Hydrogen, Per Se Patents (Class 436/144)
  • Patent number: 10036298
    Abstract: The invention is directed to a method for determining the state of aging of a catalytic converter (2). The disclosed method functions in a non-contacting manner as resonances formed when the catalytic converter (2) located in a housing is excited with high-frequency electromagnetic waves are analyzed.
    Type: Grant
    Filed: May 8, 2015
    Date of Patent: July 31, 2018
    Assignee: UMICORE AG & CO. KG
    Inventors: Gregor Beulertz, Martin Votsmeier, Ralf Moos
  • Patent number: 9803285
    Abstract: A method of electroless atomic layer deposition is described. The method electrolessly generates a layer of sacrificial material on a surface of a first material. The method adds doses of a solution of a second material to the substrate. The method performs a galvanic exchange reaction to oxidize away the layer of the sacrificial material and deposit a layer of the second material on the surface of the first material. The method can be repeated for a plurality of iterations in order to deposit a desired thickness of the second material on the surface of the first material.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: October 31, 2017
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: David Bruce Robinson, Patrick J. Cappillino, Leah B. Sheridan, John L. Stickney, David M. Benson
  • Patent number: 9379301
    Abstract: A plurality of first cup-shaped members and a plurality of second cup-shaped members are placed alternately in repetition to form a pipe having an inner through-hole. At this point, neither the first cup-shaped members nor the second cup-shaped members are sintered yet. Then, the resultant pipe is sintered to obtain a pipe-shaped thermal power generation device. While the pipe is sintered, a pressure is applied to the pipe along a longitudinal direction of the pipe in a direction in which the pipe is compressed.
    Type: Grant
    Filed: November 27, 2013
    Date of Patent: June 28, 2016
    Assignee: Panasonic Corporation
    Inventors: Akihiro Sakai, Tsutomu Kanno, Kohei Takahashi, Hiromasa Tamaki, Yuka Yamada
  • Patent number: 8999723
    Abstract: A reliable, low cost device for determining when dangerous levels of hydrogen gas have been generated in a transformer is disclosed. The hydrogen indicator is defined by a module assembly that threads into either the headspace or into the oil-filled body of a transformer. The module has an open interior that contains a film that incorporates a hydrogen-sensitive chemochromic indicator. The indicator film is visible through a lens. When the film has been exposed to hydrogen, chemical changes in the chemochromic indicator cause the film to change color—the color change is immediately visible through the lens.
    Type: Grant
    Filed: April 16, 2014
    Date of Patent: April 7, 2015
    Assignee: Serveron Corporation
    Inventor: Steven Mahoney
  • Publication number: 20140364384
    Abstract: The present invention relates to the detection of markers in exhaled breath, wherein the detection of the presence or absence of the marker(s) in exhaled breath is used to assess various clinical data, including patient adherence in taking the medication and patient enzymatic (metabolic) competence in metabolizing the medication. An embodiment of the invention comprises a parent therapeutic agent labeled with a marker, where upon metabolism (e.g., via enzymatic action) of the therapeutic agent, the marker becomes volatile or semi-volatile and is present in the breath. In certain related embodiments, the marker contain a deuterium label, which is also present in the breath upon metabolism of the therapeutic agent. In another embodiment of the invention, the therapeutic agent is associated with a taggant (that may be either labeled or unlabeled with deuterium), which in turn will generate a marker in the breath that is easily measurable.
    Type: Application
    Filed: April 23, 2014
    Publication date: December 11, 2014
    Applicant: University of Florida Research Foundation, Inc.
    Inventors: Richard J. Melker, Donn Michael Dennis, Christopher D. Batich, Mark S. Gold
  • Publication number: 20140287514
    Abstract: The present invention includes a sensing device and method detecting the presence of a chemical analyte, comprising: a surface; a continuous or discontinuous terbium(III)-triphenylphosphine oxide coordination polymer layer deposited on the surface, wherein the polymer layer is porous; and a luminescence detector, wherein one or more analytes that interact with the polymer layer luminesce at distinct wavelengths unique to each analyte.
    Type: Application
    Filed: March 17, 2014
    Publication date: September 25, 2014
    Inventors: Simon M. Humphrey, Bradley J. Holliday
  • Publication number: 20140273261
    Abstract: A sensor assembly is disclosed for sensing a status condition of a liquid-filled electrical equipment such as a transformer. The sensor assembly can include a light source; a first hydrogen detection section, the first hydrogen detection section being optically coupled to the light source for receiving light from the light source, wherein the first hydrogen detection section has a first hydrogen sensitive layer that changes an optical response with respect to the received light depending on whether an amount of hydrogen at the first hydrogen sensitive layer is above or below a first threshold; and a first output section optically coupled to the first hydrogen detection section for receiving light having interacted with the first hydrogen sensitive layer such that the received light depends on the optical response of the first hydrogen sensitive layer.
