Concentration, Separation, Or Purification Of Micro-organisms Patents (Class 435/173.9)
  • Patent number: 11920155
    Abstract: Compositions comprising a population of oligodendrocyte progenitor cells (OPCs), as well as methods of making and using the same, are provided. In one aspect, a container comprising a composition, where the composition comprises a population of cells comprising a plurality of OPCs, and where the population of cells comprises less than 15% undesirable cell types is provided. In another aspect, the population of cells comprises less than 15% undesirable epithelial lineage cells. In yet another aspect, the population of cells comprises less than 2% K7 positive cells. In an aspect, a population of cells comprising a plurality of oligodendrocyte progenitor cells is capable of forming less than one epithelial cyst per 100,000 cells in a cyst assay is provided. An even further aspect of the present disclosure is a container comprising a composition, where the composition comprising a plurality of oligodendrocyte progenitor cells is useful in treating treat stroke, spinal cord injury, and multiple sclerosis.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: March 5, 2024
    Assignee: ASTERIAS BIOTHERAPEUTICS, INC.
    Inventors: Erik Michael Whiteley, Uzma Shoukat-Mumtaz, Rashi Srivastava, Nathan Charles Manley, Casey Christopher Case
  • Patent number: 11860171
    Abstract: In a screening kit and a confirmed and typing diagnosis system for primary aldosteronism, a sample is pretreated by a magnetic bead bonded with a balanced hydrophilic-lipophilic polymer on the surface thereof, and process conditions are optimized and the content of each the five markers such as, aldosterone in the sample is accurately detected by liquid chromatography-tandem mass spectrometry for one time, thus finding the optimal screening cut-off value of 20.4; when a positive result is judged, PA is confirmed and subjected to typing diagnosis according to the test values of the markers, thereby achieving the simultaneous detection of the content of each the five markers such as, aldosterone on the same platform. Therefore, the screening kit and confirmed and typing diagnosis system for primary aldosteronism are integrated with screening, confirmed and typing diagnosis functions, thus providing a reliable laboratory examination basis for clinicians to formulate an effective therapeutic regimen.
    Type: Grant
    Filed: April 21, 2023
    Date of Patent: January 2, 2024
    Assignee: HANGZHOU CALIBRA DIAGNOSTICS CO., LTD.
    Inventors: Pengyun Liu, Xiaofen Yuan, Jinfei Ma, Ziqing Kong, Yikun Li, Weijia Wu, Huafen Liu
  • Patent number: 11744243
    Abstract: Methods, systems, and compositions are provided for extracting bone marrow cells from bone obtained from deceased donors, for preparing the bone marrow for cryopreservation, and for obtaining desired cells from cryopreserved and fresh bone marrow.
    Type: Grant
    Filed: March 1, 2022
    Date of Patent: September 5, 2023
    Assignee: OSSIUM HEALTH, INC.
    Inventors: Erik J. Woods, Brian H. Johnstone, Dongsheng Gu, Aubrey Marie Sherry, Kelsey Gwen Musall
  • Patent number: 11712696
    Abstract: A drug screening platform simulating hyperthermic intraperitoneal chemotherapy including a dielectrophoresis system, a microfluidic chip and a heating system is disclosed. The dielectrophoresis system is used to provide a dielectrophoresis force. The microfluidic chip includes a cell culture array and observation module and a drug mixing module. The cell culture array and observation module are used to arrange the cells into a three-dimensional structure through the dielectrophoresis force to construct a three-dimensional tumor microenvironment. The drug mixing module is coupled to the cell culture array and observation module and used to automatically split and mix the inputted drugs and output the drug combinations into the cell culture array and observation module.
    Type: Grant
    Filed: August 5, 2021
    Date of Patent: August 1, 2023
    Assignee: NATIONAL TSING HUA UNIVERSITY
    Inventors: Te-Yu Chao, Yu-Ching Tung, Mao-Chih Hsieh, Yu-Ting Tai, Bing-Ying Ho, Wei-Chia Chang, Sung-Yang Wei, Chang-Hung Hsieh, Chung-Cheng Chou, Jen-Tsan Chi, Long Hsu, Hwan-You Chang, Huang-Ming Philip Chen, Cheng-Hsien Liu
  • Patent number: 11701642
    Abstract: Catalyst materials comprising iron and palladium are described. Also described are methods for preparing such materials. In addition, methods for remediating materials such as sediments and groundwater using the catalyst materials are described.
