Including Preparing Or Arranging Work For Heating Patents (Class 432/5)
  • Patent number: 9406885
    Abstract: A coating apparatus includes a stage supporting a coating target, a coating part on the stage, the coating part being configured to apply a coating material onto the coating target, and a heating source opposite to and spaced apart from the stage, the heating source being configured to supply heat to the coating target after application of the coating material onto the coating target.
    Type: Grant
    Filed: August 7, 2013
    Date of Patent: August 2, 2016
    Assignee: SAMSUNG DISPLAY CO., LTD.
    Inventors: Jin-Han Park, Myeng-Woo Nam, Eui-Shin Shin, Sung-Gon Kim
  • Patent number: 9228685
    Abstract: A load lock device includes a vessel of which an internal pressure is variable between a pressure corresponding to a vacuum chamber and an atmospheric pressure; a purge gas supply source configured to supply a purge gas into the vessel; an exhaust device configured to evacuate an inside of the vessel; a pressure controller configured to adjust the internal pressure of the vessel to be the pressure corresponding to the vacuum chamber and the atmospheric pressure; a cooling member within the vessel configured to cool a substrate while the substrate is placed adjacent thereto; a first purge gas discharging member configured to discharge the purge gas to flow in parallel with the substrate while controlling a turbulent flow thereof; and a second purge gas discharging member formed of a porous material and configured to discharge the purge gas toward a bottom surface of the substrate from below the substrate.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: January 5, 2016
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Sensho Kobayashi, Keita Kumagai
  • Patent number: 9169162
    Abstract: A method of sintering large refractory ceramic articles is disclosed. The method includes supporting a green refractory body on a plurality of support plates, the support plates in turn being supported by a plurality of support members having arcuate upper and lower surfaces. A setter material is disposed between the green refractory body to be sintered and the support plates. As the refractory body is sintered, the density of the article increases. Concurrently, the dimensions of the body decrease, which shrinkage, unless otherwise accommodated, may cause fracture of the body. The support plates and the structure of the support members, move to prevent the development of detrimental stresses in the refractory body as it sinters.
    Type: Grant
    Filed: February 1, 2012
    Date of Patent: October 27, 2015
    Assignee: CORNING INCORPORATED
    Inventor: Randy L. Rhoads
  • Patent number: 9111972
    Abstract: The sizes required for maintenance are reduced and an occupying floor area is reduced. The substrate processing apparatus contains a load lock chamber 41 and a transfer chamber 24 respectively provided in order from the rear side within a case 11; and a processing chamber 53 provided above the load lock chamber 41 for processing wafers 1. An opening section 27A, and an opening and closing means 28A for opening and closing the opening section 27A are respectively provided in a location at the rear side of the transfer chamber 24 where the load lock chamber 41 is not arranged.
    Type: Grant
    Filed: June 27, 2005
    Date of Patent: August 18, 2015
    Assignee: HITACHI KOKUSAI ELECTRIC INC.
    Inventors: Mitsunori Takeshita, Tomoyuki Matsuda, Mitsuhiro Hirano, Akihiro Sato, Shinya Morita, Toshimitsu Miyata, Koji Shibata
  • Patent number: 9050750
    Abstract: The present invention relates to a process for making a container having an integral handle, comprising the steps of: a) providing a preform (6) in a mold cavity (1); b) stretch-blow molding the preform (6) to form an intermediate container (8) which comprises at least one, preferably two, convex bubble(s) (9); c) deforming the or each convex bubble (9) by means of an inwardly moving plug (5) to form one or more concave gripping region(s), while maintaining the pressure within the intermediate container (8) above 1 bar and while the temperature of the material in the gripping region of the intermediate container is maintained at a temperature between the glass transition temperature, Tg, and the melt temperature, Tm; d) releasing excess pressure within the container, preferably prior to withdrawing the plug (5) from within the container; and e) ejecting the finished container from the mold cavity (1, 3).
    Type: Grant
    Filed: March 18, 2009
    Date of Patent: June 9, 2015
    Assignee: The Procter & Gamble Company
    Inventors: William John Cleveland Connolly, Patrick Jean-Francois Etesse, Christian Gerhard Friedrich Gerlach, Christopher Lamb
  • Publication number: 20140240074
    Abstract: A radially anisotropic toroidal magnetic core is fabricated by a method including providing apparatus having a first magnet for providing a radial magnetic field extending across a cavity from an axial spindle to a surrounding second magnetic element, placing a substrate in the cavity, the substrate having a hole fitting around the head of the spindle; and sputter-depositing a film of ferromagnetic material onto the substrate. An alternative fabrication uses a similar fixture to impose magnetic anisotropy by annealing a previously-formed toroidal core. A particular fixture adapted for deposition by electroplating or for applying anisotropy by annealing pre-formed cores applies magnetic fields symmetrically from above and below the cores. Also described are the radially anisotropic core produced by the method, and an inductor having a coil wound on the radially anisotropic core.