    Type: Application
    Filed: March 18, 2014
    Publication date: September 18, 2014
    Applicant: ABB RESEARCH LTD
    Inventors: Barbara PANELLA, Jacobus Lodevicus Martinus Van Mechelen, Robin Gremaud, Pierre Lorin
  • Publication number: 20140273262
    Abstract: Provided is a catalytic combustion typed gas sensor of detecting a combustible gas having a concentration equal to or more than a predetermined value based on a raised electric resistance. Herein, combustion heat generated when a combustible gas contacts to a catalytic metal (or detection element) heated by passing electric current therethrough raises a temperature and electric resistance of the catalytic metal. The electric current is made to pass through the catalytic metal such that the temperature of the catalytic metal becomes a standby temperature which is calculated by subtracting the raised temperature portion from a desorption temperature. The combustion heat is generated when the combustible gas contacts to the catalytic metal. Note the catalytic metal adsorbs a silicone compound via a silicon (Si) poisoning process and then desorbs the resulting adsorbed silicone compound at the desorption temperature. The desorption temperature is set in the range over 350° C. to 600° C.
    Type: Application
    Filed: May 29, 2014
    Publication date: September 18, 2014
    Applicant: Honda Motor Co., Ltd.
    Inventors: Kazuhiro OKAJIMA, Hidetoshi OISHI, Shunji TSUKABAYASHI, Akihiro SUZUKI, Nobuaki MURAKAMI, Satoshi MORIMOTO, Hiroshi KODA, Takashi MATSUMOTO
  • Patent number: 8778694
    Abstract: Provided herein are batch methods and devices for enriching trace quantities of impurities in gaseous mixtures, such as hydrogen fuel. The methods and devices rely on concentrating impurities using hydrogen transport membranes wherein the time period for concentrating the sample is calculated on the basis of optimized membrane characteristics, comprising its thickness and permeance, with optimization of temperature, and wherein the enrichment of trace impurities is proportional to the pressure ratio Phi/Plo and the volume ratio V1/V2, with following detection of the impurities using commonly-available detection methods.
    Type: Grant
    Filed: July 13, 2010
    Date of Patent: July 15, 2014
    Assignee: Uchicago Argonne, LLC
    Inventors: Shabbir Ahmed, Sheldon H. D. Lee, Romesh Kumar, Dionissios D. Papadias
  • Patent number: 8758691
    Abstract: A hydrogen sensor using a hydrogen-absorbing alloy containing an Mg—Ni-based alloy and a Zr—Ti-based alloy includes a substrate (2), a hydrogen reaction layer (3) formed on the substrate (2) and containing the Mg—Ni-based alloy and the Zr—Ti-based alloy, and a first catalyst layer (4) formed on the hydrogen reaction layer (3) and capable of accelerating hydrogenation of the Mg—Ni-based alloy.
    Type: Grant
    Filed: February 21, 2011
    Date of Patent: June 24, 2014
    Assignee: Kabushiki Kaisha Atsumitec
    Inventors: Naoki Uchiyama, Tomomi Kanai, Kazumi Harada
  • Publication number: 20140154811
    Abstract: Technologies are generally described for gas filtration and detection devices. Example devices may include a graphene membrane and a sensing device. The graphene membrane may be perforated with a plurality of discrete pores having a size-selective to enable one or more molecules to pass through the pores. A sensing device may be attached to a supporting permeable substrate and coupled with the graphene membrane. A fluid mixture including two or more molecules may be exposed to the graphene membrane. Molecules having a smaller diameter than the discrete pores may be directed through the graphene pores, and may be detected by the sensing device. Molecules having a larger size than the discrete pores may be prevented from crossing the graphene membrane. The sensing device may be configured to identify a presence of a selected molecule within the mixture without interference from contaminating factors.
    Type: Application
    Filed: November 30, 2012
    Publication date: June 5, 2014
    Inventors: Angele Sjong, Kraig Anderson, Gary L. Duerksen, Seth Adrian Miller
  • Patent number: 8734723
    Abstract: A gas sensor cell using a liquid crystal composite material is provided. The gas sensor cell has recovery capability and can be reused. Upon gas adsorption, the liquid crystal composite material has visually detectable color changes and changes in electrical properties to facilitate the measurement of gas concentration from low to high.
    Type: Grant
    Filed: August 30, 2013
    Date of Patent: May 27, 2014
    Assignee: Industrial Technology Research Institute
    Inventors: Chin-Kai Chang, Hui-Lung Kuo
  • Patent number: 8691590
    Abstract: A hydrogen storage material analyzer along with its analysis and activation methods, the hydrogen storage material analyzer including a H2 absorption-desorption cycling tester, a temperature-programmed desorption spectrometer, a specimen holder and a temperature-controlled furnace.
