Including Metal Oxide Catalyst Patents (Class 429/528)
-
Patent number: 11648537Abstract: A supported catalyst for decomposing an organic substance that includes a carrier and catalyst particles supported on the carrier. The catalyst particles contain a perovskite-type composite oxide represented by AxByMzOw, where A contains at least one of Ba and Sr, B contains Zr, M is at least one of Mn, Co, Ni, and Fe, y+z=1, x>1, z<0.4, and w is a positive value that satisfies electrical neutrality. An organic substance decomposition rate after the supported catalyst is subjected to a heat treatment at 950° C. for 48 hours is greater than 0.97 when the organic substance decomposition rate before the heat treatment is regarded as 1, and an amount of the catalyst particles peeled off when the supported catalyst is ultrasonicated in water at 28 kHz and 220 W for 15 minutes is less than 1 wt % of the catalyst particles before untrasonication.Type: GrantFiled: October 6, 2020Date of Patent: May 16, 2023Assignee: MURATA MANUFACTURING CO., LTD.Inventors: Satoshi Kuretake, Nario Sugahara, Kentaro Ishihara
-
Patent number: 11571683Abstract: A honeycomb-structured catalyst for decomposing an organic substance, which includes a catalyst particle. The catalyst particle contains a perovskite-type composite oxide represented by AxByMzOw, where the A contains at least of Ba and Sr, the B contains Zr, the M is at least one of Mn, Co, Ni, and Fe, y+z=1, 1.001?x?1.05, 0.05?z?0.2, and w is a positive value that satisfies electrical neutrality. The toluene decomposition rate is greater than 90% when toluene is decomposed using the honeycomb-structured catalyst subjected to a heat treatment at 1200° C. for 48 hours and a gas that contains 50 ppm toluene, 80% nitrogen, and 20% oxygen as a volume concentration as a target at a space velocity of 30,000/h and a catalyst temperature of 400° C.Type: GrantFiled: September 11, 2020Date of Patent: February 7, 2023Assignee: MURATA MANUFACTURING CO., LTD.Inventors: Naoya Mori, Satoshi Kuretake, Nario Sugahara, Kentaro Ishihara
-
Patent number: 11476470Abstract: Catalyst comprising a first layer having an outer layer with a layer comprising Pt directly thereon, wherein the first layer has an average thickness in a range from 0.04 to 30 nanometers, and wherein the layer. Catalysts described herein are useful, for example, in fuel cell membrane electrode assemblies.Type: GrantFiled: April 11, 2019Date of Patent: October 18, 2022Assignee: 3M Innovative Properties CompanyInventors: Andrew J. L. Steinbach, Andrew T. Haug, Krzysztof A. Lewinski, Amy E. Hester, Grant M. Thoma, Cedric Bedoya, James A. Phipps, David J. Rowe, Cemal S. Duru
-
Patent number: 10886535Abstract: An electrode, includes an electrically conductive substrate; and a composition supported by a surface of the electrically conductive substrate, the composition comprising carbon black particles having a Brunauer-Emmett-Teller (BET) surface area ranging from 80 m2/g to 1100 m2/g, an oil absorption number equal to or less than 300 mL/100 g, a surface energy of 10 mJ/m2 or less, and a particle size distribution with a D50 value equal to or less than 165 nm.Type: GrantFiled: June 15, 2018Date of Patent: January 5, 2021Assignee: CABOT CORPORATIONInventors: Andriy Korchev, Aurelien L. DuPasquier, Miodrag Oljaca, Geoffrey D. Moeser
-
Patent number: 10818931Abstract: An air electrode material according to the present disclosure contains a plurality of composite particles, wherein each of the composite particles contains a core particle and a plurality of covering particles covering the core particle, the core particle is formed of a material with catalytic activity for an oxygen reduction reaction, the covering particles are formed of an electrically conductive material and are mechanically bonded to the core particles or other covering particles, and the median size of the core particles ranges from 100 to 1000 times the average primary particle size of the covering particles.Type: GrantFiled: March 4, 2019Date of Patent: October 27, 2020Assignee: SHARP KABUSHIKI KAISHAInventor: Keigo Mitamura
-
Patent number: 10675611Abstract: Provided are a carbon powder which can provide a catalyst exhibiting high performance and a catalyst. A carbon powder for fuel cell comprising carbon as a main component, which has a ratio (B/A) of an area B of peak 1 to an area A of peak 0 of more than 0 and 0.15 or less, wherein the area A represents an area of peak 0 at a position of 2?=22.5° to 25° as observed by XRD analysis when the carbon powder for fuel cell is subjected to heat treatment at 1800° C. for 1 hour in an inert atmosphere, and the area B represents an area of peak 1 at a position of 2?=26° as observed by XRD analysis when the carbon powder for fuel cell is subjected to heat treatment at 1800° C. for 1 hour in an inert atmosphere.Type: GrantFiled: January 18, 2017Date of Patent: June 9, 2020Assignees: NISSAN MOTOR CO., LTD., TOYO TANSO CO., LTD.Inventors: Takehiko Okui, Hiroyuki Tanaka, Kazuki Arihara, Tetsuya Mashio, Atsushi Ohma, Takahiro Morishita, Yoshio Shodai
