Hydrogen, Per Se Patents (Class 436/144)
  • Publication number: 20090053822
    Abstract: Methods and Pd/V2O5 devices for hydrogen detection are disclosed. An exemplary method of preparing an improved sensor for chemochromic detection of hydrogen gas over a wide response range exhibits stability during repeated coloring/bleaching cycles upon exposure and removal of hydrogen gas. The method may include providing a substrate. The method may also include depositing a V205 layer that functions as a H2 insertion host in a Pd/V205 hydrogen sensor to be formed on said substrate. The method may also include depositing a Pd layer onto said V205 layer; said Pd layer functioning as an optical modulator.
    Type: Application
    Filed: March 31, 2008
    Publication date: February 26, 2009
    Inventors: Ping Liu, C. Edwin Tracy, J. Roland Pitts, R. Davis Smith, II, Se-Hee Lee
  • Patent number: 7479255
    Abstract: A hydrogen sensor 25 has a fitting base plate 29 in which a gas-sensing chamber 34 is formed, a specimen gas intake 35 formed on said fitting base plate 29, opening toward an exit passage 24 and introducing hydrogen gas into the gas-sensing chamber 34, a gas-sensing element 39 held in the gas-sensing chamber 34 and adapted to sense hydrogen gas, and a water-repelling filter 44 covering the specimen gas intake 35.
    Type: Grant
    Filed: November 14, 2002
    Date of Patent: January 20, 2009
    Assignee: Riken Keiki Co., Ltd.
    Inventors: Seiichi Otani, Yukio Nakamura, Mamoru Furusato
  • Publication number: 20090017551
    Abstract: The present invention relates to a device and a method for the detection of hydrogen in a gas volume by means of an exothermal catalytic recombination of hydrogen and oxygen present in the gas volume into water. The amount of energy that is released during such an exothermal catalytic recombination is measured in the form of a temperature difference and is compared with a stored limit value. When a corresponding limit value is exceeded an appropriate signal is output.
    Type: Application
    Filed: May 23, 2008
    Publication date: January 15, 2009
    Inventors: Heinrich Kesper, Eduardo Cattaneo, Bernhard Riegel
  • Publication number: 20090005235
    Abstract: The present invention provides a method of recycling a spent flue gas denitration catalyst and a method of determining a washing time of the spent flue gas denitration catalyst. The method of recycling the spent flue gas denitration catalyst includes physically removing solids deposited in the spent flue gas denitration catalyst, removing poisoning substances deposited in the spent flue gas denitration catalyst by washing the spent flue gas denitration catalyst with a washing liquid for a washing time determined by measuring the hydrogen ion concentration of the washing liquid and drying the resulting spent flue gas denitration catalyst.
    Type: Application
    Filed: January 15, 2008
    Publication date: January 1, 2009
    Applicant: KOREA ELECTRIC POWER CORPORATION
    Inventors: In-Young Lee, Jung-Bin Lee, Dong-Wha Kim
  • Patent number: 7459312
    Abstract: Carbon nanotube devices are manipulated in a manner that is useful for a variety of implementations. According to an example embodiment of the present invention, light (632) is used to photodesorb molecules from a carbon nanotube (620).
    Type: Grant
    Filed: April 18, 2002
    Date of Patent: December 2, 2008
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Hongjie Dai, Robert J. Chen
  • Patent number: 7445937
    Abstract: A method for identification and evaluation of the hydrogen storage capacity of materials is presented, the method comprising providing a plurality of materials, wherein the plurality of materials comprise an array of synthesized hydrides and analyzing hydrogen content in the plurality of materials.
    Type: Grant
    Filed: June 29, 2004
    Date of Patent: November 4, 2008
    Assignee: General Electric Company
    Inventors: John Patrick Lemmon, Ji-Cheng Zhao, Tracey Marie Jordan, Vincent Scott Smentkowski
  • Patent number: 7429358
    Abstract: The invention relates to a method and an apparatus (herein referred to as a “gas sorption/desorption analyzer”) for measuring the gas sorption properties of substances (for example hydrogen sorption by metal alloys). Measurements include: Pressure Composition Temperature isotherm (PCT), Kinetic, Cycle-life, and density. Measurements are made by sorption of aliquots of gas to or from a sample of the substance. The amount of gas in each aliquot is determined from the gas pressure and temperature in calibrated reservoir volumes. The apparatus comprises components rated for operation up to 200 atm, a plurality of sensors covering a broad pressure range, and minimized volumes to enable accurate measurements of small samples. Aliquot pressures are controlled using a feed-back controlled pressure regulator that can also be used for constant pressure sorption measurements. The gas temperature is regulated using a temperature controlled enclosure.
