric acid fuel cell according to one embodiment includes etching an array of microchannels in a substrate, thereby forming walls between the microchannels; processing the walls to make the walls porous, thereby forming a porous electrolyte support structure; forming anode electrodes along some of the walls; forming cathode electrodes along other of the walls; and filling the porous electrolyte support structure with a phosphoric acid electrolyte. Additional embodiments are also disclosed.
    Type: Application
    Filed: July 1, 2010
    Publication date: December 23, 2010
    Inventors: David A. Sopchak, Jeffrey D. Morse, Ravindra S. Upadhye, Jack Kotovsky, Robert T. Graff
  • Publication number: 20100304271
    Abstract: It is to provide an electrolyte material with which an increase in the water content can be suppressed even when the ion exchange capacity of a polymer having repeating units based on a monomer having a dioxolane ring is high; and a membrane/electrode assembly excellent in the power generation characteristics under low or no humidity conditions and under high humidity conditions. It is to use an electrolyte material, which comprises a polymer (H) having ion exchange groups converted from precursor groups in a polymer (F), and having an ion exchange capacity of at least 1.35 meq/g dry resin, the polymer (F) having repeating units (A) based on a perfluoromonomer having a precursor group of an ion exchange group and a dioxolane ring and repeating units (B) based on a perfluoromonomer having no precursor group and having a dioxolane ring, and having a TQ of at least 200° C.
    Type: Application
    Filed: May 28, 2010
    Publication date: December 2, 2010
    Applicant: ASAHI GLASS COMPANY, LIMITED
    Inventors: Satoru HOMMURA, Susumu Saito, Tetsuji Shimohira, Atsushi Watakabe
  • Publication number: 20100297532
    Abstract: The present invention relates to a process for the work-up of acidic or basic ionic liquids (IL) of the general formula (I), [A]+(1/n)*[Y]???(I) where [A]+ is a quaternary ammonium cation and (1/n)*[Y]n? is one anion equivalent of an n-fold charged anion, which comprises adding a conjugate acid-base pair selected from among compounds of the formula (II), [A]+[X]???(II) where [A]+ has the meaning given for the ionic liquid and [X]? is a conjugate base to the ionic liquid (IL).
    Type: Application
    Filed: January 8, 2009
    Publication date: November 25, 2010
    Applicant: BASF SE
    Inventors: York Alexander Beste, Veit Stegmann, Matthias Maase
  • Publication number: 20100297531
    Abstract: Provided herein are immobilized liquid membranes for gas separation, methods of preparing such membranes and uses thereof. In one example, the immobilized membrane includes a porous metallic host matrix and an immobilized liquid fluid (such as a silicone oil) that is immobilized within one or more pores included within the porous metallic host matrix. The immobilized liquid membrane is capable of selective permeation of one type of molecule (such as oxygen) over another type of molecule (such as water). In some examples, the selective membrane is incorporated into a device to supply oxygen from ambient air to the device for electrochemical reactions, and at the same time, to block water penetration and electrolyte loss from the device.
    Type: Application
    Filed: May 21, 2009
    Publication date: November 25, 2010
    Inventors: Wei Liu, Nathan L. Canfield, Jian Zhang, Xiaohong Shari Li
  • Patent number: 7833677
    Abstract: This invention provides a nonaqueous electrolyte battery that has excellent output characteristics, is small in individual difference, and is more stable. The nonaqueous electrolyte battery comprises a negative electrode and a positive electrode that contain or can occlude and release lithium, a lithium salt-containing ionic liquid and is characterized in that the electrolyte contains a cation containing a fluoroalkyl group attached through a methylene chain to a basic structure selected from the group consisting of imidazolium, piperidinium, and pyrrolidinium structures.
    Type: Grant
    Filed: March 8, 2007
    Date of Patent: November 16, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takashi Kishi, Takashi Kuboki, Satoshi Mikoshiba
  • Publication number: 20100285392
    Abstract: Disclosed are metallized carbonaceous materials, processes for forming such materials, and electrodes and fuel cells comprising the disclosed materials.
    Type: Application
    Filed: September 26, 2008
    Publication date: November 11, 2010
    Applicant: Drexel University
    Inventors: Yossef A. Elabd, Yury Gogotsi, Benjamin Eirich, Daniel Shay