    Type: Grant
    Filed: February 18, 2020
    Date of Patent: July 18, 2023
    Assignee: United States Government, as represented by the Administrator of the U.S. EPA, Waashington DC
    Inventors: Souhail Al-Abed, John McKernan, Slawomir Lomnicki
  • Patent number: 11698364
    Abstract: Cell-separation systems and methods utilizing cell-specific microbubble tags and ultrasound-based separation are described. The methods are useful for simplification of time-consuming and costly cell purification procedures and real time apoptosis detection.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: July 11, 2023
    Assignee: University of Washington
    Inventors: Thomas J. Matula, Masaoki Kawasumi, Oleg Sapozhnikov
  • Patent number: 11602747
    Abstract: The present invention relates to, inter alia, a microfluidic device for capturing target cells and analyzing genomic DNA isolated from the target cells while under flow conditions. The microfluidic device includes a cell microchannel and a nucleic acid microchannel that intersect in an orthogonal manner, thereby forming a cell capture intersection region. The microfluidic device also includes a cell capture array and a nucleic acid entanglement array. The cell capture array includes a plurality of cell capturing micropillars and is located in the cell capture intersection region. The nucleic acid entanglement array includes a plurality of nucleic acid entanglement micropillars that function to physically entangle and maintain thereon genomic DNA isolated from the one or more target cell, and is located in a portion of the nucleic acid microchannel that is adjacent to and downstream of the cell capture intersection region. Methods of using the microfluidic device are also disclosed.
    Type: Grant
    Filed: May 22, 2017
    Date of Patent: March 14, 2023
    Assignee: CORNELL UNIVERSITY
    Inventors: Harold G. Craighead, Sarah J. Reinholt
  • Patent number: 11292001
    Abstract: A microfluidic system and method for the recovery of particles; the system comprises at least one standing chamber, at least one outlet, at least one inlet and a moving assembly, which is adapted to move the particles; a fluid is fed from the inlet to the outlet so as to generate a substantially continuous flow of the fluid; a given particle of a group of particles arranged in the collecting chamber is moved selectively with respect to the other particles of the assembly to a release area, in which a dragging force created by the fluid flow is such as to move the particle towards the outlet.
    Type: Grant
    Filed: September 21, 2018
    Date of Patent: April 5, 2022
    Assignee: Menarini Silicon Biosystems S.p.A.
    Inventors: Gianni Medoro, Alex Calanca
  • Patent number: 11136548
    Abstract: Described herein are cell culture media useful for the differentiation of human pluripotent stem cells into microglia. The methods described herein relate to in vitro generation of expandable, bankable, microglial cells by directed differentiation from human pluripotent stem cells (induced or embryonic). Using only defined cell culture media, differentiation of pluripotent stem cells is directed down a mesodermal path, in a rapid and scalable fashion, to generate cells adopting signatures of their in vivo counterparts, including gene expression, protein marker expression and functionality.
    Type: Grant
    Filed: June 24, 2016
    Date of Patent: October 5, 2021
    Assignee: Whitehead Institute for Biomedical Research
    Inventors: Julien Muffat, Yun Li, Rudolf Jaenisch
  • Patent number: 11130992
    Abstract: The present invention is directed to methods, compositions and reaction mixtures for multiplexing COLD-PCR/ice-COLD-PCR to enrich simultaneously several low abundance alleles (mutant target sequences) from a sample. The invention also involves COLD-PCR/ice-COLD-PCR amplification performed on DNA fragments that have different melting temperatures, and therefore different critical denaturation temperatures, in a graded temperature approach such that mutation enrichment is achieved on all diverse DNA fragments simultaneously (temperature-independent COLD-PCR or TI-COLD-PCR). The invention also involves methods for enabling identification of variant-sequence alleles in the presence of a large excess of non-variant alleles in nucleic acids without the complication of polymerase-introduced errors or other primer-introduced artifacts.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: September 28, 2021
    Assignee: Dana-Farber Cancer Institute, Inc.
    Inventor: Gerassimos Makrigiorgos
  • Patent number: 11103698
    Abstract: Certain substances (e.g., large molecules) that ordinarily cannot traverse the cell membrane of cells can be introduced into cells by applying an alternating electric field to the cell for a period of time, wherein the frequency of the alternating electric field is selected so that application of the alternating electric field increases permeability of the cell membrane. Once the permeability of the cell membrane has been increased, the substance is able to cross the cell membrane. This approach is particularly useful in the context of cancer cells (e.g., glioblastoma).