-
Patent number: 10263258Abstract: An air electrode material according to the present disclosure contains a plurality of composite particles, wherein each of the composite particles contains a core particle and a plurality of covering particles covering the core particle, the core particle is formed of a material with catalytic activity for an oxygen reduction reaction, the covering particles are formed of an electrically conductive material and are mechanically bonded to the core particles or other covering particles, and the median size of the core particles ranges from 100 to 1000 times the average primary particle size of the covering particles.Type: GrantFiled: July 10, 2017Date of Patent: April 16, 2019Assignee: SHARP KABUSHIKI KAISHAInventor: Keigo Mitamura
-
Patent number: 10224550Abstract: An Advanced Graphite, with a lower degree of ordered carbon domains and a surface area greater than ten times that of typical battery grade graphites, is used in negative active material (NAM) of valve-regulated lead-acid (VRLA) type Spiral wound 6V/25 Ah lead-acid batteries. A significant and unexpected cycle life was achieved for the Advanced Graphite mix, where the battery was able to cycle beyond 145,000 cycles above the failure voltage of 9V, in a non-stop, power-assist, cycle-life test. Batteries with Advanced Graphite also showed increased charge acceptance power and discharge power compared to control groups.Type: GrantFiled: May 16, 2014Date of Patent: March 5, 2019Assignee: EXIDE TECHNOLOGIESInventors: Sudhakar Jagannathan, Melchor Fernandez Garcia
-
Patent number: 10014543Abstract: The present specification provides an inorganic oxide powder and an electrolyte including a sintered body of the same.Type: GrantFiled: July 29, 2014Date of Patent: July 3, 2018Assignee: LG CHEM, LTD.Inventors: Jong Woo Kim, Changseok Ryoo, Kwangwook Choi, Gyunjoong Kim, Jongjin Lee, Takkeun Oh
-
Patent number: 9475003Abstract: An exhaust gas purification catalyst includes an alumina support, a silica layer, and active metal particles. The silica layer is formed on a surface of the alumina support. The active metal particles are formed of platinum and palladium, the platinum and the palladium being supported on the silica layer. A ratio of fine particles having a particle size of 2.0 nm or less to all the active metal particles is 50% or higher in terms of the number of particles, the fine particles being included in the active metal particles. A ratio of fine alloy particles having a palladium content ratio of 10 at % to 90 at % to all the fine particles is 50% or higher in terms of the number of particles, the fine alloy particles being included in the fine particles.Type: GrantFiled: June 1, 2015Date of Patent: October 25, 2016Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHAInventors: Takuto Hirose, Kiyoshi Yamazaki, Yuichi Sobue, Yusuke Shinmyo
-
Patent number: 9397345Abstract: In various embodiments, the present disclosure provides a layered metal-air cathode for a metal-air battery. Generally, the layered metal-air cathode comprises an active catalyst layer, a transition layer bonded to the active catalyst layer, and a backing layer bonded to the transition layer such that the transition layer is disposed between the active catalyst layer and the backing layer.Type: GrantFiled: July 24, 2013Date of Patent: July 19, 2016Assignee: The Curators of the University of MissouriInventors: Yangchuan Xing, Kan Huang, Yunfeng Li
-
Patent number: 9257705Abstract: A method for synthesizing a nitrogen-doped carbon electrocatalyst by performing selective catalytic oxidative polymerization of solid aniline salt on a carbon support with a catalytic system containing Fe3+/H2O2 to obtain a mixture, and then heat treating the mixture under a nitrogen atmosphere at 900° C.Type: GrantFiled: March 25, 2014Date of Patent: February 9, 2016Assignees: King Fahd University of Petroleum and Minerals, King Abdulaziz City for Science and TechnologyInventors: Belabbes Ahmed Merzougui, Saheed Abidemi Bukola, Adeola Akeem Akinpelu, Zain Hassan Abdallah Yamani, Tahar Laoui
-