    Type: Grant
    Filed: May 17, 2003
    Date of Patent: September 30, 2008
    Assignee: Hy-Energy, LLC
    Inventor: Karl J. Gross
  • Patent number: 7422907
    Abstract: A process for measuring the mercury concentration within a hydrocarbon is provided that enables the mercury concentration to be measured simply and quickly, and with good reliability and good reproducibility. A process for measuring the mercury concentration within a hydrocarbon includes the steps of placing and weighing the hydrocarbon in a sample boat 12 containing an adsorbent that contains a metal capable of forming an amalgam with mercury, and heating the hydrocarbon inside the sample boat 12 in a combustion furnace 13, together with the adsorbent, and measuring the quantity of mercury within the thus generated gas.
    Type: Grant
    Filed: February 4, 2005
    Date of Patent: September 9, 2008
    Assignee: Sekiyushigen Kaihstsu Kabushiki Kaisha
    Inventors: Hitomi Hirano, Shinichi Okada, Naohide Tsuzuki, Yoshio Yasuda
  • Patent number: 7416702
    Abstract: According to the present invention there is disclosed a hydrogen sensor comprising a substrate, a rare earth metal film formed on the substrate, and a protective film formed on the rare earth metal film, wherein the protective film comprises a ceramic material and hydrogen-permeable metal particles dispersed in the ceramic material.
    Type: Grant
    Filed: February 15, 2005
    Date of Patent: August 26, 2008
    Assignee: Mikuni Corporation
    Inventors: Akira Yamaguchi, Katsuhiko Fukui
  • Publication number: 20080166816
    Abstract: The invention relates to a method of controlling a hydrogenation of a starting material in a hydrogenation reactor, in which the amount of hydrogen reacted in the hydrogenation is firstly determined, the ratio of the amount of hydrogen reacted to the amount of starting material fed in is then derived, this ratio is compared with a prescribed value and, finally, at least one process parameter is altered if the ratio of the amount of hydrogen reacted to the amount of starting material fed in deviates by a prescribed amount from the prescribed value.
    Type: Application
    Filed: January 30, 2006
    Publication date: July 10, 2008
    Applicant: BASF Aktiengesellschaft
    Inventors: Alexander Weck, Markus Rosch, Gunther Windecker, Gunnar Heydrich, Rolf Pinkos, Olga Schubert, Klaus Harth
  • Publication number: 20080153174
    Abstract: A process for sensing hydrogen in a refinery process stream or a chemical process stream has been developed. The process comprises flowing at least a portion of the refinery process stream or the chemical process stream through a conduit which is part of a main support and through a series of flow components which are attached to the main support and in fluid communication with the conduit. The flow components comprise, a needle valve, a pressure indicator, a catalytic alloy hydrogen sensor, and a back pressure regulator. The catalytic alloy hydrogen sensor may be a palladium-nickel catalytic alloy hydrogen sensor. The process continues with generating a signal indicating the amount of hydrogen in the stream using the catalytic alloy hydrogen sensor and communicating the signal to a display device or a computer processor. The process may further include adjusting an operating parameter based upon the signal indicating the amount of hydrogen in the stream, or based upon a calculated mole percent hydrogen.
    Type: Application
    Filed: December 20, 2006
    Publication date: June 26, 2008
    Inventors: Douglas B. Galloway, Randall E. Holt, Patrick J. Bullen
  • Patent number: 7364912
    Abstract: Gas flow is controlled to a feed gas consuming device depending on whether a contaminant gas is present. In one embodiment, hydrogen gas flow from a hydrogen gas generator to a hydrogen consuming device, such as a fuel cell, gas chromatograph or a flame ionization detector, is terminated when there is chemical contaminant breakthrough in the hydrogen gas flow. The apparatus relates to the use of a sensor for detecting a predetermined concentration of a chemical contaminant such as ammonia. In one embodiment the apparatus terminates the gas flow when a concentration of ammonia in the gas flow corresponds to a breakthrough (e.g., approximately in the range of 2.0% or greater). The apparatus prevents the ammonia-contaminated hydrogen from disabling such a hydrogen consuming device that would have otherwise received the contaminated gas flow.
    Type: Grant
    Filed: September 26, 2002
    Date of Patent: April 29, 2008
    Inventors: Jeffrey A. Schmidt, Franklin Earl Lynch, John S. Wilkes
  • Patent number: 7323344
    Abstract: A method is provided for the quantitative analysis of the contents, in nitrogen, of hydrogen and methane by ionic mobility spectrometry. The method includes the steps of: a) performing a measurement of the apparent hydrogen concentration in the nitrogen to be analyzed; b) performing a measurement of the apparent hydrogen concentration in a flow of the same sample of nitrogen, purified of all impurities but methane; and c) comparing the two measurements. A system of branched lines is also provided for carrying out the method.
