Inoculator, Streaker, Or Sampler Patents (Class 435/309.1)
  • Patent number: 10363557
    Abstract: An apparatus for processing a biological sample is provided. The apparatus has a body having a processing chamber, a first reservoir, a second reservoir, a filter, a first one-way valve, a second one-way valve, a third one-way valve, a first fluid pathway, a second fluid pathway, and a third fluid pathway.
    Type: Grant
    Filed: September 7, 2018
    Date of Patent: July 30, 2019
    Assignee: 3M Innovative Properties Company
    Inventors: Jon A. Kirschhoffer, Gregory W. Sitton, Andrew H. Tilstra
  • Patent number: 10149666
    Abstract: In an embodiment of the invention, a frictional tissue sampling device with a head designed to be rotated without rotating off the designated site can be used to obtain tissue biopsy samples. A frictional tissue sampling device with a head designed to be rotated without rotating off the designated site can be used to obtain an epithelial tissue biopsy sample from lesions. The device can be otherwise used to sample specific locations. In various embodiments, the head of the device is narrow and pointed with a hybrid pear shaped diamond facet. The facet contour can be concave, convex or flat. Abrasive material can be adhered to the facet contour.
    Type: Grant
    Filed: May 27, 2015
    Date of Patent: December 11, 2018
    Assignee: HISTOLOGICS LLC
    Inventor: Neal Marc Lonky
  • Patent number: 10024848
    Abstract: A flow channel device includes a flow channel section and an introduction channel section. The flow channel section includes a flow channel in which a detection object flows and a wall surface surrounding the flow channel. The introduction channel section includes an introduction channel having a first end connected to the flow channel and a second end connected to an introduction port, and a wall surface surrounding the introduction channel. At least a part of the wall surface surrounding the introduction channel is a curved surface protruding toward the introduction channel.
    Type: Grant
    Filed: April 16, 2014
    Date of Patent: July 17, 2018
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Akihiko Takada, Kiyoshi Hashimotodani, Yusuke Kitagawa
  • Patent number: 9709613
    Abstract: The present invention relates to a method and apparatus intended for the detection of low frequency electric waves that can be extracted from water, organic liquids and biological matter. This field phenomenon, that we here refer to here as a “bioharmonic”, is an active frequency, or harmonically related series of frequencies, that are a result of a dynamic interplay of natural processes including physical, chemical and electromagnetic interactions. We have discovered that these interactions influence the organization of signal waveform characteristics at very low frequencies. The apparatus produces a low frequency electrical wave that is coupled to a liquid or solid sample by way of a coupling electrode having a very high impedance. As the detected signal also displays field properties, the electrode does not need to be in contact with the sample in order to extract a unique signal.
    Type: Grant
    Filed: July 5, 2013
    Date of Patent: July 18, 2017
    Assignee: Association Promethora
    Inventor: Pier Rubesa
  • Patent number: 9689780
    Abstract: A single-use coring probe for collecting a frozen aliquot from a frozen biological sample includes a hollow coring bit and an ejector adapted. The ejector is operable to eject a frozen sample core from the bit as it moves from a retracted position to an extended position. Use of the ejector converts the probe to a disabled configuration to discourage reuse of the coring probe to obtain another sample. The probe may include a locking mechanism adapted to prevent re-use of the single-use coring probe by locking the ejector in the extended position. A hand-held coring device can be used to take frozen sample cores from frozen samples. A tissue container is suitable for holding a frozen tissue sample in frozen storage and also for holding the sample while the sample is sectioned and/or a full-depth frozen sample core is extracted from the frozen tissue.
    Type: Grant
    Filed: July 24, 2013
    Date of Patent: June 27, 2017
    Assignee: CRYOXTRACT INSTRUMENTS, LLC
    Inventors: Larry Chin, Todd Basque
  • Patent number: 9212975
    Abstract: A collection unit (80)includes: a collection carrier cartridge (82) formed, at its center, with a through hole (82b3) into which a nozzle for supplying hot water or ATP reagent is inserted including a carrier filling dish (82b), on an outer circumference of the through hole (82b3), to be filled with a collection carrier (90) for collecting floating bacteria in the air, and an upper lid (82a) on which the carrier filling dish (82b) is placed, formed with a protrusion to be inserted through the through hole (82b3); an impactor nozzle head (86) covering a surface of the collection carrier (90) and has a plurality of nozzle holes (87) facing the collection carrier (90) surface; and a fan (84) introducing air to the collection carrier surface through the nozzle holes (87). A velocity of the air passing through the nozzle holes (87) is 40 m/s to 50 m/s.