Patent number: 9236641Abstract: Catalysts are provided which can catalyze both the oxygen reduction during the discharge of a secondary air battery and the oxygen production in the recharging of the battery and which are stable at a high potential in the recharging. The invention has been accomplished based on the finding that a catalyst including an oxycarbonitride of a specific transition metal selected from, for example, titanium, zirconium, hafnium, vanadium, niobium and tantalum can catalyze both the oxygen reduction during the discharge of a secondary air battery and the oxygen production in the recharging of the battery and is also stable at a high potential in the recharging.Type: GrantFiled: March 16, 2010Date of Patent: January 12, 2016Assignee: SHOWA DENKO K.K.Inventor: Toshikazu Shishikura
-
Publication number: 20150140475Abstract: To provide an NiO-GDC composite powder or NiO-SDC composite powder having a uniform composition, which is suitable as an anode material for a solid oxide fuel cell. A process for producing an anode material for a solid oxide fuel cell, made of a composite powder comprising a composite oxide containing cerium element and gadolinium or samarium element, and oxygen element, and an oxide containing nickel element and oxygen element, which comprises a dissolving step of mixing raw material compounds containing metal elements constituting the above composite powder, at least one organic acid selected from the group consisting of maleic acid, lactic acid and malic acid, and a solvent to obtain a metal elements-containing solution, and a drying/sintering step of drying and sintering the metal elements-containing solution.Type: ApplicationFiled: January 28, 2015Publication date: May 21, 2015Applicant: AGC SEIMI CHEMICAL CO., LTD.Inventors: Futoshi NADA, Takene Hirai
-
Publication number: 20150140474Abstract: The present invention provides a method for producing metal-supported carbon, which includes supporting metal microparticles on the surface of carbon black, by a liquid-phase reduction method, in a thin film fluid formed between processing surfaces arranged to be opposite to each other so as to be able to approach to and separate from each other, at least one of which rotates relative to the other, as well as a method for producing crystals comprising fullerene molecules and fullerene nanowhisker/nanofiber nanotubes, which includes uniformly stirring and mixing a solution containing a first solvent having fullerene dissolved therein, and a second solvent in which fullerene is less soluble than in the first solvent, in a thin film fluid formed between processing surfaces arranged to be opposite to each other so as to be able to approach to and separate from each other, at least one of which rotates relative to the other.Type: ApplicationFiled: January 29, 2015Publication date: May 21, 2015Applicant: M. TECHNIQUE CO., LTD.Inventor: Masakazu ENOMURA
-
Publication number: 20150132683Abstract: In one embodiment, a catalyst assembly includes a substrate including a base and a number of rods extending from the base; a catalyst layer including a catalyst material; and a first intermediate layer including a first coating material disposed between the substrate and the catalyst layer, the first coating material having a higher surface energy than the catalyst material. In certain instances, the number of rods may have an average aspect ratio in length to width of greater than 1. The catalyst assembly may further include a second intermediate layer disposed between the catalyst layer and the first intermediate layer, the second intermediate layer including a second coating material having a higher surface energy than the catalyst material. In certain instances, the first coating material has a higher surface energy than the second coating material.Type: ApplicationFiled: August 14, 2012Publication date: May 14, 2015Applicant: FORD GLOBAL TECHNOLOGIES, LLCInventor: Alireza Pezhman Shirvanian
-
Publication number: 20150093685Abstract: An oxygen reduction reaction catalyst and method for making the catalyst includes a graphitized carbon substrate with an amorphous metal oxide layer overlying the surface of the substrate. The amorphous metal oxide layer has a worm-like structure. A catalyst overlies the metal oxide layer.Type: ApplicationFiled: October 2, 2013Publication date: April 2, 2015Applicant: Ford Global Technologies, LLCInventors: Jun Yang, Patrick Pietrasz, Chunchuan Xu, Shinichi Hirano
-
Publication number: 20150093681Abstract: An object of the present invention is to provide a fuel cell electrode catalyst with which high durability and a high maximum output density are obtained even when a fuel cell is continuously operated for long time; a method for producing the fuel cell electrode catalyst; a fuel cell in which the catalyst is used; and the like. A method for producing a fuel cell electrode catalyst is provided, the method including: a step of preparing a catalyst precursor comprising each atom of a metal element, carbon, nitrogen, and oxygen, and comprising copper as the metal element; and a contact step of bringing the catalyst precursor and an acid solution into contact with each other to obtain a catalyst.Type: ApplicationFiled: March 27, 2013Publication date: April 2, 2015Applicant: SHOWA DENKO K.K.Inventors: Ryuji Monden, Takuya Imai, Yuji Ito, Kunchan Lee, Takashi Sato