    Type: Application
    Filed: September 24, 2012
    Publication date: August 28, 2014
    Applicant: The Trutees of Dart,outh College
    Inventors: Jizheng Qui, Charles R. Sullivan
  • Patent number: 8641841
    Abstract: A continuous heat treatment furnace is provided in which an atmosphere-control gas is introduced to a heating chamber having a heating zone, metal tubes are continuously charged along an axial direction from a furnace entrance, and the metal tube subjected to a heat treatment is taken out from a furnace. The continuous heat treatment furnace includes a front chamber which has a preheating zone on an entrance side of the heating chamber and seal curtains which are located on an entrance side and an exit side of the front chamber.
    Type: Grant
    Filed: December 31, 2009
    Date of Patent: February 4, 2014
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Mikio Tatsuoka, Akhiro Sakamoto
  • Patent number: 8608885
    Abstract: A substrate heat treatment apparatus includes a heat-treating plate having a flat upper surface, support devices formed of a heat-resistant resin for contacting and supporting a substrate, a seal device disposed annularly for rendering gastight a space formed between the substrate and heat-treating plate, and exhaust bores for exhausting gas from the space. The support devices are formed of resin, and the upper surface of the heat-treating plate is made flat, whereby a reduced difference in the rate of heat transfer occurs between contact parts and non-contact parts on the surface of the substrate. Consequently, the substrate is heat-treated effectively while suppressing variations in heat history over the surface of the substrate.
    Type: Grant
    Filed: December 4, 2006
    Date of Patent: December 17, 2013
    Assignee: Dainippon Screen Mfg. Co., Ltd.
    Inventors: Shigehiro Goto, Keiji Matsuchika, Akihiko Morita
  • Patent number: 8545218
    Abstract: A label manufacturing apparatus includes a thermal head and a device for transporting a heat sensitive adhesive sheet. The control device operates the head in synchronization with timing of transporting of the sheet to activate the adhesive, determines if heating based on a last row of a heating pattern is completed before a trailing end of the sheet reaches a set position contacting the head, controls driving of the transporting device so that when it is determined that the heating based on the heating pattern last row is completed, the sheet is transported until the trailing end passes through the set position, and controls driving of the head so that when it is determined that the heating based on the last row of the heating pattern is completed, the heating based on the last row of the heating pattern is repeated until the trailing end passes through the set position.
    Type: Grant
    Filed: April 23, 2009
    Date of Patent: October 1, 2013
    Assignee: Seiko Instruments Inc.
    Inventor: Tatsuya Obuchi
  • Patent number: 8545217
    Abstract: A label manufacturing apparatus has a thermal head with heating elements for heating at least a part of a heat sensitive adhesive sheet to place it into an adhesive state when the heat sensitive sheet is transported through a preselected position of the label manufacturing apparatus in which the heat sensitive sheet contacts the heating elements of the thermal head. A control device selectively operates the heating elements of the thermal head in synchronization with timing of transporting of the heat sensitive adhesive sheet through the preselected position to thereby heat the part of the heat sensitive adhesive sheet and place into the adhesive state, and stops operation of the heating elements so that a trailing end portion of the heat sensitive sheet is not heated and is not placed into an adhesive state when the trailing end portion reaches the preselected position.
    Type: Grant
    Filed: April 23, 2009
    Date of Patent: October 1, 2013
    Assignee: Seiko Instruments Inc.
    Inventor: Tatsuya Obuchi
  • Patent number: 8455293
    Abstract: A method for processing solar cells comprising: providing a vertical furnace to receive an array of mutually spaced circular semiconductor wafers for integrated circuit processing; composing a process chamber loading configuration for solar cell substrates, wherein a size of the solar cell substrates that extends along a first surface to be processed is smaller than a corresponding size of the circular semiconductor wafers, such that multiple arrays of mutually spaced solar cell substrates can be accommodated in the process chamber, loading the solar cell substrates into the process chamber; subjecting the solar cell substrates to a process in the process chamber.
    Type: Grant
    Filed: November 6, 2012
    Date of Patent: June 4, 2013
    Assignee: ASM International N.V.
    Inventors: Chris G. M. de Ridder, Klaas P. Boonstra, Adriaan Garssen, Frank Huussen
  • Publication number: 20120329000
    Abstract: The present invention includes: an upper container and a lower container relatively movable and uniting together into one body to form a processing space; a substrate holding part provided inside the lower container and mounting and holding the substrate thereon; and a delivery arm including a support member extending vertically downward from a lower surface of the upper container, and a delivery member supported by the support member and holding an outer peripheral portion of the substrate and delivering the substrate to/from the substrate holding part, wherein the delivery arm is movable together with the upper container in the vertical direction relative to the lower container, and a cutout groove capable of housing the delivery member is formed at a position corresponding to the delivery member at the outer peripheral portion of the substrate holding part.