    Type: Grant
    Filed: November 6, 2003
    Date of Patent: January 29, 2008
    Assignee: Saes Getters S.p.A.
    Inventors: Luca Pusterla, Marco Succi
  • Patent number: 7306951
    Abstract: A measuring apparatus and method for use in measuring diffusible hydrogen concentrations in materials, structures, and other objects. In an embodiment of the invention for use in welding applications, the measuring apparatus (10) includes a sensor assembly (20) that, with an included sealing member (40), defines a sample area (17) on a weld bead (16) from which hydrogen evolves into a sample volume (18) defined by the sealing member (40), a sensor housing (34) and a sensor (22) of the sensor assembly (20). The hydrogen reacts with a sensing layer (28) and a reflector layer (30) positioned on the end of an optical fiber (24), all of which are included in the sensor assembly (20) and are sealably positioned within the sensor (22).
    Type: Grant
    Filed: June 8, 2000
    Date of Patent: December 11, 2007
    Assignee: Midwest Research Institute
    Inventors: David K. Benson, Thomas R. Wildeman, R. Davis Smith, David L. Olson
  • Patent number: 7276379
    Abstract: The invention is directed to a method of detecting hydrogen radicals present in water or an aqueous solution, characterized in adding sodium salt of 3,5-dibromo-4-nitrosobenzenesulfonic acid (DBNBS) to a sample for detecting the hydrogen radicals by coloring resulting from absorption characteristics thereof, and further characterized in blowing hydrogen gas into a solution of 1,1-diphenyl-2-piclylhydrazyl (DPPH) having absorption in the vicinity of 517 nm and a solution of sodium salt of 3,5-dibromo-4-nitrosobenzenesulfonic acid (DBNBS) at a constant speed in the presence of platinum black for quantitatively analyzing the concentration of the hydrogen radicals from a calibration curve C of a graph of correlation between absorbance in the vicinity of 450 nm derived from a DBNBS azo compound and the concentration of the formed hydrogen radicals.
    Type: Grant
    Filed: May 27, 2002
    Date of Patent: October 2, 2007
    Assignees: Nihon Trim Co., Ltd.
    Inventors: Sanetaka Shirahata, Kazumichi Otsubo
  • Patent number: 7255836
    Abstract: A device and method for quantifying an impurity in an input gas stream. The device and method employ a catalyst to convert the impurity to a detectable species in an output gas stream, and the concentration of the detectable species is then measured by means of a detector.
    Type: Grant
    Filed: March 13, 2003
    Date of Patent: August 14, 2007
    Assignee: Trustees of Princeton University
    Inventors: Kevin Lehmann, Yu Chen, Wen-Bin Yan
  • Patent number: 7233034
    Abstract: A protective coating for a surface comprising a layer permeable to hydrogen, said coating being deposited on a catalyst layer; wherein the catalytic activity of the catalyst layer is preserved.
    Type: Grant
    Filed: August 19, 2005
    Date of Patent: June 19, 2007
    Assignee: Midwest Research Institute
    Inventors: Ping Liu, C. Edwin Tracy, J. Roland Pitts, Se-Hee Lee
  • Patent number: 7223607
    Abstract: The invention relates to a process for the detection of hydrocarbons other than methane in a gas predominantly or essentially comprising oxygen, as well as methane and the said hydrocarbons other than methane, the said process comprising: a stage of detection of the combined hydrocarbons in the said gas, providing a first value for the combined hydrocarbons, a stage of combustion of the hydrocarbons other than methane, a stage of detection of methane in the said gas, providing a second value, a stage of calculation of the amount of hydrocarbons other than methane by the difference between the first value and the second value. The invention also relates to a device for implementing this process.
    Type: Grant
    Filed: February 5, 2002
    Date of Patent: May 29, 2007
    Assignee: L'Air Liquide Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventor: Francis Bryselbout
  • Patent number: 7192459
    Abstract: An apparatus for dispensing an odorant to a fluid in a vessel having an interior volume containing the fluid includes at least one odorant material and an odorant-permeable material. The at least one odorant material is disposed in the interior volume, the odorant material having at least one detectable odor. The odorant-permeable material encapsulates the odorant material.
    Type: Grant
    Filed: December 16, 2002
    Date of Patent: March 20, 2007
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Pushpinder Singh Puri, James Gordon Hansel
  • Patent number: 7189592
    Abstract: A robust single-chip hydrogen sensor and a method for fabricating such a sensor. By utilizing an interconnect metallization material that is the same or similar to the material used to sense hydrogen, or that is capable of withstanding an etchant used to pattern a hydrogen sensing portion, device yields are improved over prior techniques.
