Membrane Permeability Increased Patents (Class 435/173.5)
  • Patent number: 10472651
    Abstract: In various embodiments, method and devices for delivering large cargos (e.g., organelles, chromosomes, bacteria, and the like) into cells are provided. In certain embodiments method of delivering a large cargo into eukaryotic cells, are provided that involve providing eukaryotic cells disposed on one side of a porous membrane; providing the cargo to be delivered in a solution disposed in a reservoir chamber on the opposite side of the porous membrane; and applying pressure to the reservoir chamber sufficient to pass the cargo through pores comprising said porous membrane wherein said cargo passes through cell membranes and into the cells.
    Type: Grant
    Filed: March 26, 2015
    Date of Patent: November 12, 2019
    Assignee: The Regents of the University of California
    Inventors: Ting-Hsiang S. Wu, Pei-Yu E. Chiou, Michael A. Teitell
  • Patent number: 9946145
    Abstract: An illumination unit includes one or more light sources each including a solid-state light-emitting device having a light emission region configured of one or more light-emission spots, one or more traveling-direction angle conversion device each converting a traveling-direction-angle of light, and an integrator including a first fly-eye lens having cells which receive light from the traveling-direction angle conversion device and a second fly-eye lens having cells which receive light from the first fly-eye lens, the integrator uniformalizing illumination distribution in a predetermined illumination area. An optical system configured with the traveling-direction angle conversion device and the first and second fly-eye lenses has an optical magnification which allows each of light source images to have a size not exceeding a size of the cell in the second fly-eye lens, the light source images being formed on the second fly-eye lens by the respective cells in the first fly-eye lens.
    Type: Grant
    Filed: May 27, 2015
    Date of Patent: April 17, 2018
    Assignee: SONY CORPORTATION
    Inventors: Koji Miura, Kazuyuki Takahashi, Tatsuya Oiwa
  • Patent number: 9705275
    Abstract: The invention relates to a laser assembly (100) having a laser (L) for generating primary laser pulses (1), beam splitting optics (15) for splitting a primary laser pulse into a plurality of temporally staggered sub-pulses, and having focusing optics (17-19) for focusing the sub-pulses in or on an object (20) so that every sub-pulse is focused in a separate focus volume (F). The invention is characterized in that the mutual spatial and/or temporal relationship of the focus volumes (F) of the sub-pulses originating from a common primary laser pulse is variably adjustable. The invention also relates to a corresponding method.
    Type: Grant
    Filed: August 10, 2012
    Date of Patent: July 11, 2017
    Assignee: LAVISION BIOTEC GMBH
    Inventor: Heinrich Spiecker
  • Patent number: 9260690
    Abstract: A system and method are described for electroporating a sample that utilizes one or more sets of electrodes that are spaced apart in order to hold a surface tension constrained sample between the electrodes. The first electrode is connected to the lower body of the system while the second electrode is connected to the upper body. Both electrodes are connected to a pulse generator. Each electrode has a sample contact surface such that the first electrode and the second electrode may be positioned to hold a surface tension constrained sample between the two sample contact surfaces and the sample may receive a selected electric pulse.
    Type: Grant
    Filed: November 17, 2014
    Date of Patent: February 16, 2016
    Assignee: Applied Biosystems, LLC
    Inventors: Richard Jarvis, Mike Byrom, Dmitriy Ovcharenko
  • Patent number: 8926815
    Abstract: Method for the selection or the processing of first particles sensitive to the application of an external stimulus including the step of producing, through the application of the external stimulus, the permeabilization of at least a selected first particle, consisting in the organization of the first particles through a first force field, to generate a second force field substantially placed in proximity of at least a selected first particle to be permeabilized.
    Type: Grant
    Filed: April 13, 2007
    Date of Patent: January 6, 2015
    Assignee: Silicon Biosystems S.p.A
    Inventors: Mélanie Abonnenc, Nicoló Manaresi, Gianni Medoro
  • Publication number: 20140329325
    Abstract: A device for use in laser optical transfection of biological targets including an optofluidic microdevice and a piece of optical glass. The optofluidic microdevice has a central vertical outlet and a microchannel network that includes a plurality of entrapping channels with narrowings. The microchannel network is fused with the optical glass. In one aspect the device is used with a petri dish having an optical window. In another aspect the device is used with a well plate having a plurality of wells and associated optical windows. In a third aspect the device is used with a barrier. Each of the aspects forms a peripheral space around the optofluidic microdevice capable of retaining a live culture of biological targets and material that is desired to be injected into those biological targets. Polymer tubing is inserted into the central vertical outlet which connects the device to an external pump.
    Type: Application
    Filed: April 18, 2014
    Publication date: November 6, 2014
    Inventor: David Fozdar
  • Publication number: 20140324134
    Abstract: The invention, in some aspects relates to compositions and methods for altering cell activity and function and the introduction and use of light-activated ion channels.