-
Publication number: 20150086906Abstract: A catalyst including: a plurality of porous clusters of silver particles, each cluster of the clusters including: (a) a plurality of primary particles of silver, and (b) crystalline particles of zirconium oxide (ZrO2), wherein at least a portion of the crystalline particles of ZrO2 is located in pores formed by a surface of the plurality of primary particles of silver.Type: ApplicationFiled: December 1, 2014Publication date: March 26, 2015Inventors: Ernst Khasin, Arie Zaban
-
Patent number: 8986908Abstract: Disclosed is a method of manufacturing an anode for a fuel cell. The method includes: synthesizing a fuel cell catalyst used to oxidize a fuel for the anode in an electrochemical manner; forming an electrode for the anode by use of the synthesized fuel cell catalyst; and synthesizing an electrolysis catalyst, which is used to electrolyze water, on the electrode as the electrolysis catalyst is loaded into the anode. By introducing the electrolysis catalyst on the fuel cell electrode that has already been formed, deformation of the structure of the electrode is minimized and performance of the electrode is improved.Type: GrantFiled: October 16, 2012Date of Patent: March 24, 2015Assignees: Hyundai Motor Company, Kia Motors CorporationInventor: Hoonhui Lee
-
Patent number: 8986906Abstract: The present invention provides a method for preparing nanoporous Pt/TiO2 composite particles, nanoporous Pt/TiO2 composite particles prepared by the above preparation method, and a fuel cell comprising the nanoporous Pt/TiO2 composite particles. The nanoporous Pt/TiO2 composite particles according to the present invention have a catalytic effect similar to that of commercially available Pt/carbon black and, thus, can be applied to a fuel cell.Type: GrantFiled: July 14, 2011Date of Patent: March 24, 2015Assignee: Korea Institute of Geoscience and Mineral ResourcesInventors: Hee Dong Jang, Han Kwon Chang, Kuk Cho
-
Patent number: 8974986Abstract: A method for producing metal-supported carbon includes supporting metal microparticles on the surface of carbon black, by a liquid-phase reduction method, in a thin film fluid formed between processing surfaces arranged to be opposite to each other so as to be able to approach to and separate from each other, at least one of which rotates relative to the other.Type: GrantFiled: July 4, 2008Date of Patent: March 10, 2015Assignee: M. Technique Co., Ltd.Inventor: Masakazu Enomura
-
Publication number: 20150065339Abstract: Catalysts prepared from abundant, cost effective metals, such as cobalt, nickel, chromium, manganese, iron, and copper, and containing one or more neutrally charged ligands (e.g., monodentate, bidentate, and/or polydentate ligands) and methods of making and using thereof are described herein. Exemplary ligands include, but are not limited to, phosphine ligands, nitrogen-based ligands, sulfur-based ligands, and/or arsenic-based ligands. In some embodiments, the catalyst is a cobalt-based catalyst or a nickel-based catalyst. The catalysts described herein are stable and active at neutral pH and in a wide range of buffers that are both weak and strong proton acceptors. While its activity is slightly lower than state of the art cobalt-based water oxidation catalysts under some conditions, it is capable of sustaining electrolysis at high applied potentials without a significant degradation in catalytic current. This enhanced robustness gives it an advantage in industrial and large-scale water electrolysis schemes.Type: ApplicationFiled: July 2, 2014Publication date: March 5, 2015Inventors: Aaron J. Bloomfield, Stafford W. Sheehan, Samuel L. Collom, Robert H. Crabtree, Paul T. Anastas
-
Patent number: 8968967Abstract: A fuel cell catalyst support includes a fluoride-doped metal oxide/phosphate support structure and a catalyst layer, supported on such fluoride-doped support structure. In one example, the support structure is a sub-stechiometric titanium oxide and/or indium-tin oxide (ITO) partially coated or mixed with a fluoride-doped metal oxide or metal phosphate. In another example, the support structure is fluoride-doped and mixed with at least one of low surface carbon, boron-doped diamond, carbides, borides, and silicides.Type: GrantFiled: September 17, 2008Date of Patent: March 3, 2015Assignee: Ballard Power Systems Inc.Inventors: Belabbes Merzougui, Minhua Shao, Lesia V. Protsailo