    Type: Grant
    Filed: May 3, 2004
    Date of Patent: March 13, 2007
    Assignee: Honeywell International Inc.
    Inventor: James M. O'Connor
  • Patent number: 7189364
    Abstract: A hydrogen sensor includes a first electrode 3 and a second electrode 4 provided in contact with a proton conduction layer 2; a gas diffusion controlling portion 6 provided between a measurement gas atmosphere and the first electrode 3; and a support element (1a, 1b) for supporting the proton conduction layer 6, the first electrode 3, the second electrode 4, and the gas diffusion controlling portion 6. Hydrogen contained in a measurement gas introduced via the gas diffusion controlling portion 6 is dissociated, decomposed, or reacted by applying a voltage between the first electrode 3 and the second electrode 4 to thereby generate protons. Hydrogen concentration is obtained on the basis of a limiting current generated as a result of the generated protons being pumped out via the proton conduction layer 2 from the first electrode 3 side of the proton conduction layer to the second electrode 4 side of the proton conduction layer.
    Type: Grant
    Filed: April 11, 2002
    Date of Patent: March 13, 2007
    Assignee: NGK Spark Plug Co., Ltd.
    Inventors: Norihiko Nadanami, Tomonori Kondo, Masaya Watanabe, Ryuji Inoue, Noboru Ishida, Takafumi Oshima
  • Patent number: 7186381
    Abstract: A hydrogen gas sensor and/or switch fabricated from arrays nanowires composed of metal or metal alloys that have stable metal hydride phases. The sensor and/or switch response times make it quite suitable for measuring the concentration of hydrogen in a flowing gas stream. The sensor and/or switch preferably operates by measuring the resistance of several metal nanowires arrayed in parallel in the presence of hydrogen gas. The nanowires preferably comprise gaps or break junctions that can function as a switch that closes in the presence of hydrogen gas.
    Type: Grant
    Filed: May 30, 2002
    Date of Patent: March 6, 2007
    Assignee: Regents of the University of California
    Inventors: Reginald Mark Penner, Erich C. Walter, Fred Favier
  • Patent number: 6959254
    Abstract: A method and a device are proposed for controlling and/or diagnosing a control system influencing a mass flow. In this context, a correction value is calculated, which corrects the controlling, or is evaluated for diagnostic purposes. The correction value, in this context, is derived from the line resistance of the mass flow line.
    Type: Grant
    Filed: March 28, 2002
    Date of Patent: October 25, 2005
    Assignee: Robert Bosch GmbH
    Inventors: Lutz Reuschenbach, Oliver Schlesiger, Ernst Wild
  • Patent number: 6899855
    Abstract: A hydrogen-occlusion alloy regenerating apparatus includes a deterioration detecting means for detecting that a hydrogen-occlusion alloy capable of occluding hydrogen in a reformed gas produced by a reformer and of releasing the hydrogen has been deteriorated due to the deposition of impurities in the reformed gas, and a regenerating section for regenerating the deteriorated hydrogen-occlusion alloy based on a detection signal from the deterioration detecting means.
    Type: Grant
    Filed: March 15, 2001
    Date of Patent: May 31, 2005
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventor: Toshiaki Shimada
  • Patent number: 6897960
    Abstract: A hydrogen gas detector for detection of hydrogen gas in a gaseous environment. The detector comprises a light/heat source, an optical detector, and an optical barrier between the source and detector. The optical barrier responds to the presence of hydrogen by responsively changing from a first optical state to a different second optical state, whereby transmission of light from the light/heat source through the optical barrier is altered by the presence of hydrogen and the altered transmission is sensed by the optical detector to provide an indication of the presence of hydrogen gas in the gaseous environment.
    Type: Grant
    Filed: May 2, 2002
    Date of Patent: May 24, 2005
    Inventors: Frank DiMeo, Jr., Mackenzie E. King
  • Patent number: 6827903
    Abstract: A single pass analyzer includes multiple infrared sensors, a catalytic converter, a scrubber and a thermal conductivity cell all coupled in series to provide a single pass (i.e., one sample) analyzer which allows for fast analysis, allows for the speciation of hydrogen samples, requires no purging between different sample types, utilizes a single carrier gas, and eliminates molecular sieves and Shutze converters. The resultant analyzer provides improved quicker results with less plumbing (i.e., gas conduits and valving) in a single instrument.