    Type: Application
    Filed: November 12, 2012
    Publication date: October 30, 2014
    Applicants: Massachusetts Institute of Technology, The Governrs of the University of Alberta
    Inventors: Nathan Klapoetke, Brian Yichiun Chow, Edward Boyden, Gane Ka-Shu Wong, Yongku Peter Cho
  • Publication number: 20140273229
    Abstract: Embodiments of the present disclosure provide a multistage procedure for treatment of biological samples (e.g., living cells with membranes, and the like) with a substance (e.g., a drug, DNA, RNA, plasmids, and other biomolecules or materials) to achieve more efficacious intracellular delivery and transfection.
    Type: Application
    Filed: March 12, 2014
    Publication date: September 18, 2014
    Inventors: John Mark Meacham, Kiran Durvasula, Andrei G. Fedorov, Fahrettin Levent Degertekin, Akash Mehta
  • Publication number: 20140206059
    Abstract: The present invention includes methods for effecting phenotype conversion in a cell by transfecting the cell with phenotype-converting nucleic acid. Expression of the nucleic acids results in a phenotype conversion in the transfected cell. Preferably the phenotype-converting nucleic acid is a transcriptome, and more preferably an mRNA transcriptome.
    Type: Application
    Filed: March 31, 2014
    Publication date: July 24, 2014
    Applicant: The Trustees of the University of Pennsylvania
    Inventors: James Eberwine, Jai-Yoon Sul, Chia-Wen Wu, Fanyi Zeng, Junhyong Kim
  • Patent number: 8778682
    Abstract: A method of delivering exogenous molecules, comprising: providing a plurality of cells having a cell membrane; adding a plurality of exogenous molecules to the cells; exposing the cells to a defocused infrared (IR) light to permeabilize the cell membrane of the cells; and delivering the exogenous molecules to the cells through the permeablized cell membrane, wherein an intensity of the IR light at the optical focus is at least greater than or equal to an order of 104 W/cm2.
    Type: Grant
    Filed: August 30, 2011
    Date of Patent: July 15, 2014
    Assignee: General Electric Company
    Inventors: Vasile Bogdan Neculaes, Kenneth Roger Conway, Allen Lawrence Garner, Evelina Roxana Loghin, Siavash Yazdanfar, Dmitry Vladimirovich Dylov, Brian Michael Davis, Chulmin Joo
  • Patent number: 8709766
    Abstract: The present disclosure is directed to novel polynucleotide sequences for use in Nannochloropsis gaditana. The novel polynucleotide sequences include control sequences and coding sequences. Also disclosed are novel gene expression constructs wherein N. gaditana promoters/control regions are operatively linked to N. gaditana or non-N. gaditana coding sequences. These novel polynucleotide sequences and expression constructs can be introduced into N. gaditana and can recombine into the N. gaditana genome. Expression from these polynucleotide sequences and expression constructs can enhance N. gaditana biomass and/or lipid biosynthesis. Also disclosed are methods for modifying N. gaditana, for example by stably transforming N. gaditana with nucleic acid sequences, growing the modified N. gaditana, and obtaining biomass and biofuels from the modified N. gaditana.
    Type: Grant
    Filed: October 17, 2012
    Date of Patent: April 29, 2014
    Assignee: Colorado School of Mines
    Inventors: Randor Radakovits, Robert Jinkerson, Matthew Posewitz
  • Publication number: 20140106456
    Abstract: The invention relates to an apparatus for introducing a biological material, a method of introducing a biological material, and a magnetic support for introducing a biological material with the object of providing an apparatus for introducing a biological material, a method of introducing a biological material, and a magnetic support for introducing a biological material whereby a biological material can be efficiently introduced into a host. The invention comprises: one or more packing units in which a mixture solution containing a large number of magnetic supports carrying a biological material to be introduced into a host such as cells upon using, together with a large number of the hosts in a liquid is pooled; and an introduction treatment unit in which a magnetic force affecting the inside of the packing unit is controlled so as to move the magnetic supports relatively with respect to the host so that the biological material can be introduced into the host.
    Type: Application
    Filed: October 9, 2013
    Publication date: April 17, 2014
    Applicants: UNIVERSAL BIO RESEARCH CO., LTD.