    Type: Application
    Filed: March 2, 2011
    Publication date: December 27, 2012
    Inventor: Osamu Hirakawa
  • Patent number: 8287649
    Abstract: The present invention is a vertical boat for heat treatment having an auxiliary supporting member removably attached to each of supporting parts of a boat body, the auxiliary supporting member on which a substrate to be treated is to be placed, in which the auxiliary supporting member has a guiding member attached to the supporting part and a substrate supporting plate on which the substrate to be treated is to be placed, a hole is formed on an upper surface of the guiding member, the substrate supporting plate is inserted and fitted into the hole of the guiding member so as to be fixed, a height position of a placing surface for the substrate to be treated is higher than a height position of the upper surface of the guiding member, the substrate supporting plate is composed of silicon carbide and the guiding member is composed of quartz.
    Type: Grant
    Filed: April 9, 2009
    Date of Patent: October 16, 2012
    Assignee: Shin-Etsu Handotai Co., Ltd.
    Inventor: Takeshi Kobayashi
  • Publication number: 20120258414
    Abstract: A substrate support instrument includes a first support instrument portion and a second support instrument portion detachably combined with each other. Each of the first support instrument portion and second support instrument portion includes: a ceiling plate and a bottom plate facing each other upward and downward; a support pillar disposed in plurality along a peripheral edge portion of each of the ceiling plate and bottom plate, and configured to connect the ceiling plate and the bottom plate; and a support part disposed at a position corresponding to each of the support pillars, and configured to support a bottom of each substrate. In the support part, a height position is set such that a substrate supported in the first support instrument portion and a substrate supported in the second support instrument portion are alternately arranged, when the first support instrument portion is combined with the second support instrument portion.
    Type: Application
    Filed: April 6, 2012
    Publication date: October 11, 2012
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Hiroyuki MATSUURA, Katsuya TOBA
  • Publication number: 20120237885
    Abstract: An apparatus for uniform reactive thermal treatment of thin-film materials includes a chamber enclosing a tube shaped space filled with a work gas and heaters disposed outside the chamber. The apparatus further includes a loading configuration for subjecting a plurality of planar substrates to the work gas in the tube shaped space. Baffles are disposed above and below the loading configuration.
    Type: Application
    Filed: January 4, 2012
    Publication date: September 20, 2012
    Applicant: Stion Corporation
    Inventors: Paul Alexander, Steven Aragon
  • Publication number: 20120152728
    Abstract: A deposition technique for forming an oxynitride film is provided. A highly reliable semiconductor element is manufactured with the use of the oxynitride film. The oxynitride film is formed with the use of a sputtering target including an oxynitride containing indium, gallium, and zinc, which is obtained by sintering a mixture of at least one of indium nitride, gallium nitride, and zinc nitride as a raw material and at least one of indium oxide, gallium oxide, and zinc oxide in a nitrogen atmosphere. In this manner, the oxynitride film can contain nitrogen at a necessary concentration. The oxynitride film can be used for a gate, a source electrode, a drain electrode, or the like of a transistor.
    Type: Application
    Filed: December 13, 2011
    Publication date: June 21, 2012
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventor: Shunpei Yamazaki
  • Publication number: 20120141947
    Abstract: A method of heating and conveying hydrocarbonaceous material in a retort structure having an internal volume, an outlet, a grate, a gas injector, and an auger. In the method the hydrocarbonaceous material is introduced into the internal volume through the inlet. The inlet substantially prevents gaseous transfer between the inner volume and the exterior of the retort structure. The hydrocarbonaceous material is passed through the grate. A gas heated to a first temperature is injected through the gas injector to heat the hydrocarbonaceous material while the hydrocarbonaceous material is atop the grate. The hydrocarbonaceous material is collected after passing through the grate. The hydrocarbonaceous material is then removed through the outlet.
    Type: Application
    Filed: January 11, 2012
    Publication date: June 7, 2012
    Inventor: Todd C. DANA
  • Publication number: 20110294083
    Abstract: A molten salt treatment system and process can include one or more tubular conduits flowably connected to a molten salt reactor, the tubular conduit containing concentrically within it a pipe or a shaft separated by an annular space therebetween, and one or more gas sources connected to feed gas into the annular space. The system may include a scrubbing device flowably connected to a molten salt reactor off-gas outlet to receive an off-gas, a first heating device configured to heat the effluent from the scrubbing device, and a filtering device flowably connected to receive the effluent from the heating device. An overflow conduit may be flowably connected to a molten salt reactor overflow outlet to receive molten salt therefrom and discharge the molten salt to a salt recovery vessel, and a blower or other gas mover may be connected to the molten salt reactor and the recovery vessel to prevent backflow of cold gases through the overflow outlet to the molten salt reactor.