    Type: Grant
    Filed: May 1, 2020
    Date of Patent: August 31, 2021
    Assignees: The Board of Trustees of the Leland Stanford Junior University, Novocure GmbH
    Inventor: Aruna Gambhir
  • Patent number: 11077437
    Abstract: A microfluidic system for the isolation of particles of at least one given type belonging to a sample and comprising a separation unit, which is designed to transfer the particles of given type from a main chamber to a recovery chamber in a substantially selective manner with respect to further particles of the sample; at least one first reservoir, which is designed to contain a liquid and is fluidically connected to the separation unit; and a regulating assembly, which comprises at least a first regulating device having a first heat transfer element arranged at the first reservoir to adjust the temperature of the first reservoir, in particular to absorb heat from the reservoir.
    Type: Grant
    Filed: October 18, 2017
    Date of Patent: August 3, 2021
    Assignee: Menarini Silicon Biosystems S.p.A.
    Inventors: Gianni Medoro, Alex Calanca
  • Patent number: 10821218
    Abstract: Disclosed is a device for separating a cellular component from a multicomponent fluid. The device can comprise a body, a first acoustic wave generator, and a second acoustic wave propagating component. The body can define a channel having a first surface and a second surface opposite the first surface. The channel can extend along a longitudinal axis from a first end to a second end. The first acoustic wave generator can be coupled to the first surface. The first acoustic wave generator can be configured to generate an acoustic wave having a wavelength. The second acoustic wave propagating component can be coupled to the second surface. The second surface can be spaced an integer fractional multiple of the wavelength from the first surface and each integer factional multiple equals a number of pressure nodes within the channel.
    Type: Grant
    Filed: July 22, 2016
    Date of Patent: November 3, 2020
    Assignee: Biomet Biologics, LLC
    Inventors: Randel E. Dorian, Richard Wood Storrs, Michael D. Leach, Ned M. Hamman, Joel Carne
  • Patent number: 10773194
    Abstract: A method of washing particles in an acoustic chamber includes (a) flowing a suspension of particles in a suspension medium through a standing wave generated in a standing wave volume of the acoustic chamber to accumulate within the acoustic chamber at least some of the particles as raw particle concentrate; and (b) flowing a wash medium through the acoustic chamber to wash within the acoustic chamber at least some of the particles of the raw particle concentrate, and retaining within the acoustic chamber at least some washed particles.
    Type: Grant
    Filed: October 12, 2016
    Date of Patent: September 15, 2020
    Assignee: SONOSEP TECHNOLOGIES INC.
    Inventors: Felix Trampler, James Piret
  • Patent number: 10456791
    Abstract: A method for performing contactless ODEP for separation of CTCs is provided with the steps of obtaining patients' blood with rare cell suspected CTCs; adding at least one fluorescent antibody binding to CTCs into the blood; staining the blood; injecting the stained blood with fluorescent dye into an ODEP device and then performing fluorescent image identification; trapping the CTCs with at least one fluorescent antibody in the ODEP device by creating an image pattern and then generating an ODEP force; Separating the trapped CTCs from other non-CTCs cells; absorbing the trapped CTCs; and obtaining a high purity of CTCs. An apparatus for performing contactless ODEP for separation of CTCs is also provided.
    Type: Grant
    Filed: December 1, 2016
    Date of Patent: October 29, 2019
    Assignee: Ace Medical Technology Co., Ltd.
    Inventors: Min-Hsien Wu, Chia-Hsun Hsieh, Hung-Ming Wang, Wen-Pin Chou, Tzu-Keng Chiu
  • Patent number: 10444125
    Abstract: Devices for separating magnetically labeled moieties in a sample are provided. Aspects of the devices include a magnetic field source, a first magnetic field guide having a wedge-shaped portion with an apex edge, and a second magnetic field guide having a wedge-shaped portion with an apex edge. The apex edge of the first magnetic field guide is aligned substantially across from and parallel to the apex edge of the second magnetic field guide, and the device is configured to separate magnetically labeled moieties from non-magnetically labeled moieties in the sample. Also provided are methods of using the devices, as well as systems and kits configured for use with the devices and methods.
    Type: Grant
    Filed: December 26, 2017
    Date of Patent: October 15, 2019
    Assignee: BECTON, DICKINSON AND COMPANY
    Inventor: Liping Yu
  • Patent number: 10416155
    Abstract: The invention generally relates to methods of using compositions that include sets of magnetic particles, members of each set being conjugated to an antibody specific for a pathogen, and magnets to isolate a pathogen from a body fluid sample.