    Type: Grant
    Filed: March 2, 2011
    Date of Patent: April 8, 2014
    Assignee: Yuan Ze University
    Inventors: Chia-Chieh Shen, Tsong-Pyng Perng, Hsueh-Chih Li
  • Patent number: 8646310
    Abstract: A gas sensor includes a catalyst layer and a pipe-shaped thermoelectric power generation device. The pipe-shaped thermoelectric power generation device includes an internal through-hole along the axial direction of the pipe-shaped thermoelectric power generation device, a plurality of first cup-shaped components each made of metal, a plurality of second cup-shaped components each made of thermoelectric material, and first and second electrodes disposed at the ends of the pipe-shaped power generation device. The plurality of the first cup-shaped components and the plurality of the plurality of second cup-shaped components are arranged alternately and repeatedly along the axial direction. The catalyst layer is arranged on the internal surface of the internal through-hole. A method for detecting or measuring gas by using the gas sensor includes supplying a fluid containing the gas into the internal through-hole of the gas sensor, and detecting voltage between the first and second electrodes.
    Type: Grant
    Filed: January 10, 2012
    Date of Patent: February 11, 2014
    Assignee: Panasonic Corporation
    Inventors: Kohei Takahashi, Tsutomu Kanno, Akihiro Sakai, Atsushi Omote, Yuka Yamada
  • Patent number: 8623662
    Abstract: Methods, processes and compositions are provided for a visual or chemochromic hydrogen-detector with variable or tunable reversible color change. The working temperature range for the hydrogen detector is from minus 100° C. to plus 500° C. A hydrogen-sensitive pigment, including, but not limited to, oxides, hydroxides and polyoxo-compounds of tungsten, molybdenum, vanadium, chromium and combinations thereof, is combined with nano-sized metal activator particles and preferably, coated on a porous or woven substrate. In the presence of hydrogen, the composition rapidly changes its color from white or light-gray or light-tan to dark gray, navy-blue or black depending on the exposure time and hydrogen concentration in the medium. After hydrogen exposure ceases, the original color of the hydrogen-sensitive pigment is restored, and the visual hydrogen detector can be used repeatedly.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: January 7, 2014
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventor: Nazim Z. Muradov
  • Publication number: 20130210160
    Abstract: The invention relates to a device and to a method for the detection of hydrogen in a gas mixture, wherein the device comprises a catalyst unit which is connected to a source and a supply device for CO and/or CO2, respectively, or comprises these and wherein the catalyst unit is connected to a flame ionization detector by a feed line, such that the gas mixture, especially containing an inert carrier gas after passing through the catalyst unit is conducted to the FID. The FID is operated with hydrogen as fuel gas.
    Type: Application
    Filed: April 26, 2011
    Publication date: August 15, 2013
    Applicant: Carl Von Ossietzky Universitaet Oldenburg
    Inventors: Frank Roessner, Stefan Schoenen
  • Patent number: 8435448
    Abstract: An assembly and method for gas analysis. The assembly comprises a catalyst compartment for catalytically reacting a component of a gas sample, producing one or more gas species as products. A product compartment receives the gas species, and a sensing element within the compartment senses the amount of one or more of the gas species. This amount is compared to the amount of the same gas species present in a reference compartment containing a non-catalyzed gas sample, providing the amount of the gas species produced by catalysis. Using this value, the content of the gas component in the gas sample is calculated based upon the stoichiometry of the catalyzed reaction. In preferred embodiments, the gas for analysis is a process gas for fuel production, and the catalyst is a high temperature shift catalyst that catalyzes the reaction of carbon monoxide and water into hydrogen and carbon dioxide.
    Type: Grant
    Filed: April 8, 2010
    Date of Patent: May 7, 2013
    Assignee: The Regents of the University of California
    Inventors: Chan Seung Park, Colin E. Hackett, Joseph M. Norbeck
  • Patent number: 8409869
    Abstract: A hydrogen sensor comprises a substrate having a surface coated with a hydrogen absorbing material and a temperature sensitive luminophore such that when the temperature sensitive luminophore is excited, it generates a fluorescent light, the luminescence of which is changed by an exothermic heat resulting from the adsorption of hydrogen through the hydrogen absorbing material. A hydrogen detecting system and a method of detecting hydrogen using the hydrogen sensor are also disclosed.
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: April 2, 2013
    Assignee: National Tsing Hua University
    Inventors: Hirotaka Sakaue, Chih-Yung Huang
  • Patent number: 8383412
    Abstract: Sensors and switches for detecting hydrogen include an electrically-insulating support; a first and second electrode; and a palladium structure alone or in combination with an organic insulating film. The palladium structures of the sensors are deposited on and contact a first electrode and a portion of the palladium structure extends to and contacts the second electrode to create a conductive path. The palladium structures of the switches are deposited on and contact a first electrode and a portion of the palladium structures extend to and contact an organic insulating film deposited on the second electrode. Upon exposure of the switch to hydrogen, portions of the palladium structure extend through the film and contact the second electrode to create a conductive path. Methods of detecting hydrogen and methods of fabricating a sensor for detecting an analyte of interest are also provided.