    Inventors: Hideji TAJIMA, Yoshiro OKAMI
  • Patent number: 8697446
    Abstract: The present invention relates to a cell fusion chamber in which two types of cells having different diameters are fused, the cell fusion chamber including: a cell fusion region in which cell fusion is carried out; a pair of electrodes formed by a conductor and disposed opposite to each other in the cell fusion region; and a partition wall having at least one fine pore; near the fine pore, a cell fusion device including a cell fusion container containing a cell fusion region; a pair of electrodes; a spacer; and an insulator disposed between the spacer and one of the electrodes and having at least one fine pore; and an electronic power supply which applies an alternating voltage and a voltage pulsed direct current to the electrodes, and a cell fusion method using the same.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: April 15, 2014
    Assignee: Tosoh Corporation
    Inventors: Toru Futami, Takahiro Maruyama, Atsushi Morimoto
  • Patent number: 8669085
    Abstract: The present invention provides a sonoporation-based method that can be universally applied for delivery of compounds into Gram positive bacteria. Gram positive bacteria which can be transformed by sonoporation include, for example, Bacillus, Streptococcus, Acetobacterium, and Clostridium. Compounds which can be delivered into Gram positive bacteria via sonoporation include nucleic acids (DNA or RNA), proteins, lipids, carbohydrates, viruses, small organic and inorganic molecules, and nano-particles.
    Type: Grant
    Filed: January 29, 2010
    Date of Patent: March 11, 2014
    Assignee: UT-Battelle, LLC
    Inventors: Yunfeng Yang, Yongchao Li
  • Patent number: 8580544
    Abstract: The invention relates to an apparatus for introducing a biological material, a method of introducing a biological material, and a magnetic support for introducing a biological material with the object of providing an apparatus for introducing a biological material, a method of introducing a biological material, and a magnetic support for introducing a biological material whereby a biological material can be efficiently introduced into a host. The invention comprises: one or more packing units in which a mixture solution containing a large number of magnetic supports carrying a biological material to be introduced into a host such as cells upon using, together with a large number of the hosts in a liquid is pooled; and an introduction treatment unit in which a magnetic force affecting the inside of the packing unit is controlled so as to move the magnetic supports relatively with respect to the host so that the biological material can be introduced into the host.
    Type: Grant
    Filed: October 16, 2003
    Date of Patent: November 12, 2013
    Assignees: Universal Bio Research Co. Ltd.
    Inventors: Hideji Tajima, Yoshiro Okami
  • Patent number: 8574913
    Abstract: Hemoglobin in a sample solution is quickly and reliably denatured; at the same time, quick and accurate measurement of hemoglobin and a hemoglobin derivative is realized. In a method for measuring hemoglobin and a hemoglobin derivative, and a reagent composition, a measurement kit, an analysis device, and an analysis system used in the method, a sample solution containing a blood component is treated with a nonionic surfactant, an oxidizing agent, and a metal salt to denature hemoglobin in the sample solution to measure the hemoglobin, and thereafter the amount of a hemoglobin derivative in the sample is measured by an immunological method using an antibody specifically binding to a denatured site of the denatured hemoglobin derivative.
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: November 5, 2013
    Assignee: Panasonic Corporation
    Inventors: Hirotaka Tanaka, Masanori Tanaka
  • Publication number: 20130251628
    Abstract: A method for identifying a molecule that binds an irradiated tumor in a subject and molecules identified thereby. In some embodiments, the method includes the steps of (a) exposing a tumor to ionizing radiation; (b) administering to a subject a library of diverse molecules; and (c) isolating from the tumor one or more molecules of the library of diverse molecules, whereby a molecule that binds an irradiated tumor is identified. Also provided are targeting ligands that bind an irradiated tumor and therapeutic and diagnostic methods that employ the disclosed targeting ligands.
    Type: Application
    Filed: February 13, 2013
    Publication date: September 26, 2013
    Applicant: Vanderbilt University
    Inventors: Dennis E. Hallahan, Shimian Qu, Zhaozhong Han
  • Publication number: 20130244285
    Abstract: Methods and systems for acoustically treating material using a continuous process in which material may be caused to flow in a continuous or intermittent fashion into/out of an acoustic treatment chamber where the material is exposed to focused acoustic energy. The methods and systems may be arranged to permit continuous processing for extended periods while an acoustic energy source operates at a relatively high power output. Treatment chambers may include features such as an acoustic window, a heat exchanger, inlet/outlet flow arrangements, an inspection window, insert elements that define a treatment volume size or shape, etc. Treatment system configurations relating to arrangements of a treatment chamber relative to an acoustic source and coupling medium, material flow paths, and others are provided.
    Type: Application
    Filed: May 10, 2013
    Publication date: September 19, 2013
    Applicant: Covaris, Inc.
    Inventors: James A. Laugharn, JR., Carl Beckett, Xiaoyin He
  • Publication number: 20130230895
    Abstract: The invention relates to a method for subjecting adherent cells to at least one electric field, in which the electric field is generated by applying a voltage to at least two active electrodes 63, wherein at least three electrodes 63, 64 are provided, and wherein at least two electrodes 63, 64 are active electrodes 63 when the voltage is applied in order to generate a first electric field, and in which at least one second electric field is generated, wherein at least one of the two previously active electrodes 63 is a potential-free electrode 64 when the voltage is applied.