    Type: Grant
    Filed: May 2, 2018
    Date of Patent: September 17, 2019
    Assignee: DNAE Group Holdings Limited
    Inventors: Sergey A. Dryga, Victor C. Esch, Lisa-Jo Ann Clarizia, Eddie W. Adams, Thearith H. Ung, Ravil A. Sitdikov
  • Patent number: 10094837
    Abstract: Methods of isolating, enriching, capturing, identifying, or detecting the presence of, cancerous cells in a sample, e.g., a blood sample from a subject, by detecting the presence of one or more cancer cell surface markers selected from the group consisting of cadherin 1 (CDH1), CDH2, CDH3, CDH4, CDH5, CDH9, CDH11, CDH17, CDH19, protocadherin 9 (PCDH9) and/or PCDH beta 13 (PCDHb13), and optionally an additional cancer cell surface marker, e.g., EpCAM, MUC1, EphB4, EGFR, CEA, and/or HER2.
    Type: Grant
    Filed: August 15, 2016
    Date of Patent: October 9, 2018
    Assignee: The General Hospital Corporation
    Inventors: Shyamala Maheswaran, David Tsai Ting, Daniel A. Haber
  • Patent number: 9599610
    Abstract: The invention generally relates to a system for isolating or separating a target from a sample. In certain aspects, processes performed by the target capture system include introducing a plurality of magnetic particles, in which a plurality of the particles include at least one binding moiety specific to a target, into a sample to form at least one target/particle complex and applying a magnetic field to isolate the magnetic particle/target complexes from the sample. The process starts at inputting a sample into the system and ends at delivering a capture target or nucleic acids of the target into a container for further analysis.
    Type: Grant
    Filed: December 16, 2013
    Date of Patent: March 21, 2017
    Assignee: DNAE Group Holdings Limited
    Inventors: Ravil A. Sitdikov, Eddie W. Adams, Magdalena A. Torrance, David K. Aley, Erik J. Smith, Victor C. Esch
  • Patent number: 9034579
    Abstract: The present invention includes methods, devices and systems for isolating a nucleic acid from a fluid comprising cells. In various aspects, the methods, devices and systems may allow for a rapid procedure that requires a minimal amount of material and/or results in high purity nucleic acid isolated from complex fluids such as blood or environmental samples.
    Type: Grant
    Filed: October 10, 2014
    Date of Patent: May 19, 2015
    Assignee: BIOLOGICAL DYNAMICS, INC
    Inventors: Rajaram Krishnan, David J. Charlot, Eugene Tu, James McCanna, Lucas Kumosa, Paul D. Swanson, Robert Turner, Kai Yang, Irina Dobrovolskaya, David Liu, Juan Pablo Hinestrosa Salazar, Juscilene Menezes
  • Patent number: 9034578
    Abstract: The present invention includes methods, devices and systems for isolating a nucleic acid from a fluid comprising cells. In various aspects, the methods, devices and systems may allow for a rapid procedure that requires a minimal amount of material and/or results in high purity nucleic acid isolated from complex fluids such as blood or environmental samples.
    Type: Grant
    Filed: October 7, 2014
    Date of Patent: May 19, 2015
    Assignee: BIOLOGICAL DYNAMICS, INC.
    Inventors: Rajaram Krishnan, David Charlot, Eugene Tu, James McCanna, Lucas Kumosa, Paul Swanson, Robert Turner, Kai Yang, Irina Dobrovolskaya, David Liu
  • Publication number: 20150118728
    Abstract: According to embodiments of the present invention, an apparatus for separating a biological entity from a sample volume is provided. The apparatus includes an input chamber including an inlet configured to receive the volume sample, and an outlet, at least one magnetic element adjacent a portion of the input chamber, the magnetic element configured to provide a magnetic field in a vicinity of the portion of the input chamber to trap at least some leukocytes from the sample volume, and a filter in fluid communication with the outlet, the filter configured to separate the biological entity. According to further embodiments of the present invention, a method for separating a biological entity from a sample volume is also provided.