    Type: Grant
    Filed: October 30, 2009
    Date of Patent: February 26, 2013
    Assignee: University of Louisville Research Foundation, Inc.
    Inventors: Francis P. Zamborini, Radhika Dasari
  • Publication number: 20130005045
    Abstract: A chemochromic sensor for detecting a combustible gas, such as hydrogen, includes a chemochromic pigment mechanically mixed with a polymer and molded into a rigid or pliable shape. In a preferred embodiment, the chemochromic detector is within the material which is molded into a manufactured part, said part becoming the detector itself. The detector is robust and easily modifiable for a variety of applications and environmental conditions, such as atmospheres of inert gas, hydrogen gas, or mixtures of gases, or in environments that have variable temperature, including high temperatures such as above 100° C. and low temperatures such as below ?196° C.
    Type: Application
    Filed: September 12, 2012
    Publication date: January 3, 2013
    Applicants: Space
    Inventors: Janine E. Captain, Luke B. Roberson, Martha K. Williams, Trent M. Smith, LaNetra Clayton Tate
  • Publication number: 20120329168
    Abstract: A drug detection apparatus for identifying whether a gas sample contains an acidic gas includes a reactor having a gas inlet, a detection reagent containing an oxidant and a reductant, and a catalyst triggering a chemical adsorption with the oxidant and the reductant. A drug detection method applied to a drug detection apparatus is also disclosed. The drug detection apparatus and method can detect the acidic gases from drugs immediately, sensitively and selectively, thereby improving the efficiency of suspect inspection of drug smuggling in airports.
    Type: Application
    Filed: June 15, 2012
    Publication date: December 27, 2012
    Inventors: Po-Tsang LIN, Shu-Liang LIAW
  • Patent number: 8293178
    Abstract: A chemochromic sensor for detecting a combustible gas, such as hydrogen, includes a chemochromic pigment mechanically mixed with a polymer and formed into a rigid or pliable material. In a preferred embodiment, the chemochromic detector includes aerogel material. The detector is robust and easily modifiable for a variety of applications and environmental conditions, such as atmospheres of inert gas, hydrogen gas, or mixtures of gases, or in environments that have variable temperature, including high temperatures such as above 100° C. and low temperatures such as below ?196° C.
    Type: Grant
    Filed: November 6, 2007
    Date of Patent: October 23, 2012
    Assignee: The United States of America as Represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Luke B. Roberson, Janine E. Captain, Martha K. Williams, Trent M. Smith, LaNetra Clayton Tate
  • Publication number: 20120225009
    Abstract: A hydrogen storage material analyzer along with its analysis and activation methods, the hydrogen storage material analyzer including a H2 absorption-desorption cycling tester, a temperature-programmed desorption spectrometer, a specimen holder and a temperature-controlled furnace. With this hydrogen storage material analyzer, a complete set of instruments can be used to implement simultaneously cyclic hydrogenation-dehydrogenation test and thermodynamic desorption analyses, thus improving the working efficiency and analysis accuracy.
    Type: Application
    Filed: March 2, 2011
    Publication date: September 6, 2012
    Applicant: YUAN ZE UNIVERSITY
    Inventors: Chia-Chieh Shen, Perng Tsong-Pyng, Hsueh-Chih Li
  • Patent number: 8257978
    Abstract: Provided are novel technical means for obtaining useful knowledge in practical application of antioxidation action of dissolved hydrogen and in practical application of active oxygen scavenging action in water. Based on the temporal profile of the difference between the dissolved oxygen amount measured with forcibly dissolving hydrogen and the dissolved oxygen amount measured with blowing any other gas than hydrogen, the reaction between dissolved hydrogen and dissolved oxygen is quantitatively evaluated. Based on the temporal profile of the difference between the dissolved oxygen amount measured with making a photosensitizing dye contained in water and with forcibly dissolving hydrogen therein, and the dissolved oxygen amount measured without making a photosensitizing dye contained in water and with forcibly dissolving hydrogen therein, the reaction between dissolved hydrogen and dissolved oxygen is quantitatively evaluated.
    Type: Grant
    Filed: March 4, 2009
    Date of Patent: September 4, 2012
    Assignees: Eureka-Lab Inc., Seiji Katayama
    Inventors: Seiji Katayama, Yumiko Katayama
  • Patent number: 8168438
    Abstract: The presently-disclosed subject matter provides sensors and methods for detecting hydrogen by determining the conductivity of a chemiresistant film upon exposure to hydrogen, including for example chemiresistant films comprised of alkylamine-, alkylthiolate-, and/or surfactant-coated metal alloy nanoparticles.
    Type: Grant
    Filed: July 26, 2008
    Date of Patent: May 1, 2012
    Assignee: University of Louisville Research Foundation, Inc.