-
Publication number: 20150044595Abstract: An object of the present invention is to suppress flooding phenomenon in an electrode catalyst for fuel cells containing a metal atom, a carbon atom, a nitrogen atom and an oxygen atom. A production process of an electrode catalyst for fuel cells is provided which includes a fluorination step of bringing a catalyst body into contact with fluorine, the catalyst body having an atom of at least one metal element selected from the group consisting of zinc, titanium, niobium, zirconium, aluminum, chromium, manganese, iron, cobalt, nickel, copper, strontium, yttrium, tin, tungsten, cerium, samarium and lanthanum, a carbon atom, a nitrogen atom and an oxygen atom.Type: ApplicationFiled: March 19, 2013Publication date: February 12, 2015Applicant: SHOWA DENKO K.K.Inventors: Ryuji Monden, Takuya Imai, Yuji Ito, Kunchan Lee, Takashi Sato
-
Patent number: 8940454Abstract: A direct-electrochemical-oxidation fuel cell and method for generating electrical energy from a solid-state organic fuel. The fuel cell includes a cathode provided with an electrochemical-reduction catalyst that promotes formation of oxygen ions from an oxygen-containing source at the cathode, an anode provided with an electrochemical-oxidation catalyst that promotes direct electrochemical oxidation of the solid-state organic fuel in the presence of the oxygen ions to produce electrical energy, and a solid-oxide electrolyte disposed to transmit the oxygen ions from the cathode to the anode. The electrochemical oxidation catalyst can optionally include a sulfur resistant material.Type: GrantFiled: November 15, 2004Date of Patent: January 27, 2015Assignee: The University of AkronInventor: Steven S. C. Chuang
-
Patent number: 8906577Abstract: The present invention relates to an anode supported solid-oxide fuel cell based flame fuel cell that enable the generation of both electricity and heat from a flame (i.e. flame is used as a heat source and a fuel source for the fuel cell's operation, while supplying a useful heat for other thermochemical systems) and, more particularly, to an anode supported solid-oxide fuel cell based flame fuel cell that uses hydrocarbon/air mixture as a fuel source and includes a catalyst layer that can act as a protective layer for the anode layer, an anode layer, a cathode layer, an electrolyte layer, and an interlayer between the cathode layer and the electrolyte layer.Type: GrantFiled: June 29, 2012Date of Patent: December 9, 2014Assignee: Syracuse UniversityInventor: Jeongmin Ahn
-
Patent number: 8906581Abstract: The invention provides catalysts that are not corroded in acidic electrolytes or at high potential, have excellent durability and show high oxygen reducing ability. In a process of producing fuel cell electrodes containing a metal oxide and an electron conductive substance, the process includes steps in which a sugar is applied and carbonized on a support layer supporting the metal oxide and the electron conductive substance.Type: GrantFiled: October 6, 2009Date of Patent: December 9, 2014Assignee: Showa Denko K.K.Inventor: Tadatoshi Kurozumi
-
Publication number: 20140349211Abstract: An apparatus comprises: an anode formed of graphene oxide from an acidic pH; a cathode from a pH greater than the acidic pH of the anode; and charge collectors deposited on the anode and the cathode.Type: ApplicationFiled: May 23, 2013Publication date: November 27, 2014Applicant: Nokia CorporationInventors: Di Wei, Stefano Marco Borini, Richard White, Jani Kivioja
-
Patent number: 8889314Abstract: A bipolar plate for a fuel cell is provided that includes a pair of unipolar plates having a separator plate disposed therebetween. One of the unipolar plates is produced from a porous material to minimize cathode transport resistance at high current density. A fuel cell stack including a fuel cell and the bipolar plate is also provided.Type: GrantFiled: January 13, 2009Date of Patent: November 18, 2014Assignee: GM Global Technology Operations LLCInventors: Eric J. Connor, John C. Fagley, Gerald W. Fly, Wenbin Gu, Yeh-Hung Lai, David A. Masten
-
Patent number: 8889315Abstract: The present invention provides a catalyst which is not corroded in an acidic electrolyte or at a high potential, is excellent in durability and has high oxygen reduction ability. The catalyst of the present invention is characterized by including a niobium oxycarbonitride. The catalyst of the invention is also characterized by including a niobium oxycarbonitride represented by the composition formula NbCxNyOz, wherein x, y and z represent a ratio of the numbers of atoms and are numbers satisfying the conditions of 0.01?x?2, 0.01?y?2, 0.01?z?3 and x+y+z?5.Type: GrantFiled: August 8, 2008Date of Patent: November 18, 2014Assignee: Showa Denko K.K.Inventors: Ryuji Monden, Hiroshi Konuma, Toshikazu Shishikura, Tadatoshi Kurozumi