    Type: Grant
    Filed: January 31, 2011
    Date of Patent: December 15, 2015
    Assignee: Hitachi, Ltd.
    Inventors: Noe Miyashita, Ryusuke Gotoda
  • Patent number: 9192932
    Abstract: In an aspect of this invention, a closure for a well plate is provided which has a reservoir. The closure has openings through which acoustic ejection of fluid droplets can take place without removing the closure. The reservoirs in the closure may help to maintain acceptable levels of solvent in the wells of the well plate despite the evaporation which may occur during the course of ejection.
    Type: Grant
    Filed: June 20, 2008
    Date of Patent: November 24, 2015
    Assignee: LABCYTE INC.
    Inventor: Richard N. Ellson
  • Publication number: 20150140655
    Abstract: Various embodiments of methods and apparatuses for separating sperm, including apparatus having an inlet and an outlet reservoir, and either: i) a radial array of microchannels disposed between the inlet and outlet reservoirs to provide fluid communication therebetween and to direct motile sperm inwardly from the inlet reservoir to the outlet reservoir; or ii) at least one microchannel path disposed between the inlet and outlet reservoirs to provide fluid communication therebetween, the at least one microchannel path having a path inlet adjacent the inlet reservoir, a path outlet adjacent the outlet reservoir, and a junction located between the path inlet and the path outlet for directing a portion of sperm that enter the path inlet towards the outlet reservoir based on wall-swimming behaviour of sperm. Methods include filling an apparatus with buffer fluid, introducing semen into an inlet reservoir, and retrieving sperm separated from the semen from the outlet reservoir.
    Type: Application
    Filed: November 19, 2014
    Publication date: May 21, 2015
    Inventors: Reza Nosrati, Lise Marie Eamer, Marion Vollmer, David Allan Sinton, Armand Zini
  • Publication number: 20150140601
    Abstract: A method (100) for fixing at least one tissue sample (1) is carried out using a tissue processor (10). The tissue sample (1) is introduced at a first temperature level and a first pressure level into a fixing reagent (2) containing at least one nitrogen-containing compound capable of pressure- and/or temperature-dependent release of at least one aldehyde. The tissue sample (1) is left in the fixing reagent (2) for a fixing time period during which the fixing reagent (2) is brought to a second temperature level above the first temperature level and/or to a second pressure level above the first pressure level. A concentration in the fixing reagent (2) of the nitrogen-containing compound is ascertained using at least one concentration measuring device (14) of the tissue processor (10), and a signal is outputted on the basis of a measured value of the at least one concentration measuring device (14).
    Type: Application
    Filed: November 4, 2014
    Publication date: May 21, 2015
    Inventors: Hermann Ulbrich, Markus Berberich
  • Publication number: 20150132755
    Abstract: An assembly for processing a sample is provided. The assembly comprises a first body having a plurality of spaced-apart conduits and a second body having a plurality of chambers wherein each conduit is fluidically connected to a separate chamber. The assembly forms a plurality of liquid flow paths, each flow path comprising a conduit and a chamber. An analyte capture element is detachably attached to a conduit and is in fluidic communication with the liquid flow path of the conduit. Optionally, the assembly further may comprise a third body comprising a plurality of reservoirs. The assembly can be used to process a liquid sample for detecting an analyte.
    Type: Application
    Filed: May 24, 2013
    Publication date: May 14, 2015
    Applicant: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Jon A. Kirschhoffer, Andrew H. Tilstra, Wensheng Xia
  • Publication number: 20150132746
    Abstract: Provided herein is technology relating to the collection of biological samples and particularly, but not exclusively, to compositions, methods, and uses related to using a biopolymer substrate to collect biological samples for analysis.
    Type: Application
    Filed: May 29, 2013
    Publication date: May 14, 2015
    Inventors: Astrid Gjelstad, Lars Erik Eng Eibak, Anne Bee Hegge, Knut Einar Rasmussen, Stig Pedersen-Bjergaard
  • Publication number: 20150118705
    Abstract: An apparatus and an assembly for processing a sample are provided. The apparatus comprises a plurality of spaced-apart reservoirs, a plurality of channels, and a plurality of outlets, each outlet comprising an effluent discharge opening. The apparatus forms a plurality of flow paths, each flow path comprising a reservoir, a channel, and an outlet. An analyte capture element can be slideably engaged in a channel in a position where it is in fluid communication with the flow path. The apparatus with the analyte capture element disposed in the flow path can be used to process a liquid sample. A method of detecting an analyte in the liquid sample is also provided.