    Inventors: Francis P. Zamborini, Francisco J. Ibanez
  • Publication number: 20120045844
    Abstract: Methods and apparatus relating to very large scale FET arrays for analyte measurements. ChemFET (e.g., ISFET) arrays may be fabricated using conventional CMOS processing techniques based on improved FET pixel and array designs that increase measurement sensitivity and accuracy, and at the same time facilitate significantly small pixel sizes and dense arrays. Improved array control techniques provide for rapid data acquisition from large and dense arrays. Such arrays may be employed to detect a presence and/or concentration changes of various analyte types in a wide variety of chemical and/or biological processes. In one example, chemFET arrays facilitate DNA sequencing techniques based on monitoring changes in hydrogen ion concentration (pH), changes in other analyte concentration, and/or binding events associated with chemical processes relating to DNA synthesis.
    Type: Application
    Filed: September 26, 2011
    Publication date: February 23, 2012
    Applicant: Life Technologies Corporation
    Inventors: Jonathan ROTHBERG, Wolfgang Hinz, Kim Johnson, James Bustillo
  • Publication number: 20120040469
    Abstract: A hydrogen sensor comprises a substrate having a surface coated with a hydrogen absorbing material and a temperature sensitive luminophore such that when the temperature sensitive luminophore is excited, it generates a fluorescent light, the luminescence of which is changed by an exothermic heat resulting from the adsorption of hydrogen through the hydrogen absorbing material. A hydrogen detecting system and a method of detecting hydrogen using the hydrogen sensor are also disclosed.
    Type: Application
    Filed: March 30, 2011
    Publication date: February 16, 2012
    Inventors: Hirotaka Sakaue, Chih-Yung Huang
  • Patent number: 8113035
    Abstract: Disclosed is a method for detecting hydrogen in steel. According to the method, hydrogen contained in steel is transferred into and preferably concentrated in at least one second material. Representative second materials include metals such as vanadium, niobium, tantalum, and their alloys. Upon transfer to the second material, the hydrogen is detected and preferably quantitatively determined. The data obtained with the method enables conclusions to be drawn about the presence of hydrogen in steel. Preferably, the concentration of hydrogen in steel is quantitatively determined from information obtained about the presence of hydrogen in the second material.
    Type: Grant
    Filed: April 25, 2007
    Date of Patent: February 14, 2012
    Inventors: Reiner Kirchheim, Peter-Joachim Wilbrandt, Jurgen Gegner
  • Patent number: 8084265
    Abstract: Methods and Pd/V2O5 devices for hydrogen detection are disclosed. An exemplary method of preparing an improved sensor for chemochromic detection of hydrogen gas over a wide response range exhibits stability during repeated coloring/bleaching cycles upon exposure and removal of hydrogen gas. The method may include providing a substrate. The method may also include depositing a V205 layer that functions as a H2 insertion host in a Pd/V205 hydrogen sensor to be formed on said substrate. The method may also include depositing a Pd layer onto said V205 layer; said Pd layer functioning as an optical modulator.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: December 27, 2011
    Assignee: Alliance for Sustianable Energy, LLC
    Inventors: Ping Liu, C. Edwin Tracy, J. Roland Pitts, R. Davis Smith, II, Se-Hee Lee
  • Publication number: 20110300637
    Abstract: A method for sensing hydrogen includes the use of a transduction device with a sensing layer, and means for measuring a mass and/or conductivity change caused by an interaction of a gas with the sensing layer to provide a measure of an amount of hydrogen in the gas. The sensing layer includes polyaniline nanofiber material.
    Type: Application
    Filed: August 2, 2011
    Publication date: December 8, 2011
    Inventors: Shabnam Virji, Richard B. Kaner, Bruce H. Weiller
  • Patent number: 8071389
    Abstract: The invention relates to a method of controlling a hydrogenation of a starting material in a hydrogenation reactor, in which the amount of hydrogen reacted in the hydrogenation is firstly determined, the ratio of the amount of hydrogen reacted to the amount of starting material fed in is then derived, this ratio is compared with a prescribed value and, finally, at least one process parameter is altered if the ratio of the amount of hydrogen reacted to the amount of starting material fed in deviates by a prescribed amount from the prescribed value.
    Type: Grant
    Filed: January 30, 2006
    Date of Patent: December 6, 2011
    Assignee: BASF Aktiengesellschaft
    Inventors: Alexander Weck, Markus Rösch, Gunther Windecker, Gunnar Heydrich, Rolf Pinkos, Olga Schubert, Klaus Harth
  • Publication number: 20110244585
    Abstract: A device is disclosed for detecting at least one chemical compound comprising at least one carbon nanotube with several graphene layers, on which is grafted at least one molecule bearing group G1 capable of reacting with the chemical compound or a precursor of such a group G1. The uses and the method of making such a device is also disclosed.