    Type: Grant
    Filed: October 26, 2001
    Date of Patent: December 7, 2004
    Assignee: Leco Corporation
    Inventor: Carlos Guerra
  • Publication number: 20040126891
    Abstract: A method of assaying the reactive oxidants present in a smoke sample, the method comprising: preparing solution including a reductant; passing smoke through the solution; detecting the concentration changes of the probe in the presence of the smoke sample over time; and calculating the concentration of reactive oxidants of the smoke sample from the concentration changes of the reductant in the presence of the smoke sample. A method of assaying the reactive oxidants present in a smoke sample, the method comprising: preparing a solid material containing a reductant; passing smoke through the solid material; detecting the concentration changes of the reductant in the presence of the smoke sample over time; and calculating the concentration of reactive oxidants of the smoke sample from the concentration changes of the reductant in the presence of the smoke sample.
    Type: Application
    Filed: December 26, 2002
    Publication date: July 1, 2004
    Applicant: Brunswick Laboratories
    Inventors: Dejian Huang, Boxin Ou
  • Publication number: 20040115820
    Abstract: An apparatus for dispensing an odorant to a fluid in a vessel having an interior volume containing the fluid includes at least one odorant material and an odorant-permeable material. The at least one odorant material is disposed in the interior volume, the odorant material having at least one detectable odor. The odorant-permeable material encapsulates the odorant material.
    Type: Application
    Filed: December 16, 2002
    Publication date: June 17, 2004
    Inventors: Pushpinder Singh Puri, James Gordon Hansel
  • Patent number: 6730270
    Abstract: A robust single-chip hydrogen sensor and a method for fabricating such a sensor. By utilizing an interconnect metallization material that is the same or similar to the material used to sense hydrogen, or that is capable of withstanding an etchant used to pattern a hydrogen sensing portion, device yields are improved over prior techniques.
    Type: Grant
    Filed: February 20, 2001
    Date of Patent: May 4, 2004
    Assignee: Honeywell International Inc.
    Inventor: James M. O'Connor
  • Patent number: 6726882
    Abstract: A hydrocarbon detector (20) includes a gas stream delivery element (26) configured to discharge a carrier gas (70) onto a surface (24). The carrier gas (70) serves to volatilize a hydrocarbon presence (22) from the surface (24). A gas stream recovery element (28) is configured to aspirate a sample gas (78) formed from the carrier gas (70) combined with the hydrocarbon presence (22) volatilized from the surface (24). A hydrocarbon sensor (58) detects the hydrocarbon presence (22) in the sample gas (78) and generates an output signal indicative of the hydrocarbon presence (22). An indicator (80) receives the output signal and indicates the hydrocarbon presence (22) in the sample gas (78). A heat source (72) coupled to the gas stream delivery element (26) heats the carrier gas (70) to further aid in the volatilization of the hydrocarbon presence (22).
    Type: Grant
    Filed: July 2, 2001
    Date of Patent: April 27, 2004
    Inventor: Walfred R. Raisanen
  • Patent number: 6723566
    Abstract: An anodic double layer gasochromic sensor structure for optical detection of hydrogen in improved response time and with improved optical absorption real time constants, comprising: a glass substrate; a tungsten-doped nickel oxide layer coated on the glass substrate; and a palladium layer coated on the tungsten-doped nickel oxide layer.
    Type: Grant
    Filed: January 29, 2003
    Date of Patent: April 20, 2004
    Assignee: Midwest Research Institute
    Inventors: Se-Hee Lee, C. Edwin Tracy, J. Roland Pitts, Ping Liu
  • Publication number: 20040050143
    Abstract: A hydrogen gas indicator system that provides various substrate materials (4) that support hydrogen gas sensor (1) materials with discrete indicia (7) that provide information separate from any change in the physical properties of the hydrogen gas sensor itself.
    Type: Application
    Filed: June 5, 2003
    Publication date: March 18, 2004
    Inventor: William Hoagland
  • Publication number: 20040023403
    Abstract: Reference infrared-absorption spectrum patterns are prepared in advance as a database. The infrared-absorption spectrum pattern of a film targeted for measurement is measured using FT-IR spectroscopy. Subsequently, multivariate analysis is performed using PLS regression, based on the reference infrared-absorption spectrum patterns and the infrared-absorption spectrum pattern of the target film. The film-growing temperature and other factors are then computed in accordance with the analysis results.