    Type: Application
    Filed: May 24, 2013
    Publication date: April 30, 2015
    Applicant: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Jon A. Kirschhoffer, Andrew H. Tilstra, Wensheng Xia
  • Publication number: 20150118676
    Abstract: Electrokinetic devices and methods are described with the purpose of collecting assayable agents from a dielectric fluid medium. Electrokinetic flow may be induced by the use of plasma generation at high voltage electrodes and consequent transport of charged particles in an electric voltage gradient. In one embodiment, an ionic propulsion device for providing a sample for a bio-specific assay of aerosol particles comprises a housing receiving a sample of aerosol particles and enclosing a high voltage electrode to generate a plasma of electrically charged particles. A carrier assembly is removably receivable in the housing, the carrier assembly comprising a non-conductive carrier and an electrode removably secured to the carrier.
    Type: Application
    Filed: August 22, 2014
    Publication date: April 30, 2015
    Inventor: Julian Gordon
  • Patent number: 9017617
    Abstract: Apparatuses for preparing a sample are disclosed herein. The apparatuses include a chamber, a first valve at least partially disposed in the first chamber, a second valve at least partially disposed in the first chamber, and a pump comprising an actuator and nozzle.
    Type: Grant
    Filed: June 5, 2013
    Date of Patent: April 28, 2015
    Assignee: Luminex Corporation
    Inventors: Jesus Ching, David Hsiang Hu, Steve Jia Chang Yu, Phillip You Fai Lee
  • Publication number: 20150111241
    Abstract: An example includes an apparatus for separating cells from a fluid sample, including a plenum, defining: a centrally located top inlet, and respective side outlets disposed below the inlet and to the side of the inlet; and a bottom outlet disposed below the top inlet, to the side of the two or more outlets, wherein the plenum is configured to receive a fluid and cells suspension through the inlet, and direct it to the bottom outlet, against respective side-walls extending between the bottom outlet and the two or more side outlets, and wherein the distance between each of the two or more side outlets and the bottom outlet is selected to encourage cells to exit through the bottom outlet under a force. Lateral/vertical distance between the inlet and side outlets can provide lateral fluid travel, thereby allowing time for gravity to bias cells toward an outlet.
    Type: Application
    Filed: April 17, 2013
    Publication date: April 23, 2015
    Inventors: Allison Hubel, Jacob Hanna
  • Publication number: 20150111293
    Abstract: Provided are a cancer cell-trapping metal filter which has a high opening ratio, a cancer cell-trapping metal filter sheet, a cancer cell-trapping device using the cancer cell-trapping filter, and manufacturing methods therefor. According to a cancer cell-trapping metal filter 1, openings of connected through-holes 12 that are formed in a metal sheet 11 have a wave shape, and thus it is possible to extract a CTC from other components by utilizing a hole diameter on a short-side side of the openings, and it is possible to make the connected through-holes be closer to each other due to the wave shape while maintaining a CTC trapping ability. Accordingly, it is possible to further improve the opening ratio in the cancer cell-trapping metal filter 1.
    Type: Application
    Filed: May 10, 2013
    Publication date: April 23, 2015
    Inventors: Hisashige Kanbara, Yoshihito Kikuhara, Takahiro Suzuki
  • Publication number: 20150111295
    Abstract: The invention relates to an elutriation chamber for an elutriator system for washing and/or isolating cells, in particular thrombocytes, which elutriation chamber comprises a feed line (1) for an aqueous medium containing the cells to be washed and/or to be isolated in suspended form, and a discharge line (2) for the washed and/or isolated cells, wherein the chamber (5) is rotationally symmetrical to the axis (a), characterized in that the ratio of the area of the section through the lumen of the chamber (5) perpendicular to the axis (a) at the widest point (5a-5b) to the area of the section (1a) through the feed line (1) is in the range of 1,000 to 250,000.