    Type: Application
    Filed: June 21, 2011
    Publication date: September 5, 2013
    Applicant: LONZA COLOGNE GMBH
    Inventors: Thomas Koblizek, Andreas Heinze, Timo Gleissner, Herbert Mueller-Hartmann, Andreas Wirth
  • Publication number: 20130156792
    Abstract: Systems and methods for magnetic targeting of therapeutic particles are provided. Therapeutic particles comprise one or more magnetic or magnetizable materials and at least one therapeutic agent. Therapeutic particles are specifically targeted using uniform magnetic fields capable of magnetizing magnetizable materials, and can be targeted to particular locations in the body, or can be targeted for capture, containment, and removal. Therapeutic particles can comprise antioxidant enzymes, and can be targeted to cells to protect the cells from oxidative damage.
    Type: Application
    Filed: December 15, 2009
    Publication date: June 20, 2013
    Applicants: The Trustees of the University of Pennsylvania, The Children's Hospital of Philadelphia
    Inventors: Robert J. Levy, Michael Chorny, Vladimir Muzykantov, Elizabeth Hood
  • Patent number: 8455228
    Abstract: A method for facilitating a delivery of a molecule into an interior space of a cell includes the steps of introducing a molecule into a biological structure comprising a cell and applying a substantially continuous low-level electric field, in the form of non-thermal plasma (ionized gas) generated by a direct current voltage applied to an electrode, to the molecule and biological structure. The field is applied for a duration sufficient to effect a change in porosity the cell of the biological structure sufficient to facilitate an entry of a desired molecule into an interior thereof.
    Type: Grant
    Filed: September 10, 2008
    Date of Patent: June 4, 2013
    Assignee: University of South Florida
    Inventors: Mark Jaroszeski, Gabriel A. Lopez-Diaz, Richard J. Connolly, Andrew M. Hoff
  • Publication number: 20130122564
    Abstract: A method of applying a nondestructive mechanical force on one or more cells in aqueous environment by inducing heat generated acoustic pressure pulses. The method comprises providing an energy transmission pattern to induce the applying of a desired nondestructive mechanical force on a at least one cell by forming a plurality of heat generated acoustic pressure pulses in an aqueous environment and instructing the radiation of a target area in proximity to the at least one cell in the aqueous environment with light energy according to the energy transmission pattern.
    Type: Application
    Filed: November 8, 2012
    Publication date: May 16, 2013
    Applicant: Technion Research & Development Foundation Ltd.
    Inventor: Technion Research & Development Foundation Ltd
  • Patent number: 8435465
    Abstract: A microfluidic cartridge for isolating biological molecules having a capture chamber containing functionalized solid supports maintained in a fluidized state provides reduced pressure drops and bubble formation during microfluidic extraction. The cartridge may include an electric field lysis chamber and/or a chemical lysis chamber. The electric-field lysis chamber may comprise an electrically insulating structure arranged between two opposing planar electrodes.
    Type: Grant
    Filed: November 3, 2008
    Date of Patent: May 7, 2013
    Assignee: CFD Research Corporation
    Inventors: Shivshankar Sundaram, Balabhaskar Prabhakarpandian, Kapil Pant, Yi Wang
  • Publication number: 20130071905
    Abstract: Disclosed is a liquid culture medium for substance introduction, which is capable of increasing the survival rate of cells after substance introduction as much as possible when the cells are irradiated with plasma for the purpose of introducing a target substance into each of the cells. Specifically disclosed is a liquid culture medium for substance introduction, which is used for the purpose of introducing a predetermined target substance into a cell and enables introduction of the target substance into the cell by having the cell in the liquid culture medium, which contains the target substance, irradiated with a plasma jet. The liquid culture medium contains a damage preventing component that prevents the cell from damage due to the plasma jet.
    Type: Application
    Filed: May 25, 2011
    Publication date: March 21, 2013
    Applicant: NATIONAL UNIVERSITY CORPORATION KUMAMOTO UNIVERSITY
    Inventors: Douyan Wang, Daisuke Seki, Tako Namihira, Hisato Saito, Hidenori Akiyama
  • Publication number: 20130052738
    Abstract: A method of delivering exogenous molecules, comprising: providing a plurality of cells having a cell membrane; adding a plurality of exogenous molecules to the cells; exposing the cells to a defocused infrared (IR) light to permeabilize the cell membrane of the cells; and delivering the exogenous molecules to the cells through the permeablized cell membrane, wherein an intensity of the IR light at the optical focus is at least greater than or equal to an order of 104 W/cm2.