    Type: Application
    Filed: December 29, 2009
    Publication date: December 1, 2011
    Applicant: TATE & LYLE TECHNOLOGY LIMITED
    Inventors: James Edwin Wiley, William Akers, William R. Skelding
  • Patent number: 8007275
    Abstract: Methods and apparatuses for heat treatment of semiconductor wafers are disclosed herein. A method of heating a semiconductor wafer in accordance with one embodiment includes heating the wafer in a loading enclosure of a heat treatment system above an ambient temperature external to the loading enclosure. The method also includes moving the heated wafer from the loading enclosure into a processing enclosure of the heat treatment system. In particular embodiments, the method can further include heating a flow of purge gas above the ambient temperature and introducing the flow of heated purge gas into the loading enclosure while the wafer is in the loading enclosure. In still further embodiments, the method can include heating a flow of process gas to a processing temperature and introducing the heated flow of process gas into the processing enclosure while the wafer is in the processing enclosure.
    Type: Grant
    Filed: January 25, 2008
    Date of Patent: August 30, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Shyam Surthi, Scott E. Moore
  • Patent number: 7887323
    Abstract: A method and apparatus for manufacturing a semiconductor device is disclosed. In particular, the application discloses a method that performs a lithography process using a material capable of increasing a depth of focus so as to prevent efficiency of the lithography process from being degraded due to high integration of a semiconductor device, and a pressure-type bake oven as an apparatus for forming a high refractive material on a semiconductor substrate, having advantages of reducing manufacturing costs of a semiconductor manufacturing process and increasing efficiency of the lithography process.
    Type: Grant
    Filed: November 7, 2007
    Date of Patent: February 15, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventors: Hak Joon Kim, Jun Hyung Park
  • Patent number: 7806684
    Abstract: A method of a semiconductor process is provided. The semiconductor process at least includes a first high temperature furnace process and a second high temperature furnace process. In the method, the first high temperature furnace process is performed on a first wafer boat carrying at least a wafer. Then, the second high temperature furnace process is performed on a second wafer boat carrying at least the same wafer. In addition, before the second high temperature furnace process is implemented, a moving step is performed, such that a relative position of the wafer in the first wafer boat is different from that of the wafer in the second wafer boat.
    Type: Grant
    Filed: October 2, 2007
    Date of Patent: October 5, 2010
    Assignee: United Microelectronics Corp.
    Inventor: Guang-You Yu
  • Patent number: 7798811
    Abstract: A vertical type heat processing apparatus prevents falling-down of a boat placed on a heat insulating mount due to an external force, such as an earthquake. The apparatus includes a heating furnace having a furnace port, a cover, a pair of substrate holding tools, each to be placed on the cover via a heat insulating mount and to hold multiple substrates, a rotating mechanism, and a lifting mechanism to raise and lower the cover to carry in and carry out the substrate holding tool relative to the furnace. While one of the substrate holding tools is located in the furnace, the other is placed on a table, for loading the substrates. Each substrate holding tool is carried between the table and the heat insulating mount due to a carrier mechanism. Further, a locking part and a part to be locked can be engaged with each other.
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: September 21, 2010
    Assignee: Tokyo Electron Limited
    Inventors: Hiromi Nitadori, Hirofumi Kaneko
  • Publication number: 20090274987
    Abstract: In order to prevent occurrence of an unintentional non-heated part at a trailing end portion in a transporting direction of a heat sensitive adhesive sheet, in accordance with a matrix-like heating pattern of M0 columns├ŚN0 rows, a thermal head and transporting means are driven, and a plurality of heating elements of the thermal head are selectively operated in synchronization with timing of transporting a heat sensitive adhesive sheet (2) by the transporting means. Thus, when at least a part of the heat sensitive adhesive sheet (2) is heated to develop adhesive properties, if heating based on a last row (N0th row) in the heating pattern is completed before a trailing end portion (2b) in the transporting direction of the heat sensitive adhesive sheet (2) reaches a position contacting with the heating element of the thermal head, the heat sensitive adhesive sheet (2) is transported until the trailing end portion (2b) passes through the position contacting with the heating element of the thermal head.
    Type: Application
    Filed: April 23, 2009
    Publication date: November 5, 2009
    Inventor: Tatsuya Oguchi
  • Patent number: 7547209
    Abstract: A transfer mechanism 21 of a vertical heat treatment system 1 includes a base capable of vertical movement and turning movement, and plural substrate support devices, disposed on the base so as to be movable anteroposterior, that hold wafers W. Provided on the base 25 is a first sensor 45 that emits a light beam directed toward a direction in which the substrate support device 20 moves anteroposterior, and detects the target member upon receipt of a reflected light of the light beam. Provided on two tip end portions of the substrate support device 20 is a second sensor 40 that detects the target member upon interruption of a light beam traveling between the tip end portions by the target member. When a target member 44 provided at its specific positions with projections 49 and 50 is placed at a position in a wafer boat 8, the base 25 moves vertically and turns, and the substrate support device 20 moves anteroposterior.