-
Publication number: 20140322631Abstract: The invention is directed to precious metal oxide catalysts, particularly to iridium oxide based catalysts for use as anode catalysts in PEM water electrolysis and other applications. The composite catalyst materials comprise iridium oxide (IrO2) and optionally ruthenium oxide (RuO2) in combination with an inorganic oxide (for example TiO2, Al2O3, ZrO2 and mixtures thereof). The inorganic oxide has a BET surface area in the range of 30 to 200 m2/g and is present in a quantity of 25 to 70 wt.-% based on the total weight of the catalyst. The catalyst materials are characterised by a good electrical conductivity >0.01 S/cm and high current density. The catalysts are used in electrodes, catalyst-coated membranes and membrane-electrode-assemblies for PEM electrolyzers, PEM fuel cells, regenerative fuel cells (RFC), sensors and other electrochemical devices.Type: ApplicationFiled: December 18, 2012Publication date: October 30, 2014Inventors: Barbara Klose-Schubert, Daniel Herein, Hans-Georg Reitz
-
Patent number: 8859458Abstract: Provided are a method of preparing an electrocatalyst for fuel cells in a core-shell structure, an electrocatalyst for fuel cells having a core-shell structure, and a fuel cell including the electrocatalyst for fuel cells. The method may be useful in forming a core and a shell layer without performing a subsequent process such as chemical treatment or heat treatment and forming a core support in which core particles having a nanosize diameter are homogeneously supported, followed by selectively forming shell layers on surfaces of the core particles in the support. Also, the electrocatalyst for fuel cells has a high catalyst-supporting amount and excellent catalyst activity and electrochemical property.Type: GrantFiled: September 21, 2011Date of Patent: October 14, 2014Assignee: Korea Institute of Science and TechnologyInventors: Seung Jun Hwang, Sung Jong Yoo, Soo Kil Kim, Eun Ae Cho, Jong Hyun Jang, Hyoung Juhn Kim, Suk Woo Nam, Tae Hoon Lim
-
Publication number: 20140295316Abstract: A catalyst includes (i) a primary metal or alloy or mixture including the primary metal, and (ii) an electrically conductive carbon support material for the primary metal or alloy or mixture including the primary metal, wherein the carbon support material: (a) has a specific surface area (BET) of 100-600 m2/g, and (b) has a micropore area of 10-90 m2/g.Type: ApplicationFiled: September 19, 2012Publication date: October 2, 2014Inventors: Sarah Caroline Ball, Graham Alan Hards, Marlene Rodlert, Jonathan David Brereton Sharman, Michael E Spahr
-
Patent number: 8846272Abstract: Anodes for fuel cells, membrane-electrode assemblies for fuel cells including the anodes, and fuel cell systems including the membrane-electrode assemblies are provided. The anode includes a catalyst layer including a platinum-based metal catalyst and a carbon monoxide oxidizing catalyst on a catalyst support, and an electrode substrate. The catalyst support may be selected from ThO2, CeO2, Ce2O3, MnxOy (where x ranges from 1 to 2 and y ranges from 1 to 3), Co3O4, ZrO2, TiO2, and combinations thereof. The anode for a fuel cell includes a carbon monoxide oxidizing catalyst, which increases carbon monoxide oxidation, thereby providing high activity.Type: GrantFiled: November 19, 2007Date of Patent: September 30, 2014Assignee: Samsung SDI Co., Ltd.Inventor: In-Hyuk Son
-
Publication number: 20140287336Abstract: A nanoconverter or nanosensor is disclosed capable of directly generating electricity through physisorption interactions with molecules that are dipole containing organic species in a molecule interaction zone. High surface-to-volume ratio semiconductor nanowires or nanotubes (such as ZnO, silicon, carbon, etc.) are grown either aligned or randomly-aligned on a substrate. Epoxy or other nonconductive polymers are used to seal portions of the nanowires or nanotubes to create molecule noninteraction zones. By correlating certain molecule species to voltages generated, a nanosensor may quickly identify which species is detected. Nanoconverters in a series parallel arrangement may be constructed in planar, stacked, or rolled arrays to supply power to nano- and micro-devices without use of external batteries. In some cases breath, from human or other life forms, contain sufficient molecules to power a nanoconverter.Type: ApplicationFiled: April 11, 2014Publication date: September 25, 2014Applicant: LAWRENCE LIVERMORE NATIONAL SECURITY, LLCInventors: Yinmin Wang, Xianying Wang, Alex V. Hamza