    Type: Application
    Filed: August 30, 2011
    Publication date: February 28, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Vasile Bogdan Neculaes, Kenneth Roger Conway, Allen Lawrence Garner, Evelina Roxana Loghin, Siavash Yazdanfar, Dmitry Vladimirovich Dylov, Brian Michael Davis, Chulmin Joo
  • Patent number: 8349598
    Abstract: A method of optoperforation of the membrane of a cell by application of laser pulses characterized by focusing the pulsed laser beam onto the cell membrane to be perforated, applying a series of laser pulses of predetermined pulse energy, measuring the oscillation time of the bubbles formed in the laser focus from the change in laser intensity of a test laser beam transmitted through the laser focus and caused by the bubbles in the laser focus, and increasing the pulse energy to a level at which the oscillation time of the bubbles attains a predetermined value.
    Type: Grant
    Filed: January 9, 2008
    Date of Patent: January 8, 2013
    Assignee: Universitat Zu Lubeck
    Inventor: Alfred Vogel
  • Patent number: 8338150
    Abstract: Disclosed is a method for parallel delivery of agents to and/or into a cell structure, wherein at least two electrolyte-filled tubes are provided together with a counter electrode, the tubes being connected to a voltage or current generator, said agents being introduced into the electrolyte solution contained in the tubes, which are placed close to the cell structure, whereupon the agents are transported through the tubes to said cell structure and into the said structure through pores which have been formed by application of an electric field focused on the cell structure, resulting in electroporation of the cell structure. Also different applications of the method is disclosed, e.g. use of the method in order to transfer cell-impermeant solutes, such as drugs or genes, into the cell structure or out of the cell structure.
    Type: Grant
    Filed: June 9, 2008
    Date of Patent: December 25, 2012
    Assignee: Cellectricon AB
    Inventors: Owe Orwar, Mattias Karlsson, Kerstein Nolkrantz, Cecilia Farre
  • Patent number: 8334133
    Abstract: In method of injecting a substance into a living cell having a cell membrane, the substance, the cell and a liquid are placed into a tapering passage. Energy is applied to the cell, thereby inducing poration. To sort cells, a cellular suspension is placed in a tapering passage, including a narrow end that defines an opening that has a dimension corresponding to a cell size. An acoustic wave is applied, thereby forcing cells having a cell size smaller than the selected cell size through the opening, with a portion of the cells having a cell size not smaller than the selected cell size not forced through the opening. To extract material from a cell, an electric field and an acoustic wave are applied, thereby causing the cell membrane to allow the material to pass out of the cell.
    Type: Grant
    Filed: March 12, 2010
    Date of Patent: December 18, 2012
    Assignee: Georgia Tech Research Corporation
    Inventors: Andrei G. Fedorov, Fahrettin L. Degertekin
  • Patent number: 8323955
    Abstract: A micromachined patch-clamp apparatus is disclosed for holding one or more cells and providing electrical, chemical, or mechanical stimulation to the cells during analysis with the patch-clamp technique for studying ion channels in cell membranes. The apparatus formed on a silicon substrate utilizes a lower chamber formed from silicon nitride using surface micromachining and an upper chamber formed from a molded polymer material. An opening in a common wall between the chambers is used to trap and hold a cell for analysis using the patch-clamp technique with sensing electrodes on each side of the cell. Some embodiments of the present invention utilize one or more electrostatic actuators formed on the substrate to provide mechanical stimulation to the cell being analyzed, or to provide information about mechanical movement of the cell in response to electrical or chemical stimulation.
    Type: Grant
    Filed: March 5, 2003
    Date of Patent: December 4, 2012
    Assignee: Sandia Corporation
    Inventor: Murat Okandan
  • Publication number: 20120270293
    Abstract: A tissue sample preservation process and device for improving and standardizing tissue preservation procedure, including placing tissue specimens in a cold fixative, performing fixative penetration at a refrigerated temperature, and accelerating fixative penetration by ultrasound. Also disclosed is the application of ultrasound and temperature control in the dehydration, clearing, and impregnation steps.
    Type: Application
    Filed: December 1, 2010
    Publication date: October 25, 2012
    Inventor: Wei-Sing Chu
  • Patent number: 8263375
    Abstract: The present application includes systems and methods for identifying a compound capable of interacting with a G-Protein Coupled Receptor (GPCR) or Receptor Tyrosine Kinase (RTK) including providing a device capable of measuring cell-substrate impedance operably connected to an impedance analyzer, adding test cells expressing a GPCR or a RTK to wells of the device, measuring first impedances of the wells and optionally determining first cell indices from the first impedances, adding a compound to at least one well containing test cells to form at least one compound well and adding a vehicle control to at least another well containing test cells to form at least one control well, measuring second impedances of the compound well and the control well and optionally determining second cell indices from the second impedances, determining the change in the impedance or cell index for the compound well and the one control well, comparing the change in impedance or cell index between the compound well and the control
    Type: Grant
    Filed: August 4, 2005
    Date of Patent: September 11, 2012
    Assignee: ACEA Biosciences
    Inventors: Yama A. Abassi, Naichen Yu, Josephine Atienza, Xiao Xu, Xiabo Wang
  • Patent number: 8257962
    Abstract: An extracellular potential measuring device includes a plate portion having a first surface and a second surface opposite to the first surface, and an electrode provided on the second surface of the plate portion. In the plate portion, a pocket having an opening which opens to the first surface is formed, and a through-hole communicating to the second surface from the pocket. The through-hole communicates from a position which is closer to the opening than a deepest point of the first pocket. The electrode is provided around of the opening of the through-hole. In this device, even if a cell to be examined does not reach the deepest point of the pocket, a cell membrane of the cell can tightly attaches onto the through-hole securely without a clearance. Hence, culture solution inside the through-hole is isolated from culture solution over an upper surface of the plate portion, thereby allowing electrochemical changes caused by activities of the cell to be detected efficiently with a detector electrode.