    Type: Application
    Filed: April 29, 2003
    Publication date: February 5, 2004
    Inventor: Toshitaka Tatsunari
  • Publication number: 20040018632
    Abstract: A hydrogen processing unit is provided for attachment between a fuel cell stack (or stacks) and a hydrogen storage media (or a plurality of hydrogen storage media). The hydrogen processing unit includes a heat exchanger, a hydrogen filter, a hydrogen pressure regulator, and a hydrogen compressor to enable selective attachment of hydrogen storage media in different forms, including compressed gas, liquid or solid hydride. Alternatively, the hydrogen processing unit may include a catalyst to enable attachment of hydrogen storage media in the form of chemical hydrides.
    Type: Application
    Filed: July 24, 2002
    Publication date: January 29, 2004
    Inventors: Mohsen D. Shabana, Adrian B. Chernoff
  • Patent number: 6653144
    Abstract: The present invention relates to a method and an apparatus for analyzing trace impurities in gases, which enable to analyze a very small quantity of impurities by only a simple operation, without making the column arrangement or the structure of flow complicated. In the apparatus and the method, when the trace impurities are measured in ppb-sub ppb level by a combined analyzer which is equipped with an atmospheric pressure ionization mass spectrometer to the back of a gas chromatography, a mixed gas of various gases is used as a carrier gas or purified gases added to the gases outflowed from a gas chromatography.
    Type: Grant
    Filed: January 25, 2000
    Date of Patent: November 25, 2003
    Assignee: Nippon Sanso Corporation
    Inventors: Akira Nishina, Tetsuya Satou
  • Patent number: 6634213
    Abstract: A permeable protective coating for a single-ship hydrogen sensor. A hydrogen-permeable coating is applied to a semiconductor wafer containing hydrogen sensor dies, prior to dicing of the wafer. The permeable coating is preferably an organic spin-on polymer, and the hydrogen sensors preferably include hydrogen-sensing elements composed of a palladium nickel alloy.
    Type: Grant
    Filed: February 20, 2001
    Date of Patent: October 21, 2003
    Assignee: Honeywell International Inc.
    Inventors: James M. O'Connor, Thomas C. Loughran
  • Publication number: 20030186452
    Abstract: The invention is directed to a method of detecting hydrogen radicals present in water or an aqueous solution, characterized in adding sodium salt of 3,5-dibromo-4-nitrosobenzenesulfonic acid (DBNBS) to a sample for detecting the hydrogen radicals by coloring resulting from absorption characteristics thereof, and further characterized in blowing hydrogen gas into a solution of 1,1-diphenyl-2-piclylhydrazyl (DPPH) having absorption in the vicinity of 517 nm and a solution of sodium salt of 3,5-dibromo-4-nitrosobenzenesulfonic acid (DBNBS) at a constant speed in the presence of platinum black for quantitatively analyzing the concentration of the hydrogen radicals from a calibration curve C of a graph of correlation between absorbance in the vicinity of 450 nm derived from a DBNBS azo compound and the concentration of the formed hydrogen radicals.
    Type: Application
    Filed: February 11, 2003
    Publication date: October 2, 2003
    Inventors: Sanetaka Shirahata, Kazumichi Otsubo
  • Patent number: 6617164
    Abstract: The invention, relates to a method for producing standard gases (CO and H2) for determining the isotope relationships of oxygen and/or hydrogen, in particular during on-line operation, with a sample being decomposed in a (hot) reactor (11) to produce CO and/or H2, and these components being fed to a mass spectrometer (15), and with the mass spectrometer also the gases obtained from the sample. The invention also relates to an apparatus for providing standard gases. The method according to the invention provides for the standard gases in the reactor (11) to be formed by decomposition, and for initial products which are suitable for this purpose to be fed to the reactor.
    Type: Grant
    Filed: November 22, 2000
    Date of Patent: September 9, 2003
    Assignee: Finnigan MAT GmbH
    Inventor: Hairigh Avakgharagelou
  • Patent number: 6599707
    Abstract: The present invention provides methods of identifying hot-spot residues for one or both members of a receptor-ligand complex of interest. Further provided are methods of using receptor hot-spot residues to identify compounds that functionally bind a receptor in a manner that mimics the binding of a known ligand for the receptor.
    Type: Grant
    Filed: September 10, 1999
    Date of Patent: July 29, 2003
    Assignee: ExSAR Corporation
    Inventor: Virgil L. Woods, Jr.
  • Patent number: 6596236
    Abstract: The present invention provides a hydrogen sensor including a thin film sensor element formed by metal organic chemical vapor deposition (MOCVD) or physical vapor deposition (PVD), on a micro-hotplate structure. The thin film sensor element includes a film of a hydrogen-interactive metal film that reversibly interacts with hydrogen to provide a correspondingly altered response characteristic, such as optical transmissivity, electrical conductance, electrical resistance, electrical capacitance, magneto resistance, photoconductivity, etc., relative to the response characteristic of the film in the absence of hydrogen. The hydrogen-interactive metal film may be overcoated with a thin film hydrogen-permeable barrier layer to protect the hydrogen-interactive film from deleterious interaction with non-hydrogen species. The hydrogen permeable barrier may comprise species to scavenge oxygen and other like species.