    Type: Application
    Filed: May 13, 2013
    Publication date: April 23, 2015
    Applicant: BIO-PRODUCTS & BIO-ENGINEERING AG
    Inventors: Johann Eibl, Johann Graus, Christoph Mader
  • Publication number: 20150111242
    Abstract: The present invention provides an apparatus and method for microdissecting a biological sample. In particular, apparatuses of the invention include a cell collecting device 100 that is operated by a pneumatic device 200. In one particular embodiment, apparatuses of the invention are used for collecting and transferring cell sample to and from cell collecting device 100.
    Type: Application
    Filed: April 25, 2013
    Publication date: April 23, 2015
    Applicant: The Regents of the University of Colorodo, a body corporate
    Inventors: Wilbur Franklin, Aaron Lieberman, Mark Palmer, Willem Berglund, Stephen DeMars, Andrew Hanuszek, Dara Aisner, Qing Ren, Eric Kelso
  • Publication number: 20150105300
    Abstract: A method of processing a sample may include introducing a sample into a vessel, the vessel having proximal and distal ends, the sample being introduced into the proximal end of the vessel; incubating the sample in the vessel with a substance capable of specific binding to a preselected component of the sample; propelling components of the incubated sample, other than the preselected component, toward the proximal end of the vessel by clamping the vessel distal to the incubated sample and compressing the vessel where the incubated sample is contained; propelling the preselected component toward a distal segment of the vessel by clamping the vessel proximal to the preselected component and compressing the vessel where the preselected component is contained; and mixing the preselected component with a reagent in the distal segment of the vessel.
    Type: Application
    Filed: December 17, 2014
    Publication date: April 16, 2015
    Inventors: Shuqi Chen, Lingjun Chen
  • Publication number: 20150104824
    Abstract: A separation device that can include a separation tube or container that has a wall defining an internal volume into which a material can be placed is disclosed. The material can include a multi-component mixture or solution. A secondary tube or withdrawal cannula can be placed and/or moved within the tube to withdrawal a material form the tube.
    Type: Application
    Filed: October 9, 2014
    Publication date: April 16, 2015
    Inventors: Trenton WALKER, Matthew D. Landrigan, Michael D. Leach, Scott R. King, Randel Dorian, Richard W. Storrs
  • Publication number: 20150104791
    Abstract: The invention relates to a method of separating biological particles from the liquid containing same for purification, analysis and optionally diagnostic purposes. The inventive method comprises at least one step involving vertical filtration through a filter having a porosity that is adapted to the type of biological particles to be separated, such that said particles are retained by the filter. The invention is characterised in that: (i) the method involves the use of a filter comprising at least one basic filtration zone, whereby each basic filtration zone has a limited surface area; and (ii) the surface area of each basic filtration zone and the number of basic filtration zones are selected as a function of the type of liquid to be filtered, the type of biological particles to be separated and the volume of liquid to be filtered.
    Type: Application
    Filed: October 17, 2014
    Publication date: April 16, 2015
    Inventor: Patrizia PATERLINI-BRECHOT
  • Publication number: 20150099649
    Abstract: A method for identifying the source of animal waste is provided. The method includes taking DNA samples from a known group of animals, conducting DNA analysis on the DNA samples to prepare a genetic profile for each animal from the group, preparing a database of the genetic profiles, collecting a specimen of waste from an unknown source, conducting DNA analysis on the specimen, and comparing the DNA analysis from the specimen to the database to determine the source of the waste.
    Type: Application
    Filed: October 9, 2013
    Publication date: April 9, 2015
    Applicant: BioVet Pet Labs
    Inventors: Ashley Michelle Burnett, Cheleigh Nicole Winfree, Kathryn Ellen Oliff, Dawn Irion
  • Publication number: 20150093817
    Abstract: A particle manipulation system uses a MEMS-based, microfabricated particle manipulation device which has an inlet channel, output channels, and a movable member formed on a substrate. The movable member moves parallel to the fabrication plane, as does fluid flowing in the inlet channel. The movable member separates a target particle from the rest of the particles, diverting it into an output channel. However, at least one output channel is not parallel to the fabrication plane. The device may be used to separate a target particle from non-target material in a sample stream. The target particle may be, for example, a stem cell, zygote, a cancer cell, a T-cell, a component of blood, bacteria or DNA sample, for example. The particle manipulation system may also include a microfluidic structure which focuses the target particles in a particular portion of the inlet channel.