    Type: Grant
    Filed: March 8, 2004
    Date of Patent: September 4, 2012
    Assignee: Panasonic Corporation
    Inventors: Masaya Nakatani, Hiroaki Oka, Fumiaki Emoto
  • Patent number: 8252227
    Abstract: The invention relates to a method of viral inactivation by dry heating of a virus present or potentially present in a biological product that has been dried according to the glass transition temperature.
    Type: Grant
    Filed: December 19, 2006
    Date of Patent: August 28, 2012
    Assignee: Laboratoire Francais du Fractionnement et des Biotechnologies
    Inventor: Annie Bardat
  • Patent number: 8232084
    Abstract: A device for measuring an extracellular potential of a test cell includes a substrate having a well formed in a first surface thereof and a first trap hole formed therein. The well has a bottom. The first trap hole includes a first opening formed in the bottom of the well and extending toward a second face of the substrate, a first hollow section communicating with the first opening via a first connecting portion, and a second opening extending reaching the second surface and communicating with the first hollow section via a second connecting portion. The first connecting portion has a diameter smaller than a maximum diameter of the first hollow section, greater than a diameter of the second connecting portion, and smaller than a diameter of the test cell. The device can retain the test cell securely and accept chemicals and the test cell to be put into the device easily.
    Type: Grant
    Filed: October 3, 2008
    Date of Patent: July 31, 2012
    Assignee: Panasonic Corporation
    Inventors: Masaya Nakatani, Hiroaki Oka, Fumiaki Emoto
  • Patent number: 8232074
    Abstract: The present invention relates to methods of measuring electrical properties of a cell using electrode devices comprising tapered nanotips having submicrometer dimensions (“nanoelectrodes”) for insertion into a cell. The devices are used to measure electrical properties of the cell and, optionally, may be used to electroporate, the cell or subcellular structures within the cell. The invention also provides arrays of electrode devices having nanotips for simultaneously or sequentially measuring the electrical properties of cells (e.g., such as surface immobilized cells). The electrodes can be used to measure properties of ion channels and in HTS assays to identify drugs which affect the properties of ion channels. The invention additionally provides microfluidic systems adapted for use with the electrode devices having nanotips. In combination with the electrodes, the microfluidic systems provide cell-based biosensors for monitoring cellular responses to conditions, such as exposure to candidate drugs.
    Type: Grant
    Filed: October 15, 2003
    Date of Patent: July 31, 2012
    Assignee: Cellectricon AB
    Inventors: Kent Jardemark, Aldo Jesorka, Mattias Karlsson, Jessica Olofsson, Owe Orwar, Johan Pihl, Eskil Sahlin
  • Patent number: 8227223
    Abstract: Method and apparatus for processing a cell culture are provided. The method includes establishing a cell culture within a holding device having one or more wells, each well holding a cell culture, and including a well substrate with at least one electrode in contact with the cell culture; periodically applying at least one electrical pulse to the at least one electrode to prevent cells from attaching to and achieving confluence over the at least one electrode while allowing cells to attach to and achieve confluence over other portions of the well substrate; and discontinuing the periodically applying of the at least one electrical pulse to the at least one electrode after cells have achieved confluence over the other portions of the well substrate, and thereafter, monitoring the cell culture to monitor migration of cells over the electrode(s) from the other portions of the well substrate.
    Type: Grant
    Filed: January 27, 2009
    Date of Patent: July 24, 2012
    Assignee: Applied Biophysics, Inc.
    Inventors: Ivar Giaever, Charles R. Keese
  • Patent number: 8222223
    Abstract: A method of treating biocells includes the steps of: a. providing biocells; b. applying at least one stressor to the biocells sufficient to cause nonlethal and reparable cell wall damage to the biocells, thereby putting the biocells in a catabolic state during which catabolic metabolic functions predominate over anabolic metabolic functions; and c. obtaining at least one product produced by the biocells during the catabolic state. In another embodiment, the method includes the steps of: a. providing biocells that are mammalian cells; b. applying at least one stressor to the biocells sufficient to cause nonlethal and reparable cell wall damage to the biocells, the reparable cell wall damage comprising openings that allow increased passage of materials through the cells walls; and c. inserting foreign DNA through the openings into the biocells.