    Type: Application
    Filed: April 19, 2013
    Publication date: April 30, 2015
    Applicant: AGENCY FOR SCIENCE, TECHNOLOGY AND RESEARCH
    Inventors: Abdur Rub Abdur Rahman, Chandran Jegatha, Lakshmi Shankar, Chee Chung Wong
  • Publication number: 20150111276
    Abstract: The invention relates to methods of isolating white blood cells (WBCs) from a sample, e.g., whole blood, using magnetic particles that specifically bind to WBCs and a series of specific steps and conditions. The methods can include one or more of decreasing the viscosity of the sample prior to WBC isolation, agitating the sample at specified frequencies, and/or using a sample container arranged such that all of the sample is placed in close proximity (e.g., within 5, 2, 1, or 0.5 mm) to the source of the magnetic field. The new methods provide for isolation of WBC preparations with high yield, purity, and viability. The methods are designed for compatibility with automation protocols for rapid processing of multiple samples.
    Type: Application
    Filed: May 30, 2014
    Publication date: April 23, 2015
    Applicant: The General Hospital Corporation
    Inventors: Denise L. Faustman, Douglas E. Burger
  • Publication number: 20150110752
    Abstract: Methods of making and using a magnetic ECM are disclosed. The ECM comprises positively and negatively charged nanoparticles, wherein one of said nanoparticles contains a magnetically responsive element. When the magnetic ECM is seeded with cells, the cells will be magnetized and can be levitated for 3-D cell culture.
    Type: Application
    Filed: June 11, 2013
    Publication date: April 23, 2015
    Inventor: Glauco R. Souza
  • Publication number: 20150111277
    Abstract: A system is disclosed for washing a selected component and removing the selected component from a wash material. The selected component may include red blood cells that are washed to remove a rejuvenating solution. The red blood cells may then be removed with various systems, such as a standing acoustic wave system from the wash solution. Pumps and flow restrictors that provide steady flow from pumps that generate pulsed flow are also disclosed.
    Type: Application
    Filed: October 21, 2014
    Publication date: April 23, 2015
    Inventors: Ned M. HAMMAN, Michael D. LEACH, David ABESKARON
  • Publication number: 20150104845
    Abstract: An acoustic manipulation process and acoustic manipulation device are disclosed. The acoustic manipulation process includes providing a device having a pathway positioned to receive a flow of a particle-containing fluid, transporting the particle-containing fluid into the pathway, and applying standing surface acoustic waves to the particle-containing fluid while the particle-containing fluid is flowing through the pathway. The applying of the standing surface acoustic waves to the particle-containing fluid includes nodes and anti-nodes of the standing surface acoustic waves extending through the particle-containing fluid. The acoustic manipulation device includes a pathway positioned to receive a flow of a particle-containing fluid, and a mechanism for generating and applying standing surface acoustic waves to the particle-containing fluid while the particle-containing fluid is flowing through the pathway.
    Type: Application
    Filed: October 14, 2014
    Publication date: April 16, 2015
    Inventors: Tony Jun HUANG, Yuchao CHEN
  • Patent number: 9005941
    Abstract: The present invention includes methods, devices and systems for isolating a nucleic acid from a fluid comprising cells. In various aspects, the methods, devices and systems may allow for a rapid procedure that requires a minimal amount of material and/or results in high purity nucleic acid isolated from complex fluids such as blood or environmental samples.
    Type: Grant
    Filed: September 4, 2014
    Date of Patent: April 14, 2015
    Assignee: Biological Dynamics, Inc.
    Inventors: Rajaram Krishnan, David Charlot, Eugene Tu, James McCanna, Lucas Kumosa, Paul D. Swanson, Robert Turner, Kai Yang, Irina Dobrovolskaya, David Liu
  • Patent number: 8975065
    Abstract: Methods and devices of performing reactions for which presence of light is desirable are provided. Biological or chemical materials such as algae are put in a chamber shaped as a meandering fluid channel. The algae can be combined with biomass such as human or animal waste and then subject to light, such as natural light or light coming from a LED, to produce fuel. Production of fuel can be optimized by controlling the height-to-width ratio of the channels.
    Type: Grant
    Filed: July 23, 2007
    Date of Patent: March 10, 2015
    Assignee: California Institute of Technology
    Inventors: George Maltezos, Axel Scherer
  • Publication number: 20150064764
    Abstract: A device for transporting, trapping and escaping a single biomaterial using a magnetic structure, and a method of transporting, trapping and escaping of the single biomaterial using the same are provided, and a method is provided for controlling movement and direction of the single biomaterial including soft magnetic micro structure and magnetic structure in a linear, square storage, apartment type, radial soft magnetic micro structure. Accordingly, the device for transporting, trapping and escaping a single biomaterial and the method for transporting, trapping and escaping single biomaterial using the same can control movement on the lap-on-a-chip with increased precision and ease, by using magnetic force, and thus can be advantageously used in the field of magneto-resistive sensor, or categorization of single cells or biomolecules.