    Type: Application
    Filed: October 1, 2013
    Publication date: April 2, 2015
    Applicant: Owl biomedical, Inc.
    Inventors: John S. Foster, Nicholas C. Martinez, Stefan Miltenyi, Kamala R. Qalandar, Kevin E. Shields, Kimberly L. Turner
  • Patent number: 8993314
    Abstract: A system for culturing photosynthesizing microorganisms includes a source of a gaseous fluid a mixer that creates micron bubbles within an aqueous medium using the gaseous fluid. The mixing chamber holds the aqueous medium including the micron bubbles before the micron bubbles and aqueous medium are mixed with a culture of photosynthesizing microorganism in a reaction chamber.
    Type: Grant
    Filed: July 28, 2007
    Date of Patent: March 31, 2015
    Assignee: Ennesys SAS
    Inventors: Nicholas Eckelberry, T. Riggs Eckelberry
  • Publication number: 20150087010
    Abstract: The present invention provides a filter member. The filter member comprises: a filter for discriminating cells to be analyzed in a sample from other components; a first filter holding member which comprises a first through hole and has a plate-like shape; and a second filter holding member which comprises a second through hole and is fitted into the first filter holding member. When the first and second filter holding members are integrated by fitting the second filter holding member into the first filter holding member, the filter is sandwiched between the first filter holding member and the second filter holding member, and the first through hole is opposed to the second through hole through the filter. A first elastic body is formed on a surface of the first filter holding member, the surface being in contact with the filter. A second elastic body is formed on a surface of the second filter holding member, the surface being in contact with the filter.
    Type: Application
    Filed: September 17, 2014
    Publication date: March 26, 2015
    Applicant: SYSMEX CORPORATION
    Inventor: Ryuichiro EBI
  • Publication number: 20150087016
    Abstract: A method for processing a blood sample is provided that can improve the recovery rate of deformable rare cells that would easily pass through a filter and small rare cells while reducing the filtration area of the filter, and that can recover the rare cells alive.
    Type: Application
    Filed: September 24, 2014
    Publication date: March 26, 2015
    Applicant: ARKRAY Inc.
    Inventor: Hidenori Takagi
  • Publication number: 20150079672
    Abstract: The present invention efficiently and cost-effectively extracts and collects cells from a tissue. The inventors have discovered that the tissue can be effectively fragmented and the resulting cells can be purified using a system or kit with multiple components. An advantage of the present invention is that tissue processing takes place in a closed system such that sterility can be maintained throughout the process, even if certain components are removed during processing, for example through the use of valves, clamps, and heat seals. Furthermore, any or all of the steps can be automated or manually accomplished, according to the specific needs of the application or the user.
    Type: Application
    Filed: November 19, 2014
    Publication date: March 19, 2015
    Inventors: Rouzbeh R. Taghizadeh, John Meade
  • Publication number: 20150079582
    Abstract: A bismuth-containing concentration agent for microorganisms is provided. Additionally, articles that include the concentration agent and methods of concentrating a microorganism using the concentration agent are provided.
    Type: Application
    Filed: March 4, 2013
    Publication date: March 19, 2015
    Inventors: Manjiri T. Kshirsagar, Evan Koon Lun Yuuji Hajime, Andrew W. Rabins
  • Publication number: 20150079671
    Abstract: A device for removing material from a vesicular object, said device being a pipette having a sealed tip at its distal end and an aperture whereby the distal tip of the device is inserted into the target object, the aperture aligned with the material to be removed from the object, vacuum applied to the inside of the device, such vacuum drawing the material into the aperture, and the device being removed from the object in such a manner as to cut or otherwise separate the material in the pipette from the object, the material remaining in the pipette, while leaving the object undamaged.
    Type: Application
    Filed: November 20, 2014
    Publication date: March 19, 2015
    Inventor: Paul J. Taylor
  • Publication number: 20150072411
    Abstract: A slide processing apparatus comprises a slide or processing station which may include a plurality of cuvettes, each cuvette configured to receive a slide. A reagent fluid supply is coupled to each cuvette to deliver and apply reagent for treatment of the slide. A slide gripper is disposed above the slide processing station and is configured to move the slide in and out of the cuvettes. A screw assembly is disposed adjacent the slide processing station, the screw assembly configured to receive a plurality of slides, wherein rotation of the screw assembly advances the plurality of slides for engagement by the slide gripper.