    Type: Grant
    Filed: March 25, 2005
    Date of Patent: June 16, 2009
    Assignee: Tokyo Electron Limited
    Inventors: Satoshi Asari, Katsuhiko Mihara, Hiroshi Kikuchi
  • Patent number: 7544058
    Abstract: A method for annealing a multilayer wafer by subjecting the wafer to a high temperature treatment that includes at least a temperature ramp-up between a boat-in temperature and a process of at least 800┬░ C.; at least a processing phase in the range conduct at or above the process temperature; and a temperature ramp-down from the processing phase to a boat-out temperature. The boat-in temperature is sufficiently lower than the boat-out temperature to reduce or avoid tearing-off defects on the wafer and to reduce particle contaminants on the wafer, as well as to reduce or avoid degrading wafer Dit compared to an annealing method where the boat-in and boat-out temperatures are closer in temperature.
    Type: Grant
    Filed: July 13, 2007
    Date of Patent: June 9, 2009
    Assignee: S.O.I.Tec Silicon on Insulator Technologies
    Inventors: Christophe Maleville, Walter Schwarzenbach, Vivien Renauld
  • Patent number: 7527497
    Abstract: A heat treating apparatus includes a heating plate for heating a substrate coated with a coating liquid, a cooling plate for cooling the substrate and a heat pipe provided in the cooling plate, a cooling chamber being moved together with the cooling plate by the drive mechanism and accommodating a cooling liquid for cooling one end side of the heat pipe. The apparatus further includes a circulation passage provided in the heat treating apparatus to circulate the cooling liquid in the cooling chamber, a circulation pump for circulating the cooling liquid in the circulation passage; and a heat radiating member provided on the circulation passage to radiate the heat received by the cooling chamber to the outside of the heat treating apparatus.
    Type: Grant
    Filed: March 13, 2007
    Date of Patent: May 5, 2009
    Assignee: Tokyo Electron Limited
    Inventor: Nobuaki Matsuoka
  • Publication number: 20080241778
    Abstract: A thermal processing apparatus and method with predictive temperature correction. Distances are measured from a backside of the wafer relative to a reference plane. Heat is transferred to the backside of the substrate in relation to the measured distances. This allows a baking unit to uniformly heat the substrate to compensate for irregularities or warpage.
    Type: Application
    Filed: March 30, 2007
    Publication date: October 2, 2008
    Applicant: TOKYO ELECTRON LIMITED
    Inventor: John Kulp
  • Patent number: 7410355
    Abstract: A substrate undergoes a semiconductor fabrication process at different temperatures in a reactor without changing the temperature of the reactor. The substrate is held suspended by flowing gas between two heated surfaces of the reactor. Moving the two heated surfaces in close proximity with the substrate for a particular time duration heats the substrate to a desired temperature. The desired temperature is then maintained by distancing the heated surfaces from the substrate and holding the heated surface at the increased distance to minimize further substrate heating.
    Type: Grant
    Filed: February 17, 2006
    Date of Patent: August 12, 2008
    Assignee: ASM International N.V.
    Inventors: Ernst H. A. Granneman, Vladimir I. Kuznetsov, Xavier Pages, Pascal G. Vermont, Herbert Terhorst, Gert-Jan Snijders
  • Publication number: 20080053339
    Abstract: A cement product is disclosed. The cement product includes clinker defined by a feedstock material and a ladle metallurgical facility slag material derived from a ladle metallurgical facility steel production system. A system and method for manufacturing clinker is also disclosed.
    Type: Application
    Filed: June 25, 2007
    Publication date: March 6, 2008
    Applicant: Edw. C. Levy Co.
    Inventor: Ronald R. Piniecki
  • Patent number: 7204887
    Abstract: The present invention provides a wafer holder, a wafer support member, a wafer boat and a heat treatment furnace, which are capable of sufficiently suppressing slip dislocations, without lowering productivity and at low cost, in the high temperature heat treatment of silicon wafers, and said wafer holder is characterized in that: the wafer holder is composed of a wafer support plate and three or more wafer support members mounted on said wafer support plate, each of the wafer support members having a wafer support portion or more; at least one of said wafer support members is a tilting wafer support member which has a plurality of upward-convex wafer support portions on the upper surface and is tiltable with respect to said wafer support plate; and the wafer is supported by at least four wafer support portions.
    Type: Grant
    Filed: October 16, 2001
    Date of Patent: April 17, 2007
    Assignee: Nippon Steel Corporation
    Inventors: Keisuke Kawamura, Tsutomu Sasaki, Atsuki Matsumura, Atsushi Ikari, Isao Hamaguchi, Yoshiharu Inoue, Koki Tanaka, Shunichi Hayashi
  • Patent number: 7073311
    Abstract: A film is provided for use in a cassette. Preferably, the cassette is used in a waste disposal system. The film is a high density polyethylene film resin having both a low melt index and a high density, thereby providing improved odor control capabilities and enhanced tear strength and assembly strength.