-
Publication number: 20140287346Abstract: The present invention relates to an electroconductive tungsten oxide catalyst carrying a platinum dendrite and to a method for manufacturing same, and more particularly, to a method for manufacturing an electroconductive tungsten oxide carrying a platinum nanodendrite applicable as an anode catalyst having a strong resistance to carbon monoxide poisoning in a direct methanol fuel cell. The platinum nanodendrite-electroconductive tungsten oxide nanowire catalyst according to the present invention illustrates remarkably improved resistance to carbon monoxide poisoning when compared with a common platinum nanoparticle carbon catalyst, and so, may be used as a highly efficient DMFC anode catalyst.Type: ApplicationFiled: October 25, 2012Publication date: September 25, 2014Inventor: Jinwoo Lee
-
Patent number: 8815470Abstract: It is a main object of the present invention to provide a fuel cell catalyst in which a support for supporting a metal catalyst has electrical conductivity in itself and which can prevent agglomeration of the metal catalyst during long term use of the fuel cell. In the present invention, the object is achieved by providing a fuel cell catalyst for use in a cathode-side catalyst electrode layer of a solid polymer electrolyte fuel cell, comprising a metal catalyst and a perovskite-type complex oxide (ABO3).Type: GrantFiled: February 24, 2006Date of Patent: August 26, 2014Assignee: Toyota Jidosha Kabushiki KaishaInventors: Koshi Sekizawa, Haruyuki Nakanishi
-
Publication number: 20140227633Abstract: The present invention provides a fused product comprising LTM, perovskite, L designating lanthanum, T being an element selected from strontium, calcium, magnesium, barium, yttrium, ytterbium, cerium, and mixtures of these elements, and M designating manganese.Type: ApplicationFiled: April 28, 2014Publication date: August 14, 2014Applicant: SAINT-GOBAIN CENTRE DE RECHERCHES ET D'ETUDES EUROPEENInventors: Samuel MARLIN, Caroline LEVY
-
Patent number: 8778561Abstract: An electrocatalytic polymer-based powder has particles of at least one electronically conductive polymer species in which particles are dispersed of at least one catalytic redox species, in which the particles of the polymer species and of the catalytic species are of nanometric dimension.Type: GrantFiled: February 2, 2009Date of Patent: July 15, 2014Assignee: STMicroelectronics S.R.L.Inventors: Raffaele Vecchione, Giuseppe Mensitieri, Anna Borriello
-
Publication number: 20140178792Abstract: In one or more embodiments, an electrochemical device includes a catalyst promoter including an amorphous metal oxide, the amorphous metal oxide being of an amount greater than 50 percent by weight of the total weight of the substrate, and a substrate including graphene and supporting the substrate.Type: ApplicationFiled: December 20, 2012Publication date: June 26, 2014Applicant: FORD GLOBAL TECHNOLOGIES LLCInventors: Jun Yang, Patrick Pietrasz, Chunchuan Xu, Richard E. Soltis, Mark S. Sulek, Mark S. Ricketts
-
Publication number: 20140170528Abstract: Provided is a process for producing a fuel cell electrode catalyst with high catalytic activity that is alternative to a noble metal catalyst, through a heat treatment at a relatively low temperature. A process for producing a fuel cell electrode catalyst includes a step (I) of obtaining a catalyst precursor, including a step (Ia) of mixing at least a metal compound (1), a nitrogen-containing organic compound (2), and a fluorine-containing compound (3), and a step (II) of heat-treating the catalyst precursor at a temperature of 500 to 1300° C. to obtain an electrode catalyst, a portion or the entirety of the metal compound (1) being a compound containing an atom of a metal element M1 selected from the group consisting of iron, cobalt, chromium, nickel, copper, zinc, titanium, niobium and zirconium, and at least one of the compounds (1), (2) and (3) containing an oxygen atom.Type: ApplicationFiled: April 13, 2012Publication date: June 19, 2014Applicant: SHOWA DENKO K.K.Inventors: Ryuji Monden, Takuya Imai, Yuji Ito, Kunchan Lee, Takashi Sato
-
Publication number: 20140154613Abstract: An air electrode catalyst material according to an embodiment of the present invention is used in solid oxide fuel cells and includes a perovskite oxide represented by a general formula (1): AxByO3-6. A ratio x/y of the A to the B is 1.05?x/y?1.5, and a peak derived from a perovskite structure A1B1O3-? is shown in a chart obtained by an X-ray diffraction measurement, and in Raman spectra, an area of absorption peak existing between 560 cm?1 and 620 cm?1 (inclusive) is larger than that between 380 cm?1 and 440 cm?1 (inclusive).Type: ApplicationFiled: May 31, 2013Publication date: June 5, 2014Inventors: YASUSHI SATO, TAKAO KUDO, KOICHI YAMAMURO, SHU YAMAGUCHI, SHOGO MIYOSHI, AYANO TAKESHITA