    Type: Application
    Filed: April 5, 2013
    Publication date: March 12, 2015
    Inventors: Jerry West, Randy Thomas, Jeff Gibbs, Lee Carter
  • Publication number: 20150072350
    Abstract: All of bio-related substances, such as cells or bacteria, are placed at single and independent positions. A flow cell according to the present invention is used for analyzing a bio-related substance and includes a flow passageway and an injection opening and a discharge opening that are connected to the flow passageway. The flow passageway is provided with trapping structural members for trapping the bio-related substance. The trapping structural members include a structure forming a dead water region in which the bio-related substance is trapped.
    Type: Application
    Filed: March 13, 2013
    Publication date: March 12, 2015
    Inventors: Takuya Matsui, Muneo Maeshima
  • Publication number: 20150064764
    Abstract: A device for transporting, trapping and escaping a single biomaterial using a magnetic structure, and a method of transporting, trapping and escaping of the single biomaterial using the same are provided, and a method is provided for controlling movement and direction of the single biomaterial including soft magnetic micro structure and magnetic structure in a linear, square storage, apartment type, radial soft magnetic micro structure. Accordingly, the device for transporting, trapping and escaping a single biomaterial and the method for transporting, trapping and escaping single biomaterial using the same can control movement on the lap-on-a-chip with increased precision and ease, by using magnetic force, and thus can be advantageously used in the field of magneto-resistive sensor, or categorization of single cells or biomolecules.
    Type: Application
    Filed: August 29, 2013
    Publication date: March 5, 2015
    Applicant: The Industry & Academic Cooperation in Chungnam National University (IAC)
    Inventors: Cheolgi Kim, Byeonghwa Lim, Reddy Venu, Hu XingHao, KunWoo Kim, Benjamin B. Yellen
  • Publication number: 20150056695
    Abstract: This disclosure is directed to an apparatus and method for spreading a fluid across a substrate. A spreader for spreading a fluid across a substrate includes a wiper and a frame. The wiper and the frame may mate to permit translation of the wiper across, and with respect to, the frame. The wiper spreads the fluid across the substrate and the frame supports the wiper and the substrate. The frame may also include a ramp to cause a portion of the wiper to lift away from the substrate.
    Type: Application
    Filed: August 21, 2014
    Publication date: February 26, 2015
    Applicant: RareCyte, Inc.
    Inventors: Joshua Nordberg, Daniel Campton, Steve Quarre, David Stewart
  • Publication number: 20150056637
    Abstract: A collection device for use in connection with off-device testing of collected samples. The device includes a first panel having one or more apertures for receiving samples, a second panel opposite the first panel, and a removable tab having a first portion and a second portion. The first portion is aligned with at least one of apertures on the first panel and constructed such that depositing the sample through the at least one aperture causes the sample to be directly deposited on the first portion of the tab, and the second portion includes a sample-free grasping area accessible from an exterior of the device for removing the tab. A method of obtaining a sample is also disclosed.
    Type: Application
    Filed: March 25, 2014
    Publication date: February 26, 2015
    Applicant: Immunostics, Inc.
    Inventor: Vincent Lastella
  • Patent number: 8961896
    Abstract: A cytological cell sample collection, storage, and transport device is disclosed. The device comprises a sheath, a collection assembly, a base, and a containment vial. The collection assembly is slidably coupled to the base to expose a swab head comprising the collection assembly. The containment vial is configured to enclose the sheath and collection assembly within the internal volume defined by the containment vial and the base.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: February 24, 2015
    Assignee: In HindSight LLC
    Inventor: Kathy Mary McSherry
  • Publication number: 20150050726
    Abstract: A parallel processing system for processing samples is described. In one embodiment, the parallel processing system includes an instrument interface parallel controller to control a tray motor driving system, a close-loop heater control and detection system, a magnetic particle transfer system, a reagent release system, a reagent pre-mix pumping system and a wash buffer pumping system.
    Type: Application
    Filed: October 28, 2014
    Publication date: February 19, 2015
    Inventors: Steve Jia Chang YU, Jesus CHING, Phillip You Fai LEE, David Hsiang HU
  • Publication number: 20150037808
    Abstract: A system and method for ultrasonic sample preparation, includes a vessel having a wall defining an inner volume. An ultrasonic probe is disposed in the inner volume of the vessel. A microplate having a plurality of sample wells is also disposed in the inner volume of the vessel. An actuator is connected to the microplate and is configured to move the microplate relative to the ultrasonic probe in the inner volume to facilitate uniform distribution of ultrasonic energy.