    Type: Grant
    Filed: September 23, 2004
    Date of Patent: July 11, 2006
    Assignee: Playtex Products, Inc.
    Inventors: Richard S. Chomik, Mark Yoho, Jeffrey Brown
  • Patent number: 6940047
    Abstract: A floating substrate reactor allows heat treatment of a series of semiconductor substrates, one by one. The heat treatment occurs while flowing gas suspends a substrate between two heated surfaces of the reactor. The two heated surfaces each have multiple heating zones. The heating zones are heated to desired temperature(s) and a substrate is then loaded into the reactor for heat treatment. Upon loading, the relatively cold substrate absorbs heat and cools the process chamber. A heat spike, which can be varied, is applied to the heating zones to heat the reactor to the desired temperature again. The substrate, however, is unloaded from the reactor before the temperatures of the heating zones have reached the desired temperature. After the heating zones have reached the desired temperature, the next substrate in the series of substrates is loaded into the reactor for heat treatment.
    Type: Grant
    Filed: November 14, 2003
    Date of Patent: September 6, 2005
    Assignee: ASM International N.V.
    Inventors: Tom A. van Kesteren, Jan Zinger
  • Patent number: 6905333
    Abstract: A method is provided for heating a substrate in a process chamber using a heated chuck. In accordance with the method, the substrate is lowered onto the chuck and heated to a first temperature less than a temperature of the chuck. The substrate is then raised away from the chuck, and a process is carried out on the substrate while the substrate is supported above the chuck. The substrate is then lowered back to the chuck and heated to a second temperature greater than the first temperature for further processing of the substrate.
    Type: Grant
    Filed: September 10, 2003
    Date of Patent: June 14, 2005
    Assignee: Axcelis Technologies, Inc.
    Inventor: Gerald Cox
  • Patent number: 6902395
    Abstract: A pedestal for use in a high temperature vertical furnace for the processing of semiconductor wafers provides a closure and heat insulation for the lower end of the furnace and is a wafer boat support. The pedestal, comprising quartz-enveloped insulation material, supports a wafer boat at a boat support level and is provided with an upper section disposed above the boat support level. The upper section comprises enveloped insulating material. The envelope of the upper section is also formed of quartz and the insulating material in the upper section has a lower thermal conductance than the insulating material in a lower quartz enveloped section.
    Type: Grant
    Filed: March 13, 2003
    Date of Patent: June 7, 2005
    Assignee: ASM International, N.V.
    Inventors: Theodorus Gerardus Maria Oosterlaken, Frank Huussen, Timothy Robert Landsmeer, Herbert Terhorst
  • Patent number: 6896513
    Abstract: A system and method for processing large area substrates is provided. In one embodiment, a processing system includes a transfer chamber having at least one processing chamber and a substrate staging system coupled thereto. The staging system includes a load lock chamber having a first port coupled to the transfer chamber and a heat treating station coupled to a second port of the load lock chamber. A load lock robot is disposed in the load lock chamber to facilitate transfer between the heat treating station and the load lock chamber.
    Type: Grant
    Filed: September 12, 2002
    Date of Patent: May 24, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Robert Z. Bachrach, Wendell T. Blonigan
  • Patent number: 6796795
    Abstract: A method and apparatus for loading a substrate is applied to a semiconductor manufacturing apparatus in which a substrate is carried in a vacuum-processing chamber, and loaded on a heated processing table, and further is applied with predetermined processing in a cold-wall processing mode. In the method, for example, the substrate is temporarily stopped before being loaded on the processing table. By the temporal stop, the temperature difference between the substrate and the processing table becomes smaller. When the temperature difference becomes smaller, even if the substrate expands due to heat from the processing table, the degree of the change becomes smaller and therefore it is possible to reduce peeling of films deposited on the substrate-loading surface of the processing table.
    Type: Grant
    Filed: March 5, 2001
    Date of Patent: September 28, 2004
    Assignee: Anelva Corporation
    Inventors: Shinichi Inaba, Yosuke Ide
  • Patent number: 6764304
    Abstract: A furnace design that combines the benefits of oxygen enriched combustion, intense flame radiation, highly preheated combustion air, exhaust gas recirculation, buoyancy driven flows and NOx reburn chemistry in a single unit to significantly reduce energy consumption and pollutant formation. The furnace also allows burning low calorie fuels and fuels of different types. It substantially increases the level of radiation heat transfer and its uniformity, thereby enhancing furnace productivity and provides an oxygen free atmosphere to prevent oxidation of materials being heated.