    Type: Grant
    Filed: September 7, 2010
    Date of Patent: July 17, 2012
    Assignee: Battelle Memorial Institute
    Inventors: Satya P. Chauhan, Paul J. Usinowicz
  • Publication number: 20120171746
    Abstract: The invention is directed to a method for the manipulation of at least one cell, the method comprising the steps of depositing a metal onto the surface of a substrate, placing the at least one cell at or near the surface of the substrate, and irradiating the surface of the substrate with at least one laser pulse. The inventive method is characterized by the formation of surface structures with a size of one micrometer or less on the surface of the substrate prior to depositing the metal thereon. The invention is also directed to a system for the manipulation of at least one cell, the system comprising a substrate with surface structures having a size of 1 micrometer or less, wherein a metal is deposited on the surface structures, and wherein the system further comprises a laser for irradiating the surface structures.
    Type: Application
    Filed: June 11, 2010
    Publication date: July 5, 2012
    Applicants: PRESIDENT AND FELLOWS OF HARVARD COLLEGE, GOTTFRIED WILHELM LEIBNIZ UNIVERSITAT
    Inventors: Eric Mazur, Alexander Heisterkamp, Eric Diebold
  • Patent number: 8192990
    Abstract: A method for introducing biologically active molecules into animal or human cells using an electric current includes suspending the cells and dissolving the biologically active molecules in a buffer solution including HEPES and at least 10 mmol×1?1 magnesium ions (Mg2+), the buffer solution having a buffer capacity of at least 20 mmol×1?1 ×pH?1 at a change in the pH from pH 7 to pH 8 and at a temperature of 25° C., and an ionic strength of at least 200 mmol×1?1. An electric voltage is applied to the suspension.
    Type: Grant
    Filed: January 19, 2011
    Date of Patent: June 5, 2012
    Assignee: Lonza Cologne GmbH
    Inventors: Gudula Riemen, Elke Lorbach, Juliana Helfrich, Gregor Siebenkotten, Herbert Mueller-Hartmann, Kirsten Rothmann-Cosic, Corinna Thiel, Meike Weigel, Heike Wessendorf, Helmut Brosterhus, Michael Nix
  • Publication number: 20120135493
    Abstract: The present invention includes methods for transferring a multigenic phenotype to a cell by transfecting, preferably by phototransfection, and locally transfecting a cell or a cellular process with a laser while the cell is bathed in a fluid medium comprising two or more nucleic acids, thereby introducing the nucleic acid into the interior of the cell. Expression of the nucleic acids results in a multigenic phenotype in the tranfected cell.
    Type: Application
    Filed: December 12, 2006
    Publication date: May 31, 2012
    Inventors: James Eberwine, Philip G. Haydon, Jai-Yoon Sul, Hajime Takano, Chia-Wen Kitty Wu, Fanyi Zeng
  • Patent number: 8173416
    Abstract: The invention relates to a novel circuit arrangement for electrotransfection or electrofusion, which enables the transportation of DNA and/or other biologically active molecules to the nucleus of higher eukaryotic cells or the fusion of cells, independent of cell division and with reduced cell mortality.
    Type: Grant
    Filed: April 23, 2002
    Date of Patent: May 8, 2012
    Assignee: Lonza Cologne GmbH
    Inventors: Herbert Müller-Hartmann, Gudula Riemen, Kirsten Rothmann-Cosic, Corinna Thiel, Ludger Altrogge, Meike Weigel, Rainer Christine, Elke Lorbach, Juliana Helfrich, Heike Wessendorf, Gregor Siebenkotten
  • Publication number: 20120064518
    Abstract: Methods, tip assemblies and kits are provided for introducing material into cells. The tip assemblies include an attachment portion, a channel portion, and a constriction that function to reduce fluid pressure as a fluid passes through the constriction portion from the channel portion, whereby the tip assemblies form pores in the membranes of cells and introduce material into the cells. The material includes for example one selected from the group of: an inorganic compound, a drug, a genetic material, a protein, a carbohydrate, a synthetic polymer, and a pharmaceutical composition.
    Type: Application
    Filed: September 13, 2011
    Publication date: March 15, 2012
    Applicant: TUFTS UNIVERSITY
    Inventor: Thomas J. Diefenbach
  • Patent number: 8105818
    Abstract: A ready-to-use electroporation cuvette is provided that includes a cuvette, first and second electrodes positioned within the cuvette and electroporation competent cells frozen in a suspension solution within the cuvette, wherein the electroporation cuvette is configured to permit electroporation of the cells when the cells are thawed. The electroporation cuvette may be sealed with a cap that may be color coded to aid the user.