    Type: Application
    Filed: August 1, 2013
    Publication date: February 5, 2015
    Inventor: Michael Donaty
  • Publication number: 20150037903
    Abstract: A lab-on-chip-based system is described for the direct and multiple sampling, control of the volume, fluid filtration, biochemical reactions, sample transfer, and dried spot generation on the conventional and commercial cards for dried fluid spot. Within an all-in-one integrated holder, the invention allows the complete process required to ensure a quantitative analysis of blood, plasma or any other fluids, modification and enrichment of molecule subsets, and formation of a dried fluid spot on the specific spot location of a passive cellulose, non-cellulose, absorbent, or non-absorbent membrane material sampling.
    Type: Application
    Filed: March 7, 2013
    Publication date: February 5, 2015
    Inventors: Didier Maillefer, Julien Deglon, Aurelien Thomas, Julien Dumont
  • Publication number: 20150037802
    Abstract: The present invention provides a novel method to fabricate silica nanostructures on thin polymer films based on silica deposition and self-wrinkling induced by thermal shrinkage. These micro- and nano-scale structures have vastly enlarged the specific area of silica, thus the silica nanomembranes can be used for solid phase extraction of nucleic acids. The inventive silica nanomembranes are suitable for nucleic acid purification and isolation and demonstrated better performance than commercial particles in terms of DNA recovery yield and integrity. In addition, the silica nanomembranes have extremely high nucleic acid capacity due to its significantly enlarged specific surface area of silica. Methods of use and devices comprising the silica nanomembranes are also provided.
    Type: Application
    Filed: July 28, 2014
    Publication date: February 5, 2015
    Inventors: Tza-Huei Wang, Yi Zhang
  • Publication number: 20150031035
    Abstract: Provided herein are methods for the collection and amplification of circulating nucleic acids from a non-cellular fraction of a biological sample. Circulating nucleic acids are extracted from the non-cellular fraction and are circularized to generate single-stranded nucleic acid circles, which are then subsequently amplified by rolling circular amplification using random primers to produce an amplified library. Devices for the collection of a non-cellular fraction from a biological sample are also provided. The device includes a filtration membrane and a dry solid matrix, which is in direct contact with the filtration membrane.
    Type: Application
    Filed: July 26, 2013
    Publication date: January 29, 2015
    Applicant: General Electric Company
    Inventors: Erik Leeming Kvam, John Richard Nelson, Gregory Andrew Grossmann, Ryan Charles Heller, Erin Jean Finehout, Christopher Michael Puleo, William Patrick Waters
  • Publication number: 20150031073
    Abstract: An apparatus and method are described that achieve independent and simultaneous processing of a plurality of substrate-supported biological samples. In one embodiment, substrate holders arranged in a minor arc are independently moveable between a processing position and an access position, and reagents are delivered to substrates held in the substrate holders through a nozzle plate that moves along the arc of substrate holders. The disclosed apparatus and method are particularly suited for implementation of lean processing of biological samples.
    Type: Application
    Filed: October 6, 2014
    Publication date: January 29, 2015
    Inventors: Charles D. Lemme, William Richards, Glen Ward, Austin Ashby, Andrew Ghussen, Lisa Jensen-Long, Kevin Knapp, Rodney Kugizaki, Alain Larson, Paul Richards, Wayne Showalter, Chad Wilkinson
  • Publication number: 20150031071
    Abstract: A system and method for distributing and agitating an amount of a liquid over a microscope slide, wherein a distribution plate having a microtextured lower surface and at least one passage extending through the plate is secured at a predetermined distance of 10-250 ?m above the microscope slide. Liquid passes through the passage in the distribution plate, and the distribution plate is transversely reciprocated relative to the microscope slide in the plane of the lower surface of the distribution plate or the plane of the upper surface of the microscope slide.
