Abstract: A diagnostic drug and a diagnostic kit for autoimmune diseases including at least one of a polypeptide selected from an HMG-1 family, a polypeptide selected from an HMG-2 family, a fragment thereof which is reactable with an antibody of an autoimmune disease patient, and a method for detecting an antibody of an autoimmune disease patient using the same are provided.
Abstract: The present invention relates to a tumor suppressor gene, termed large tumor suppressor (lats), and methods for identifying tumor suppressor genes. The method provides nucleotide sequences of lats genes, and amino acid sequences of their encoded proteins, as well as derivatives (e.g., fragments) and analogs thereof. In a specific embodiment, the lats protein is a human protein. The invention further relates to fragments (and derivatives and analogs thereof) of lats which comprise one or more domains of a lats protein. Antibodies to lats, its derivatives and analogs, are additionally provided. Methods of production of the lats proteins, derivatives and analogs, e.g., by recombinant means, are also provided. Therapeutic and diagnostic methods and pharmaceutical compositions are provided. The invention also relates to recombinant plants and animals and methods of increasing the growth of edible plants and animals.
Abstract: The present invention concerns lipolytic enzymes naturally produced by a fungus of the species Fusarium solanii. The lipolytic enzymes include two lipases and a cutinase. The present invention concerns a biologically pure culture of Fusarium solanii producing these lipolytic enzymes and in particular a biologically pure culture of Fusarium solanii var. minus T.92.637/1. The present invention concerns also a detergent composition containing these lipolytic enzymes.
Abstract: A method is described for the identification and cloning of promoters that express under a defined environmental condition, such as growth in glucose medium. Using this method, five Trichodermal promoters capable of the high expression of operably linked coding sequences are identified, one of which is the promoter for T. reesei tef1. Also provided are altered cbh1 promoters, altered so that glucose no longer represses expression from such promoter. The invention further provides vectors and hosts that utilize such promoters, and unique fungal enzyme compositions from such hosts.
Abstract: A process for preparing optically active indoline-2-carboxylic acid by an optical resolution, which comprises subjecting a racemic ester of (R,S)-indoline-2-carboxylic acid having the general formula [(R,S)-I] to the action of an enzyme or a microorganism having a stereo-selective esterase activity, which is capable of asymmetrically hydrolyzing the racemic ester [(R,S)-I] to give optically active indoline-2-carboxylic acid having the formula [II*] so as to produce the hydrolysis product, i.e. optically active indoline-2-carboxylic acid [II*] and an unreacted optically active ester of indoline-2-carboxylic acid having the general formula [I*], isolating each optically active form, and further, if necessary, hydrolyzing the obtained optically active ester [I*] to give an optical antipode of the acid [II*].According to the process of the present invention, optically active indoline-2-carboxylic acid with a high optical purity can be prepared in a simple process with a good yield.
Abstract: A method for transforming Cephalosporium and other lower eukaryotes is disclosed. The method involves inserting a recombinant DNA cloning vector comprising a Saccharomyces cerevisiae transcriptional and translational activating sequence positioned for expression of hygromycin phosphotransferase into a host cell and then growing the host cell under selective conditions. The vectors optionally further comprise Cephalosporium ribosomal DNA and also sequences that allow for replication and selection in E. coli and Streptomyces.
Type:
Grant
Filed:
September 27, 1984
Date of Patent:
August 9, 1988
Assignee:
Eli Lilly and Company
Inventors:
Jerry L. Chapman, Jr., Thomas D. Ingolia, Kevin R. Kaster, Stephen W. Queener, Paul L. Skatrud