-
Publication number: 20140127607Abstract: A cathode for a solid oxide fuel cell, the cathode including: a mixed ionic-electronic conductor having a structure in a form of a pattern.Type: ApplicationFiled: May 17, 2013Publication date: May 8, 2014Applicant: Samsung Electronics Co., Ltd.Inventors: Chan KWAK, Doh-won JUNG, Ji-haeng YU, Hee-jung PARK, Sung-jin AHN
-
Publication number: 20140120454Abstract: A fuel cell electrode catalyst which includes, at least, M1 that is at least one element selected from 3 to 7 group transition metal elements; M2 that is at least one element selected from iron group elements; M3 that is at least one element selected from 13 group elements; carbon; nitrogen; and oxygen, as constitutional elements, wherein when the atomic ratios of the elements (M1:M2:M3:carbon:nitrogen:oxygen) are represented by a:b:c:x:y:z, 0<a<1, 0<b?0.5, 0<c<1, 0<x?6, 0<y?2, 0<z?3 and a+b+c=1, and BET specific surface area is 100 m2/g or more.Type: ApplicationFiled: January 12, 2012Publication date: May 1, 2014Applicant: SHOWA DENKO K.K.Inventors: Akira Takahashi, Masaki Horikita, Takuya Imai, Yasuaki Wakizaka, Takashi Sato
-
Publication number: 20140106260Abstract: Core-shell nanoparticulate compositions and methods for making the same are disclosed. In some embodiments core-shell nanoparticulate compositions comprise transition metal core encapsulated by metal oxide shell. Methods of catalysis comprising core-shell nanoparticulate compositions of the invention are disclosed. Compositions comprising core-shell nanoparticles displayed on a metal-oxide support and methods for preparing the same are also disclosed. In some embodiments compositions comprise core-shell nanoparticles displayed as a substantially single layer superposed on a metal oxide support. Methods of catalysis employing the supported core-shell nanoparticles are disclosed.Type: ApplicationFiled: October 3, 2013Publication date: April 17, 2014Applicant: THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIAInventors: MATTEO CARGNELLO, RAYMOND J. GORTE, PAOLO FORNASIERO
-
Publication number: 20140106259Abstract: A positive electrode composite for a solid oxide fuel cell, on the positive electrode composite including: a porous reaction prevention layer; and a mixed-conductivity material disposed in the porous reaction prevention layer.Type: ApplicationFiled: May 6, 2013Publication date: April 17, 2014Applicant: SAMSUNG ELECTRONICS CO., LTD.Inventors: Chan KWAK, Hee-jung PARK, Dong-hee YEON, Zongping SHAO, Dengjie CHEN, Fucheng WANG
-
Patent number: 8691717Abstract: The invention discloses core/shell, type catalyst particles comprising a Mcore/Mshell structure with Mcore=inner particle core and Mshell=outer particle shell, wherein the medium diameter of the catalyst particle (dcore+shell) is in the range of 20 to 100 nm, preferably in the range of 20 to 50 nm. The thickness of the outer shell (tshell) is about 5 to 20% of the diameter of the inner particle core of said catalyst particle, preferably comprising at least 3 atomic layers. The core/shell type catalyst particles, particularly the particles comprising a Pt˜based shell reveal a high specific activity. The catalyst particles are preferably supported on suitable support materials such as carbon black and are used as electrocatalysts for fuel cells.Type: GrantFiled: July 24, 2012Date of Patent: April 8, 2014Assignee: Umicore AG & Co. KGInventors: Marco Lopez, Michael Lennartz, Dan V. Goia, Carsten Becker, Stéphanie Chevalliot
-
Publication number: 20140093790Abstract: A nanofibrous catalyst and method of manufacture. A precursor solution of a transition metal based material is formed into a plurality of interconnected nanofibers by electro-spinning the precursor solution with the nanofibers converted to a catalytically active material by a heat treatment. Selected subsequent treatments can enhance catalytic activity.Type: ApplicationFiled: September 28, 2012Publication date: April 3, 2014Inventors: Di-Jia Liu, Jianglan Shui, Chen Chen
-
Patent number: 8685594Abstract: A cathode catalyst for a fuel cell includes a carrier, and an active material including M selected from the group consisting of Ru, Pt, Rh, and combinations thereof, and Ch selected from the group consisting of S, Se, Te, and combinations thereof, with the proviso that the active material is not RuSe when the carrier is C.Type: GrantFiled: August 31, 2006Date of Patent: April 1, 2014Assignee: Samsung SDI Co., Ltd.Inventors: Alexey AlexandrovichSerov, Chan Kwak, Myoung-Ki Min, Si-Hyun Lee