    Type: Application
    Filed: March 1, 2013
    Publication date: January 29, 2015
    Applicant: Victorious Medical Systems ApS
    Inventor: Lars Winther
  • Patent number: 8940532
    Abstract: A biological graft transferring instrument for transferring a biological graft includes a main body, a displacement member capable of being displaced relative to the main body, and a belt-shaped member which is wound around the forward end and base end of the displacement member and is joined to the main body. The biological graft is placed on the belt-shaped member at the forward end of the displacement member.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: January 27, 2015
    Assignee: Terumo Kabushiki Kaisha
    Inventor: Yusuke Nozaki
  • Publication number: 20150024379
    Abstract: An aerosol collection system and method. The system includes a bio-aerosol delivery device configured to supply bioparticles in a gas stream, a moisture exchange device including a partition member coupled to the gas stream and configured to humidify or dehumidify the bioparticles in the gas stream, and an aerosol collection medium downstream from the moisture exchange device and configured to collect the bioparticles. The method includes delivering bioparticles in a gas stream, humidifying or dehumidifying the bioparticles in the gas stream by transport of water across a partition member and into a vapor phase of the gas stream, and collecting the bioparticles by a collection medium.
    Type: Application
    Filed: February 19, 2013
    Publication date: January 22, 2015
    Applicants: RESEARCH TRIANGLE INSTITUTE, AEROSOL DYNAMICS INC.
    Inventors: David S. Ensor, Howard Jerome Walls, Karin K. Foarde, Susanne Vera Hering, Steven Russel Spielman
  • Publication number: 20150024429
    Abstract: A method for the homogeneous distribution of cell components suspended in a liquid on a surface and a device for the implementation thereof.
    Type: Application
    Filed: October 1, 2014
    Publication date: January 22, 2015
    Inventors: Michael Otter, Thomas Fischer, Stefanie Froehner, Phillip Miller, Matthew Mette
  • Publication number: 20150024481
    Abstract: Devices and system for preparing samples are described. Such devices can comprise fluidic chambers, reservoirs, and movable structures for controlling the movement of samples. The device can also comprise functional elements for performing specific operations.
    Type: Application
    Filed: September 11, 2014
    Publication date: January 22, 2015
    Inventors: Imran R. MALIK, Axel SCHERER
  • Publication number: 20150024376
    Abstract: A magnetizable trap and flow system and process are detailed that uniformly disperse paramagnetic or superparamagnetic analyte capture beads within a scaffold of magnetizable beads or other magnetizable materials in a capture zone that provides selective capture of target analytes. A magnet placed or energized in proximity to the trap may magnetize the magnetizable scaffold and secure the paramagnetic or superparamagnetic analyte capture beads in their uniformly dispersed state within the magnetizable scaffold to provide selective capture of target analytes.
    Type: Application
    Filed: July 19, 2013
    Publication date: January 22, 2015
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventor: Richard M. Ozanich
  • Publication number: 20150024411
    Abstract: The present invention relates to the chromatographic isolation of a target cell or another complex biological material, in particular by column chromatography such as affinity chromatography or gel permeation chromatography. The invention employs a receptor binding reagent that binds to a receptor molecule that is located on the surface of a target cell. The invention in general provides novel methods for the traceless isolation of biologic materials such as cells, cell organelles, viruses and the like. The invention also relates to an apparatus for the isolation of cells and other complex biological materials.
    Type: Application
    Filed: February 25, 2013
    Publication date: January 22, 2015
    Inventor: Herbert Stadler
  • Publication number: 20150024495
    Abstract: A device for assembling aggregations of adherent cells includes a gripper moveable within an assembly vessel that fixes aggregations of adherent cells at a membrane of the gripper and, by movement of the gripper, assembles aggregations of cells on a separate membrane within the vessel, thereby creating a three-dimensional assembly of aggregations of cells that fuse and can be employed in surgical procedures as a unitary tissue of adherent cells. The aggregations of cells, as assembled, can assume three-dimensional configurations distinct from any one of the component aggregations of cells assembled.
    Type: Application
    Filed: July 11, 2014
    Publication date: January 22, 2015
    Inventors: Jeffrey R. Morgan, Andrew Blakely, John Murphy, Anubhav Tripathi, William Patterson
  • Publication number: 20150024400
    Abstract: Devices, methods, and kits are disclosed for collection, labeling and analysis of samples containing a substance of interest. Such devices and methods are used in forensic, human identification, access and importation control, and other investigative technologies to collect even limited amounts of a substance of interest that may be present on a substrate and to facilitate analysis to identify the substance of interest.
    Type: Application
    Filed: February 22, 2013
    Publication date: January 22, 2015
    Inventor: Jason Yingjie Liu