    Type: Application
    Filed: August 29, 2013
    Publication date: March 5, 2015
    Applicant: The Industry & Academic Cooperation in Chungnam National University (IAC)
    Inventors: Cheolgi Kim, Byeonghwa Lim, Reddy Venu, Hu XingHao, KunWoo Kim, Benjamin B. Yellen
  • Patent number: 8969059
    Abstract: The present invention includes methods, devices and systems for isolating a nucleic acid from a fluid comprising cells. In various aspects, the methods, devices and systems may allow for a rapid procedure that requires a minimal amount of material and/or results in high purity nucleic acid isolated from complex fluids such as blood or environmental samples.
    Type: Grant
    Filed: February 28, 2014
    Date of Patent: March 3, 2015
    Assignee: Biological Dynamics, Inc.
    Inventors: Rajaram Krishnan, David Charlot, Eugene Tu, James McCanna, Lucas Kumosa, Paul Swanson, Robert Turner, Kai Yang, Irina Dobrovolskaya, David Liu
  • Patent number: 8969058
    Abstract: The present invention relates to systems for releasing genetic materials from a solid medium. The present invention also relates to methods for releasing genetic materials from a solid medium. The present invention further relates to methods for isolating genetic material from a biological sample.
    Type: Grant
    Filed: December 15, 2008
    Date of Patent: March 3, 2015
    Assignee: Canon U.S. Life Sciences, Inc.
    Inventor: Michele R. Stone
  • Patent number: 8962235
    Abstract: A method for sorting particles, in particular cells A and B. The method uses a single channel with only one input and only one output. A particle mix A and B in a fluid is introduced into the channel and particles within the channel are sorted.
    Type: Grant
    Filed: September 20, 2007
    Date of Patent: February 24, 2015
    Assignee: The University Court of the University of St. Andrews
    Inventors: Michael MacDonald, Kishan Dholakia, Igor Andreev
  • Publication number: 20150050710
    Abstract: The present invention relates to a living fatty material from which immunity is removed, and a method for manufacturing the same, and more specifically, to a living fat tissue from which immunity is removed and to a method for manufacturing the same, comprising the steps of collecting fat tissues; irradiating the fat tissues with 20 to 500 kGy of gamma (?) rays; and applying centrifugal separation of the fat tissues irradiated with gamma rays.
    Type: Application
    Filed: October 17, 2012
    Publication date: February 19, 2015
    Inventor: HEE YOUNG LEE
  • Publication number: 20150044684
    Abstract: An object of the present invention is to prepare individual microorganisms or a microflora composition derived from land or seafloor soil in which contamination of land or seafloor soil-derived substances is reduced.
    Type: Application
    Filed: March 12, 2013
    Publication date: February 12, 2015
    Inventors: Sumihiro Koyama, Taishi Tsubouchi
  • Publication number: 20150044180
    Abstract: The present invention relates to methods of isolating a substantially homogeneous population of pluripotent stem cells from adult neural crest tissue (e.g., periodontal ligament) as well as pharmaceutical compositions comprising such isolated pluripotent stem cells. Methods of inducing the isolated pluripotent stem cells into specific cell lineages, such as neurogenic and retinogenic lineages, are also described. The isolated pluripotent stem cells find use in various regenerative medicine applications and the treatment of degenerative diseases.
    Type: Application
    Filed: March 1, 2013
    Publication date: February 12, 2015
    Inventors: Herman S. Cheung, Daniel Pelaez, C-Y Charles Huang
  • Patent number: 8951765
    Abstract: Embodiments described herein relate to separating and/or concentrating target cells from a carrier fluid that may include other non-target cells. Embodiments include a cell separator with a flow surface having indentations formed thereon. The indentations are configured to capture target cells by physical and/or chemical interactions. The indentations may also include a layer of support molecules that assist in releasing captured cells for collection.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: February 10, 2015
    Assignee: Empire Technology Development LLC
    Inventor: Masahiro Ueda
  • Publication number: 20150037864
    Abstract: A process for separating sperm cells from a chemical compound by electrophoresis comprising subjecting the sperm cells to an electric potential between a cathode and an anode such that the sperm cells are separated from the chemical compound, and related methods including methods of using said sperm cells in intrauterine insemination.