    Type: Application
    Filed: September 28, 2009
    Publication date: October 6, 2011
    Applicant: Commissariat a l'energie atomique et aux energies alternatives
    Inventors: Martine Mayne-L'Hermite, Serge Palacin, Pascale Chenevier, Jérôme Chancolon, Aurélien Gohier
  • Patent number: 8025844
    Abstract: A hydrogen sensor includes a thin film layer formed on a top surface of a planar optical transmission medium, and a catalyst layer formed on a top surface of the thin film layer. A first interface is created between the planar optical transmission medium and the thin film layer. A substrate is joined to a bottom surface of the planar optical transmission medium so that a second interface is created between the planar optical transmission medium and the substrate. On entering a first end portion of the planer optical transmission medium, light from a light source is spread by an entrance section, and the spread light is transmitted inside the planar optical transmission medium to a second end portion by being reflected by the first and second interfaces alternately. Light exiting from the second end portion is transmitted to an optical sensor by an exit light-collecting section.
    Type: Grant
    Filed: July 10, 2007
    Date of Patent: September 27, 2011
    Assignees: Kabushiki Kaisha Atsumitec, National Institute of Advanced Industrial Science and Technology
    Inventors: Naoki Uchiyama, Naoki Matsuda, Kazuki Yoshimura, Kenji Kato
  • Patent number: 8025843
    Abstract: The present invention has a hydrogen detection portion composed of a semiconductor and a hydrogen absorber provided at least a part of a surface thereof, and pairs of electrodes provided at the semiconductor so as to sandwich the place at which the hydrogen absorber is provided and so as not to be electrically connected to each other with the hydrogen absorber, wherein the presence of hydrogen can be detected by the change in resistance of the semiconductor in response to hydrogen absorption into the hydrogen absorber, the change in resistance being measured between said pairs of electrodes.
    Type: Grant
    Filed: April 22, 2005
    Date of Patent: September 27, 2011
    Assignees: Alps Electric Co., Ltd., Honda Motor Co., Ltd.
    Inventors: Yasuichi Ono, Toshiaki Konno
  • Patent number: 8003055
    Abstract: Methods, processes and compositions are provided for a visual or chemochromic hydrogen-detector with variable or tunable reversible color change. The working temperature range for the hydrogen detector is from minus 100° C. to plus 500° C. A hydrogen-sensitive pigment, including, but not limited to, oxides, hydroxides and polyoxo-compounds of tungsten, molybdenum, vanadium, chromium and combinations thereof, is combined with nano-sized metal activator particles and preferably, coated on a porous or woven substrate. In the presence of hydrogen, the composition rapidly changes its color from white or light-gray or light-tan to dark gray, navy-blue or black depending on the exposure time and hydrogen concentration in the medium. After hydrogen exposure ceases, the original color of the hydrogen-sensitive pigment is restored, and the visual hydrogen detector can be used repeatedly.
    Type: Grant
    Filed: February 27, 2008
    Date of Patent: August 23, 2011
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventor: Nazim Muradov
  • Publication number: 20110171066
    Abstract: A chemochromic sensor for detecting a combustible gas, such as hydrogen, includes a chemochromic pigment mechanically mixed with a polymer and formed into a rigid or pliable material. In a preferred embodiment, the chemochromic detector includes aerogel material. The detector is robust and easily modifiable for a variety of applications and environmental conditions, such as atmospheres of inert gas, hydrogen gas, or mixtures of gases, or in environments that have variable temperature, including high temperatures such as above 100° C. and low temperatures such as below ?196° C.
    Type: Application
    Filed: November 6, 2007
    Publication date: July 14, 2011
    Applicants: Space Administration
    Inventors: Janine E. Captain, Luke B. Roberson, Martha K. Williams, Trent M. Smith, LaNetra Clayton Tate
  • Patent number: 7977638
    Abstract: The present invention relates to optical sensor arrangements, especially sensors of the type that can be used in motor vehicles and which can detect hydrogen in a gaseous measured medium.
    Type: Grant
    Filed: November 16, 2007
    Date of Patent: July 12, 2011
    Assignee: Bayerische Motoren Werke Aktiengesellschaft
    Inventors: Robert Frodl, Thomas Tille
  • Patent number: 7910373
    Abstract: An ultra-fast response, high sensitivity structure for optical detection of low concentrations of hydrogen gas, comprising: a substrate; a water-doped WO3 layer coated on the substrate; and a palladium layer coated on the water-doped WO3 layer.
    Type: Grant
    Filed: May 5, 2001
    Date of Patent: March 22, 2011
    Assignee: Alliance for Sustainable Energy, LLC
    Inventors: Ping Liu, C. Edwin Tracy, J. Roland Pitts, Se-Hee Lee
  • Patent number: 7829344
    Abstract: The present invention relates to a device and a method for the detection of hydrogen in a gas volume by means of an exothermal catalytic recombination of hydrogen and oxygen present in the gas volume into water. The amount of energy that is released during such an exothermal catalytic recombination is measured in the form of a temperature difference and is compared with a stored limit value. When a corresponding limit value is exceeded an appropriate signal is output.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: November 9, 2010
    Assignee: Hoppecke Batterien GmbH & Co. KG
    Inventors: Heinrich Kesper, Eduardo Cattaneo, Bernhard Riegel
  • Publication number: 20100255598
    Abstract: The present invention relates to the detection of markers in exhaled breath, wherein the detection of the presence or absence of the marker(s) in exhaled breath is used to assess various clinical data, including patient adherence in taking the medication and patient enzymatic (metabolic) competence in metabolizing the medication. An embodiment of the invention comprises a parent therapeutic agent labeled with a marker, where upon metabolism (e.g., via enzymatic action) of the therapeutic agent, the marker becomes volatile or semi-volatile and is present in the breath. In certain related embodiments, the marker contain a deuterium label, which is also present in the breath upon metabolism of the therapeutic agent. In another embodiment of the invention, the therapeutic agent is associated with a taggant (that may be either labeled or unlabeled with deuterium), which in turn will generate a marker in the breath that is easily measurable.