    Type: Grant
    Filed: October 31, 2002
    Date of Patent: July 20, 2004
    Assignee: The Regents of the University of Michigan
    Inventor: Arvind Atreya
  • Publication number: 20040110106
    Abstract: A substrate processing apparatus is provided. When a wafer W held by a holding unit 35 is accommodated in a processing chamber 34a of a processing container 34 equipped with a heater 31A, the wafer W is heated to a processing temperature while positioning the wafer W at an adjacent position Pa resulting from making the wafer W approach the heating surface of the heater 31A, i.e. flat bottom surface of a container body 32. After heating the wafer W to the predetermined temperature, the wafer W is separated from the flat bottom surface of the container body 32 to a processing position Pb. In this state, a processing chamber 34a of the processing container 34 is supplied with a processing fluid, while the holding unit 35 and the heater 31A are relatively moved close to and apart from each other intermittently or continuously.
    Type: Application
    Filed: December 3, 2003
    Publication date: June 10, 2004
    Inventor: Shori Mokuo
  • Patent number: 6746240
    Abstract: A support sleeve for supporting a high temperature process tube comprises one or more circumferential channels, each channel connected to either a feed for gas or a vacuum exhaust. One circumferential channel opens to the top surface of the sleeve, on which the process tube is supported to provide a gas/vacuum seal between the process tube and support sleeve. Another circumferential channel is connected to a gas feed and provided with gas injection holes, evenly distributed along the support sleeve perimeter to provide a cylindrically symmetrical injection of process gas into the process tube. Another circumferential channel is connected to an exhaust for gas and provided with gas exhaust holes, evenly distributed along the circumference of the support sleeve, to provide a cylindrically symmetric exhaust of process gases from the process tube.
    Type: Grant
    Filed: March 13, 2003
    Date of Patent: June 8, 2004
    Assignee: ASM International N.V.
    Inventors: Christianus Gerardus Maria De Ridder, Theodorus Gerardus Maria Oosterlaken, Frank Huussen
  • Patent number: 6746237
    Abstract: Method and device for the heat treatment of substrates, wherein the substrates are positioned in the vicinity of a heated, essentially flat furnace body extending over the surface of the substrate. In order to provide a reproducible treatment when treating a number of substrates successively, the temperature of the furnace body is measured so close to the surface adjacent to the substrate that the withdrawal of heat from the furnace body by the substrate can be detected. The introduction of each substrate takes place at a point in time when the temperature measured in this way is, within certain limits, equal to a desired initial treatment temperature Ttrig.
    Type: Grant
    Filed: May 16, 2002
    Date of Patent: June 8, 2004
    Assignee: ASM International N.V.
    Inventors: Arjen Storm, Ronald Bast, Vladimir Ivanovich Kuznetsov, Jan Zinger
  • Patent number: 6682343
    Abstract: A substrate processing apparatus includes a substrate holder for holding a substrate with a holding angle of 45 degrees to 90 degrees with respect to a horizontal plane, a conveying system to convey the substrate with the substrate holder, a process chamber in which the substrate is processed, a load-lock chamber in which the substrate temporarily stays, and an intermediate chamber provided between the process chamber and the load-lock chamber. The conveying system conveys the substrate along the first direction from the load-lock chamber to the intermediate chamber, and from the intermediate chamber to the process chamber, and also conveys the substrate along the second direction perpendicular to the first direction.
    Type: Grant
    Filed: August 13, 2001
    Date of Patent: January 27, 2004
    Assignee: Anelva Corporation
    Inventor: Nobuyuki Takahashi
  • Patent number: 6672864
    Abstract: A positive pressure gradient is maintained across an open access port of an interface chamber such as a load lock chamber which provides an interface between a low pressure chamber such as a transfer or buffer chamber, and a high pressure area such as a staging area or factory interface area. When the access port of the interface chamber is open to the high-pressure area, the positive pressure gradient may be used in some applications to inhibit the flow of gasses from the high-pressure area into the interior of the interface chamber.
    Type: Grant
    Filed: August 27, 2002
    Date of Patent: January 6, 2004
    Assignee: Applied Materials, Inc.
    Inventors: Hougong Wang, Zheng Xu, Kenny King-Tai Ngan
  • Publication number: 20030198910
    Abstract: An apparatus and method to position a wafer onto a wafer holder and to maintain a uniform wafer temperature is disclosed. The wafer holder or susceptor comprises a recess or pocket whose surface is concave and includes a grid containing a plurality of grid grooves separating protrusions. The concavity and grid grooves define an enclosed flow volume between a supported wafer and the susceptor surface, as well as an escape area, or total cross-sectional area of the grid grooves opening out from under the periphery of the wafer. These are chosen to reduce the wafer slide and curl during wafer drop-off and wafer stick during wafer pick-up, while improving thermal uniformity and reducing particle problems. In another embodiment, centering locators in the form of thin, radially placed protrusions are provided around the edge of the susceptor pocket to reduce further the possibility of contact between the wafer and the outer edge of the susceptor.