    Type: Application
    Filed: March 15, 2013
    Publication date: February 5, 2015
    Inventor: Michael Howard James
  • Patent number: 8942458
    Abstract: A method for distinguishing and sorting cells characterized by comprising distinguishing and sorting a specific cell mass or a part of the cells in the cell mass with the use of transmitted light data reflecting the morphological characteristics of the cells such as size and shape optionally together with side-scattering light data reflecting the characteristics of the internal structure of the cells. The part of the cells in the specific cell mass as described above are at the G1 stage or at a part of the M stage in the cell cycle. A part of the cells at the G1 stage are referred to as the left bottom line in an analytical dispersion diagram of the cells wherein the abscissa indicates the transmitted light data, while a part of the cells at the M stage are referred to as the right bottom line in the analytical dispersion diagram of the cells wherein the abscissa indicates the transmitted light data.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: January 27, 2015
    Assignee: Furukawa Electric Co., Ltd.
    Inventors: Toru Takahashi, Ken Tsukii, Jie Xu
  • Patent number: 8932815
    Abstract: The present invention includes methods, devices and systems for isolating a nucleic acid from a fluid comprising cells. In various aspects, the methods, devices and systems may allow for a rapid procedure that requires a minimal amount of material and/or results in high purity nucleic acid isolated from complex fluids such as blood or environmental samples.
    Type: Grant
    Filed: June 20, 2014
    Date of Patent: January 13, 2015
    Assignee: Biological Dynamics, Inc.
    Inventors: Rajaram Krishnan, David J. Charlot, Eugene Tu, James McCanna, Lucas Kumosa, Paul D. Swanson, Robert Turner, Kai Yang, Irina Dobrovolskaya, David Liu, Juan Pablo Hinestrosa Salazar, Juscilene Menezes
  • Patent number: 8926815
    Abstract: Method for the selection or the processing of first particles sensitive to the application of an external stimulus including the step of producing, through the application of the external stimulus, the permeabilization of at least a selected first particle, consisting in the organization of the first particles through a first force field, to generate a second force field substantially placed in proximity of at least a selected first particle to be permeabilized.
    Type: Grant
    Filed: April 13, 2007
    Date of Patent: January 6, 2015
    Assignee: Silicon Biosystems S.p.A
    Inventors: Mélanie Abonnenc, Nicoló Manaresi, Gianni Medoro
  • Patent number: 8927243
    Abstract: The present invention concerns compositions and methods of extracting infectious pathogens from a volume of blood. In one embodiment, the method includes the steps of creating a fibrin aggregate confining the pathogens and introducing a fibrin lysis reagent to expose the pathogens for analysis. The present invention also concerns materials and methods for removing aurintricarboxylic acid (ATA) from a sample.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: January 6, 2015
    Assignee: University of South Florida
    Inventor: Matt Ewert
  • Patent number: 8921102
    Abstract: The invention features devices and methods for detecting, enriching, and analyzing circulating tumor cells and other particles. The invention further features methods of diagnosing a condition, e.g., cancer, in a subject by analyzing a cellular sample from the subject.
    Type: Grant
    Filed: December 29, 2005
    Date of Patent: December 30, 2014
    Assignee: GPB Scientific, LLC
    Inventors: Martin Fuchs, Ying-Xin Wang, Yi-Shuian Huang, Neil X. Krueger
  • Publication number: 20140377834
    Abstract: An acoustic standing wave is utilized to separate components from a multi-component fluid, such as animal cells from fluid-cell mixture, in a fluid flow scheme with an acoustophoresis device. For example, the flow scheme and device allows for trapping of falling cells as the cells coalesce, agglomerate, and the weight of the agglomerated mass overcomes the drag and ultrasonic standing wave forces in the device.
    Type: Application
    Filed: June 24, 2014
    Publication date: December 25, 2014
    Inventors: Walter M. Presz, Jr., Bart Lipkiens, Jason Dionne, Thomas J. Kennedy, III
  • Publication number: 20140349330
    Abstract: The invention relates to a process which enables optimal aggregation of cells, typically of stem cells, promoting the organisation thereof and advantageously the differentiation thereof, in particular in the context of the formation of a tissue substitute. This process comprises exposing pretreated cells to a magnetic field and makes it possible to obtain large cell aggregates, even prepared in the absence of support matrix and/or of growth factor. The invention also relates to the cell aggregates that can be obtained using such a process and also to the uses thereof as tissue initiators with a view to obtaining a tissue structure of interest in vitro, ex vivo or in vivo. Moreover, it relates to the resulting tissue structures and to the uses thereof in research or in therapy as tissue substitutes. The present application also provides a method which advantageously makes it possible to monitor the development of the tissue of interest in vivo.