    Type: Grant
    Filed: April 6, 2001
    Date of Patent: July 22, 2003
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Frank DiMeo, Jr., Thomas H. Baum
  • Patent number: 6539774
    Abstract: A sensor for determining the presence of hydrogen and for measuring the amount of hydrogen present in the vicinity of the sensor. The sensor comprises a metal hydride hydrogen-absorbent material AB5 which selectively absorbs hydrogen and expands upon such absorption. This expansion depends on the amount of hydrogen absorbed and the expansion is detected and measured either by measurement of a change in capacitance of the sensor or by the change in tunnel current flowing through the sensor. A method for determining the presence of hydrogen and for measuring the amount of hydrogen present using the metal hydride hydrogen-absorbent material AB5-based sensor.
    Type: Grant
    Filed: November 10, 2000
    Date of Patent: April 1, 2003
    Assignee: HRL Laboratories, LLC
    Inventors: Jennifer J. Zinck, Deborah J. Kirby
  • Patent number: 6537824
    Abstract: Patent of invention “PROCESS FOR METERING HYDROGEN PERMEATED IN A METALLURGICAL STRUCTURE, AND APPARATUS THEREOF”, refers to a process for metering permeated hydrogen flow in machines, equipment, piping, or other metallic apparatus, used in the oil industry, refineries, chemical industries, petrochemical industries, units for production, pumping, transport, and storage of petroleum and gas, tanks, machines, and equipment that work with hydrogen, or chemicals that can generate hydrogen, and nuclear industries, through a sensor that uses the properties of a couple of dissimilar materials, in construction and installation that are suitable to measure electrical values between a metering couple and a reference couple. The measured value is a function of the flow rate of hydrogen that permeates the metallic surface under monitoring.
    Type: Grant
    Filed: December 28, 1999
    Date of Patent: March 25, 2003
    Inventor: Luiz Augusto Demaria Correa
  • Patent number: 6537744
    Abstract: Sensitive methods using a variety of biomarkers in oral saliva of humans and animals to detect, measure, and quantify the presence of infectious and non-infectious agents and the functional status of living tissues in both (1) biomedical and (2) environmental applications. With the in vivo biomedical applications, saliva samples are taken from human or animal subjects and biomarkers, such as enzyme or antibody levels, are measured. The extent of exposure to an agent is measured by the presence of specific chemical or biological constituents, by the degree of the inhibition of enzymes, or by the changes in the amount of the biochemicals in saliva. With the in vitro environmental applications, enzymes or other biochemicals from animal or human saliva can be used to monitor the presence of toxic or reactive agents in tissue samples, urine, feces, milk, air, water, soil, or plants. The amount of toxicant in samples is estimated from a standard curve for that agent.
    Type: Grant
    Filed: November 10, 1997
    Date of Patent: March 25, 2003
    Inventor: Mohammed A. S. Al-Bayati
  • Publication number: 20020187075
    Abstract: A hydrogen sensor includes a first electrode 3 and a second electrode 4 provided in contact with a proton conduction layer 2; a gas diffusion controlling portion 6 provided between a measurement gas atmosphere and the first electrode 3; and a support element (1a, 1b) for supporting the proton conduction layer 6, the first electrode 3, the second electrode 4, and the gas diffusion controlling portion 6. Hydrogen contained in a measurement gas introduced via the gas diffusion controlling portion 6 is dissociated, decomposed, or reacted by applying a voltage between the first electrode 3 and the second electrode 4 to thereby generate protons. Hydrogen concentration is obtained on the basis of a limiting current generated as a result of the generated protons being pumped out via the proton conduction layer 2 from the first electrode 3 side of the proton conduction layer to the second electrode 4 side of the proton conduction layer.
    Type: Application
    Filed: April 11, 2002
    Publication date: December 12, 2002
    Applicant: NGK SPARK PLUG CO., LTD.
    Inventors: Norihiko Nadanami, Tomonori Kondo, Masaya Watanabe, Ryuji Inoue, Noboru Ishida, Takafumi Oshima
  • Patent number: 6464938
    Abstract: The present invention relates to a device for measuring the concentration of hydrogen in a gaseous mixture and in particular in the air constituting, for example, the atmosphere inside a closed premises. This device comprises a sensor in contact with a gaseous mixture, the sensor being linked to calculating and display function. The sensor comprises a catalyst capable of provoking an exothermic reaction with the hydrogen contained in the gaseous mixture, a conducting function fixed to the catalyst for transferring essentially by conduction the thermal energy release by the reaction from the catalyst to a cold point, a function for measuring the temperature T1 of the catalyst and the temperature T2 of the cold point being linked to the function for calculating the value of the molar concentration of hydrogen in a gaseous mixture from the temperature gradient measured T1-T2.