    Type: Grant
    Filed: July 18, 2006
    Date of Patent: January 31, 2012
    Assignee: Molecular Transfer, Inc.
    Inventor: Robert L. Bebee
  • Patent number: 8101401
    Abstract: The invention concerns a container 1 with chambers 2 which each comprise at least one pair of electrodes including a first 4 and a second electrode 5 for the application of electric voltage for generating an electric field within one chamber 2. At least two first electrodes 4 of different chambers 3 are conductively coupled and at least one second electrode 5 of said chamber 2 is separately conductively connectable. The invention further concerns a method for manufacturing said container 1 as well as a device for electrically contacting at least one of said containers 1.
    Type: Grant
    Filed: March 15, 2005
    Date of Patent: January 24, 2012
    Assignee: Lonza Cologne GmbH
    Inventors: Herbert Müller-Hartmann, Michael Habig
  • Patent number: 8080399
    Abstract: An opening is formed in a cell using laser radiation. A Bessel beam is formed using the laser radiation and the Bessel beam is directed onto the cell to form an opening. The guiding of material towards the opening may be involved using optical trapping/manipulation. The material may change cellular function or analyse cell behaviour. Both pulsed laser radiation and continuous wave radiation may be formed using the same laser.
    Type: Grant
    Filed: November 29, 2005
    Date of Patent: December 20, 2011
    Assignee: The University of Court of the University of St. Andrews
    Inventors: Kishan Dholakia, Christian Thomas Alcuin Brown, Lynn Paterson
  • Patent number: 8071318
    Abstract: Drug candidate screening methods are applied to discover compounds with activity against ion channel targets. The method may include modulating the transmembrane potential of host cells in a plurality of sample wells with a repetitive application of electric fields so as to set the transmembrane potential to a level corresponding to a pre-selected voltage dependent state of a target ion channel.
    Type: Grant
    Filed: February 2, 2004
    Date of Patent: December 6, 2011
    Assignee: Vertex Pharmaceuticals (San Diego) LLC
    Inventors: Michael P. Maher, Jesus E. Gonzalez, III
  • Patent number: 8017367
    Abstract: The introduction of genetic material or molecules of biological interest into cells is a procedure with an increasing interest both for experimental and application purposes, so that electroporation is a widely used technique, but the electroporation of single adhering cells is still impaired. The present application describes an apparatus for the electroporation of any kind of cell adhering to a substrate at any stage of development, where an electrical signal can be driven and applied to a single adhering cell in culture in order to obtain its electroporation. The method to electroporate a single adhering cell with the apparatus of the invention is also described.
    Type: Grant
    Filed: January 29, 2004
    Date of Patent: September 13, 2011
    Assignee: Narvalus S.R.L.
    Inventors: Stefano Vassanelli, Giorgio Cellere
  • Patent number: 8008077
    Abstract: The present invention provides a method for introducing a molecule into the cytosol of a cell in which the cell is contacted with a photosensitising agent, the cell is irradiated with light of a wavelength effective to activate the photosensitising agent and, substantially at the same time or after the irradiation, the cell is contacted with the molecule to be introduced, particularly for use in cancer treatment, gene therapy and vaccination.
    Type: Grant
    Filed: May 9, 2007
    Date of Patent: August 30, 2011
    Assignee: PCI Biotech AS
    Inventors: Kristian Berg, Lina Prasmickaite, Anders Hogset, Pal Kristian Selbo
  • Patent number: 8003389
    Abstract: A method for introducing biologically active molecules into animal or human cells using electric current includes suspending the cells and dissolving the biologically active molecules in a buffer solution which has a buffer capacity of at least 20 mmol×l?1×pH?1 and an ionic strength of at least 200 mmol×l?1 at a change in the pH from pH 7 to pH 8 and at a temperature of 25° C. to form a suspension. The method further includes applying an electric voltage to the suspension so as to introduce the biologically active molecules into animal or human cells.
    Type: Grant
    Filed: November 9, 2006
    Date of Patent: August 23, 2011
    Assignee: Lonza Cologne GmbH
    Inventors: Gudula Riemen, Elke Lorbach, Juliana Helfrich, Gregor Siebenkotten, Herbert Mueller-Hartmann, Kirsten Rothmann-Cosic, Corinna Thiel, Meike Weigel, Heike Wessendorf, Helmut Brosterhus, Michael Nix
  • Publication number: 20110201075
    Abstract: Optoinjection method for transiently permeabilizing a target cell by (a) illuminating a population of cells contained in a frame; (b) detecting at least one property of light directed from the frame; (c) locating a target cell by the property of light; and (d) irradiating the target cell with a pulse of radiation.
    Type: Application
    Filed: December 17, 2010
    Publication date: August 18, 2011
    Applicant: CYNTELLECT, INC.
    Inventors: Manfred R. Koller, Elie G. Hanania, Timothy M. Eisfeld, Bernhard Ø. Palsson