    Type: Application
    Filed: September 3, 2012
    Publication date: November 27, 2014
    Applicant: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
    Inventors: Delphine Fayol, Nathalie Luciani, Catherine Le Visage, Florence Gazeau, Claire Wilhelm-Hannetel
  • Patent number: 8889388
    Abstract: The invention provides a settling device comprising an acoustic wave generator and an inclined settling chamber. The angle ? between the acoustic wave direction and the inclined settling chamber is greater than 0 and less than 90°. The invention also provides a concentration method and a separation method using the device. The invention can be used to concentrate or separate particles such as inorganic particles, organic particles, and biological particles, for example, mammalian cells, bacteria, yeast, algae, and plant cells. The invention exhibits technical merits such as higher efficiency, cost-effectiveness, and large-scale production.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: November 18, 2014
    Inventors: Zhaowei Wang, Donald Feke, Joanne Belovich
  • Patent number: 8877470
    Abstract: The present invention includes methods, devices and systems for isolating a nucleic acid from a fluid comprising cells. In various aspects, the methods, devices and systems may allow for a rapid procedure that requires a minimal amount of material and/or results in high purity nucleic acid isolated from complex fluids such as blood or environmental samples.
    Type: Grant
    Filed: March 7, 2014
    Date of Patent: November 4, 2014
    Assignee: Biological Dynamics, Inc.
    Inventors: Rajaram Krishnan, David Charlot, Eugene Tu, James McCanna, Lucas Kumosa, Paul Swanson, Robert Turner, Kai Yang, Irina Dobrovolskaya, David Liu
  • Patent number: 8871481
    Abstract: The present invention includes methods, devices and systems for isolating a nucleic acid from a fluid comprising cells. In various aspects, the methods, devices and systems may allow for a rapid procedure that requires a minimal amount of material and/or results in high purity nucleic acid isolated from complex fluids such as blood or environmental samples.
    Type: Grant
    Filed: May 6, 2014
    Date of Patent: October 28, 2014
    Assignee: Biological Dynamics, Inc.
    Inventors: Rajaram Krishnan, David Charlot, Eugene Tu, James McCanna, Lucas Kumosa, Paul Swanson, Robert Turner, Kai Yang, Irina Dobrovolskaya, David Liu
  • Publication number: 20140302580
    Abstract: The invention provides a method of dispersing or circulating magnetically responsive beads within a droplet in a droplet actuator. The invention, in one embodiment, makes use of a droplet actuator with a plurality of droplet operations electrodes configured to transport the droplet, and a magnetic field present at a portion of the plurality of droplet operations electrodes. A bead-containing droplet is provided on the droplet actuator in the presence of the uniform magnetic field. Beads are circulated in the droplet during incubation by conducting droplet operations on the droplet within a uniform region of the magnate field. Other embodiments are also provided.
    Type: Application
    Filed: June 18, 2014
    Publication date: October 9, 2014
    Applicant: Advanced Liquid Logic, Inc.
    Inventors: Ramakrishna Sista, Vamsee K. Pamula, Vijay Srinivasan, Michael G. Pollack, Allen Eckhardt
  • Patent number: 8841104
    Abstract: The invention generally relates to methods of using compositions that include sets of magnetic particles, members of each set being conjugated to an antibody specific for a pathogen, and magnets to isolate a pathogen from a body fluid sample.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: September 23, 2014
    Assignee: NanoMR, Inc.
    Inventors: Sergey A. Dryga, Victor C. Esch, Lisa-Jo Ann Clarizia, Eddie W. Adams, Thearith H. Ung, Ravil A. Sitdikov
  • Publication number: 20140255356
    Abstract: Methods of isolating stromal vascular fractions for use in human subjects from a tissue comprising a blood vessel using mechanical, optionally ultrasonic cavitation, enzymatic, and/or chemical methods are provided. These methods yield an increased number of the cells which constitute the stromal vascular fractions (about 10-fold greater) than methods which use collagenase to isolate these cells. The stromal vascular fraction may be isolated from any tissue that comprises blood vessels, for example, muscle and adipose tissue. Additionally, the tissue may be isolated obtained from nonliving sources and animals (e.g., postmortem).
    Type: Application
    Filed: March 6, 2014
    Publication date: September 11, 2014
    Inventor: Steven VICTOR