    Type: Application
    Filed: February 22, 2008
    Publication date: October 7, 2010
    Inventors: Richard J. Melker, Donn Michael Dennis, Christopher D. Batich, Mark S. Gold
  • Publication number: 20100209507
    Abstract: Disclosed is a method of treating small intestinal bacterial overgrowth (SIBO) or a SIBO-caused condition in a human subject. SIBO-caused conditions include irritable bowel syndrome, fibromyalgia, chronic pelvic pain syndrome, chronic fatigue syndrome, depression, impaired mentation, impaired memory, halitosis, tinnitus, sugar craving, autism, attention deficit/hyperactivity disorder, drug sensitivity, an autoimmune disease, and Crohn's disease. Also disclosed are a method of screening for the abnormally likely presence of SIBO in a human subject and a method of detecting SIBO in a human subject. A method of determining the relative severity of SIBO or a SIBO-caused condition in a human subject, in whom small intestinal bacterial overgrowth (SIBO) has been detected, is also disclosed.
    Type: Application
    Filed: April 27, 2010
    Publication date: August 19, 2010
    Applicant: CEDARS-SINAI MEDICAL CENTER
    Inventors: Henry C. Lin, Mark Pimentel
  • Patent number: 7754491
    Abstract: An assembly and method for gas analysis. The assembly comprises a catalyst compartment for catalytically reacting a component of a gas sample, producing one or more gas species as products. A product compartment receives the gas species, and a sensing element within the compartment senses the amount of one or more of the gas species. This amount is compared to the amount of the same gas species present in a reference compartment containing a non-catalyzed gas sample, providing the amount of the gas species produced by catalysis. Using this value, the content of the gas component in the gas sample is calculated based upon the stoichiometry of the catalyzed reaction. In preferred embodiments, the gas for analysis is a process gas for fuel production, and the catalyst is a high temperature shift catalyst that catalyzes the reaction of carbon monoxide and water into hydrogen and carbon dioxide.
    Type: Grant
    Filed: December 9, 2005
    Date of Patent: July 13, 2010
    Assignee: The Regents of the University of Calif.
    Inventors: Chan Seung Park, Colin E. Hackett, Nora A. Hackett, legal representative, Joseph M. Norbeck
  • Patent number: 7687030
    Abstract: A hydrogen gas visualization device comprises a hydrogen sensor having a thin film layer formed on the surface of a substrate and a catalyst layer formed on the surface of the thin film layer which, when contacted by hydrogen gas contained in an atmosphere, hydrogenates the thin film layer and thereby changes the optical reflectance of the thin film layer, and one or more sensor faces provided with the hydrogen sensor. The hydrogen gas visualization device visualizes, on the sensor faces, the distribution of hydrogen gas contained in the atmosphere contacting the hydrogen sensor and thereby visualizes the existence and flow of the hydrogen gas.
    Type: Grant
    Filed: October 16, 2006
    Date of Patent: March 30, 2010
    Assignee: Kabushiki Kaisha ATSUMITEC
    Inventors: Naoki Uchiyama, Hiroyuki Matsumoto
  • Patent number: 7682832
    Abstract: Gas flow is controlled to a feed gas consuming device depending on whether a contaminant gas is present. In one embodiment, hydrogen gas flow from a hydrogen gas generator to a hydrogen consuming device, such as a fuel cell, gas chromatograph or a flame ionization detector, is terminated when there is chemical contaminant breakthrough in the hydrogen gas flow. The apparatus relates to the use of a sensor for detecting a predetermined concentration of a chemical contaminant such as ammonia. In one embodiment the apparatus terminates the gas flow when a concentration of ammonia in the gas flow corresponds to a breakthrough (e.g., approximately in the range of 2.0% or greater). The apparatus prevents the ammonia-contaminated hydrogen from disabling such a hydrogen consuming device that would have otherwise received the contaminated gas flow.