    Type: Grant
    Filed: January 11, 2001
    Date of Patent: October 15, 2002
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Pierre Rongier, Thierry Bonhomme, Christian Perez
  • Patent number: 6338824
    Abstract: An ultratrace detector system for hand-held gas chromatography having high sensitivity, for example, to emissions generated during production of weapons, biological compounds, drugs, etc. The detector system is insensitive to water, air, helium, argon, oxygen, and CO2. The detector system is basically composed of a hand-held capillary gas chromatography (GC), an insulated heated redox-chamber, a detection chamber, and a vapor trap. For example, the detector system may use gas phase redox reactions and spectral absorption of mercury vapor. The gas chromatograph initially separates compounds that percolate through a bed of heated mercuric oxide (HgO) in a silica—or other metal—aerogel material which acts as an insulator.
    Type: Grant
    Filed: June 8, 1999
    Date of Patent: January 15, 2002
    Assignee: The Regents of the University of California
    Inventors: Brian D. Andresen, Fred S. Miller
  • Publication number: 20010044154
    Abstract: The present invention provides apparatuses and processes for the measurement of hydrogen in aqueous solution at concentrations as low as about 0.1 nM. The present invention is capable of accurately and reproducibly measuring the concentration of dissolved hydrogen in an aqueous solution that also contains other dissolved gases, such as oxygen, carbon monoxide and sulfur compounds, such as hydrogen sulfide. In a presently preferred embodiment of a hydrogen analyzer 38 of the present invention, water containing dissolved hydrogen is equilibrated with a carrier gas by means of gas flow through a mass transfer device 10.
    Type: Application
    Filed: June 20, 2001
    Publication date: November 22, 2001
    Applicant: Camp Dresser & McKee Inc.
    Inventor: Patrick J. Evans
  • Patent number: 6265222
    Abstract: A hydrogen sensor including a thin film sensor element formed, e.g., by metalorganic chemical vapor deposition (MOCVD) or physical vapor deposition (PVD), on a microhotplate structure. The thin film sensor element includes a film of a hydrogen-interactive metal film that reversibly interacts with hydrogen to provide a correspondingly altered response characteristic, such as optical transmissivity, electrical conductance, electrical resistance, electrical capacitance, magnetoresistance, photoconductivity, etc., relative to the response characteristic of the film in the absence of hydrogen. The hydrogen-interactive metal film may be overcoated with a thin film hydrogen-permeable barrier layer to protect the hydrogen-interactive film from deleterious interaction with non-hydrogen species. The hydrogen sensor of the invention may be usefully employed for the detection of hydrogen in an environment susceptible to the incursion or generation of hydrogen and may be conveniently configured as a hand-held apparatus.
    Type: Grant
    Filed: January 15, 1999
    Date of Patent: July 24, 2001
    Inventors: Frank DiMeo, Jr., Gautam Bhandari
  • Patent number: 6116079
    Abstract: A method is disclosed for improving the making of metals such as steel and copper by using a molten metal gas measurement system to measure the gas content of the molten metal particularly H.sub.2 content, and to controlling the metal making process based on the gas content value. The preferred gas analyzer comprises an improved long lasting immersion probe body and an analyzer wherein the probe body is immersed in the molten metal and a carrier gas is cycled through the probe and analyzer. The carrier gas entrains gases diffusing into or formed in the probe body and this gas mixture is electronically compared with a reference value to provide a measurement of the gases in the molten metal and the process is controlled based on the analyzer results. Another important use of the gas analyzer is in molten metal degassing operations such as used in the steel industry.
    Type: Grant
    Filed: January 5, 1999
    Date of Patent: September 12, 2000
    Assignee: Asarco Incorporated
    Inventor: Gary H. Ryser
  • Patent number: 6074882
    Abstract: In order to determine a concentration of a gas mixture, especially a hydrogen concentration of a containment atmosphere of a nuclear power station, a temperature change resulting from a catalytic reaction is measured. The gas mixture is diluted with a motive gas of known composition. The dilution is carried out by a jet pump.
    Type: Grant
    Filed: October 24, 1996
    Date of Patent: June 13, 2000
    Assignee: Siemens Aktiengesellschaft
    Inventor: Bernd Eckardt