    Type: Application
    Filed: June 4, 2003
    Publication date: October 23, 2003
    Inventor: Matthew G. Goodman
  • Publication number: 20030165787
    Abstract: The present invention relates to a method for subjecting a substrate on which a coating film is formed to heat processing, and the method comprises the steps of heating the substrate to a predetermined high temperature and decreasing the temperature of the substrate to a predetermined low temperature, wherein in the step of decreasing the temperature of the substrate to the low temperature, a first step of decreasing the temperature of the substrate from the predetermined high temperature to a predetermined intermediate temperature and a second step of decreasing the temperature of the substrate from the intermediate temperature to the predetermined low temperature are performed separately.
    Type: Application
    Filed: March 7, 2003
    Publication date: September 4, 2003
    Applicant: Tokyo Electron Limited
    Inventor: Shinji Nagashima
  • Patent number: 6582221
    Abstract: A substrate holder for vertical furnaces is configured to support substrates in slots at inner portions of the substrates, rather than solely at the edges. The holder allows sufficient clearance above substantially the entire front face of the substrate that a substrate deflection or bow, induced by thermal stresses during loading and unloading of the substrate holder into and out of the furnace, can be accommodated without the substrate touching the support members of the substrate holder. A relationship is established such that, for given loading/unloading temperatures, a minimum amount of free space in the wafer slots is provided to avoid substrate scratching. Conversely, for a given amount of free space in the wafer slots, the relationship provides maximum loading and/or unloading temperatures to avoid scratching.
    Type: Grant
    Filed: July 19, 2002
    Date of Patent: June 24, 2003
    Assignee: ASM International N.V.
    Inventor: Theodurus Gerardus Maria Oosterlaken
  • Patent number: 6561796
    Abstract: Bowing of semiconductor wafers during heating is reduced by heating the wafers in a gas with a thermal conductivity and mean free path greater than that of oxygen, or by heating the wafers in a processing chamber under a pressure less than 0.1 Torr. In one embodiment, the high thermal conductivity gas is helium and heating in the helium takes place at a pressure less than 2.4 Torr.
    Type: Grant
    Filed: September 6, 2000
    Date of Patent: May 13, 2003
    Assignee: Novellus Systems, Inc.
    Inventors: Martin M. Barrera, George Kamian, Edward J. McInerney, Craig L. Stevens
  • Publication number: 20030044742
    Abstract: A positive pressure gradient is maintained across an open access port of an interface chamber such as a load lock chamber which provides an interface between a low pressure chamber such as a transfer or buffer chamber, and a high pressure area such as a staging area or factory interface area. When the access port of the interface chamber is open to the high-pressure area, the positive pressure gradient may be used in some applications to inhibit the flow of gasses from the high-pressure area into the interior of the interface chamber.
    Type: Application
    Filed: August 27, 2002
    Publication date: March 6, 2003
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Hougong Wang, Zheng Xu, Kenny King-Tai Ngan
  • Publication number: 20030027094
    Abstract: Method and device for the heat treatment of substrates, wherein the substrates are positioned in the vicinity of a heated, essentially flat furnace body extending over the surface of the substrate. In order to provide a reproducible treatment when treating a number of substrates successively, the temperature of the furnace body is measured so close to the surface adjacent to the substrate that the withdrawal of heat from the furnace body by the substrate can be detected. The introduction of each substrate takes place at a point in time when the temperature measured in this way is, within certain limits, equal to a desired initial treatment temperature Ttrig.
    Type: Application
    Filed: May 16, 2002
    Publication date: February 6, 2003
    Inventors: Arjen Storm, Ronald Bast, Vladimir Ivanovich Kuznetsov, Jan Zinger
  • Patent number: 6511315
    Abstract: In a substrate processing apparatus, processing units are stacked in a multistage manner around a transport robot arranged at the center of a processing area for forming a processing part. In a second hierarchy, rotary coating units are arranged through an indexer and a transport robot. In a fourth hierarchy located above the second hierarchy, rotary developing units are stacked above the rotary coating units respectively. Multistage thermal processing units and an edge exposure unit are horizontally arranged above an interface mechanism part. Thus, a substrate processing apparatus capable of reducing the area for setting the same is provided.
    Type: Grant
    Filed: January 16, 2002
    Date of Patent: January 28, 2003
    Assignee: Dainippon Screen Mfg. Co., Ltd.
    Inventor: Koji Hashimoto
  • Publication number: 20020177094
    Abstract: A heating apparatus comprises a central hot plate for heating the center portion of a substrate, a plurality of segment hot plates for heating the peripheral portion of the substrate, a hot plate support member supporting the central hot plate and the segment hot plates, support pins for supporting the substrate so as to face the central hot plate and the segment hot plates in a close proximity without being in contact with the central hot plate and the segment hot plates, and a power supply for supplying electricity to the central hot plate and the segment hot plates.
    Type: Application
    Filed: May 22, 2002
    Publication date: November 28, 2002
    Inventor: Eiichi Shirakawa