    Type: Grant
    Filed: April 1, 2008
    Date of Patent: March 23, 2010
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Jeffrey A. Schmidt, Franklin Earl Lynch, John S. Wilkes
  • Patent number: 7628959
    Abstract: A hydrogen gas sensor and/or switch fabricated from arrays nanowires composed of metal or metal alloys that have stable metal hydride phases. The sensor and/or switch response times make it quite suitable for measuring the concentration of hydrogen in a flowing gas stream. The sensor and/or switch preferably operates by measuring the resistance of several metal nanowires arrayed in parallel in the presence of hydrogen gas. The nanowires preferably comprise gaps or break junctions that can function as a switch that closes in the presence of hydrogen gas. Consequently, the conductivity of the nanowires of the sensor and/or switch increases in the presence of hydrogen.
    Type: Grant
    Filed: March 6, 2007
    Date of Patent: December 8, 2009
    Assignee: The Regents of the University of California
    Inventors: Reginald Mark Penner, Erich C. Walter, Fred Favier
  • Publication number: 20090181105
    Abstract: The objective of the present invention is to provide an antioxidation method and antioxidant-functioning water that can anticipate high benchmarks of safety on the antioxidation subject such as the human body and reduced environmental burden. An antioxidation method and antioxidant-functioning water that can transform or maintain an antioxidation subject, which is in an oxidation state due to a deficiency of electrons or needs to be protected from oxidation, into a reduced state where electrons are filled by promoting the breaking reaction of molecular hydrogen used as a substrate included in the hydrogen-dissolved water into a product of active hydrogen through a process employing a catalyst, which is a precious metal colloid or a hydrogen oxidation/reduction enzyme (except for those already existing in a living organism), on the hydrogen-dissolved water.
    Type: Application
    Filed: March 4, 2009
    Publication date: July 16, 2009
    Applicant: MIZ CO., LTD.
    Inventors: Tomoyuki YANAGIHARA, Bunpei Satoh, Tatsuya Shudo
  • Patent number: 7537737
    Abstract: An installation structure for a gas sensor capable of detecting gas concentration in a highly accurate manner is provided. The installation structure for a gas sensor which detects concentration of gas circulating inside an outlet-side piping comprises a through hole 18 in an inner wall of the outlet-side piping and the gas sensor comprises a gas inlet portion with one face open within the outlet-side piping 14, and the gas sensor is installed to the outlet-side piping in a condition where the gas inlet portion does not protrude from the inner wall of outlet-side piping.
    Type: Grant
    Filed: March 28, 2003
    Date of Patent: May 26, 2009
    Assignee: Honda Motor Co., Ltd.
    Inventors: Hiroyuki Abe, Akihiro Suzuki, Takashi Sasaki
  • Patent number: 7521252
    Abstract: Methods for forming hydrogen sensing materials include forming a palladium alloy thin film having less than about 83 atomic percent of palladium, and annealing the palladium alloy thin film to relieve residual stress and increase atomic intermixing of the nanorystaline lattice, while maintaining a grain size close to the grain size of the nonannealed palladium alloy thin film. For example, the sensing material may include a palladium-gold alloy thin film having about 60 atomic percent of palladium and about 40 atomic percent of gold. The palladium-gold alloy thin film is then annealed at a temperature of about 200 degrees Celsius for 1 hour. Methods for detecting hydrogen containing gas in which the hydrogen sensing material is maintained in a single phase when exposed to the hydrogen containing gas, and optical hydrogen sensors are also disclosed.
    Type: Grant
    Filed: February 3, 2005
    Date of Patent: April 21, 2009
    Assignee: The Research Foundation of State University of New York
    Inventors: Michael A. Carpenter, Zhouying Zhao
  • Publication number: 20090053822
    Abstract: Methods and Pd/V2O5 devices for hydrogen detection are disclosed. An exemplary method of preparing an improved sensor for chemochromic detection of hydrogen gas over a wide response range exhibits stability during repeated coloring/bleaching cycles upon exposure and removal of hydrogen gas. The method may include providing a substrate. The method may also include depositing a V205 layer that functions as a H2 insertion host in a Pd/V205 hydrogen sensor to be formed on said substrate. The method may also include depositing a Pd layer onto said V205 layer; said Pd layer functioning as an optical modulator.
    Type: Application
    Filed: March 31, 2008
    Publication date: February 26, 2009
    Inventors: Ping Liu, C. Edwin Tracy, J. Roland Pitts, R. Davis Smith, II, Se-Hee Lee
  • Patent number: 7479255
    Abstract: A hydrogen sensor 25 has a fitting base plate 29 in which a gas-sensing chamber 34 is formed, a specimen gas intake 35 formed on said fitting base plate 29, opening toward an exit passage 24 and introducing hydrogen gas into the gas-sensing chamber 34, a gas-sensing element 39 held in the gas-sensing chamber 34 and adapted to sense hydrogen gas, and a water-repelling filter 44 covering the specimen gas intake 35.
    Type: Grant
    Filed: November 14, 2002
    Date of Patent: January 20, 2009
    Assignee: Riken Keiki Co., Ltd.
    Inventors: Seiichi Otani, Yukio Nakamura, Mamoru Furusato