Pyrolysis, Combustion, Or Elevated Temperature Conversion Patents (Class 436/155)
  • Patent number: 7556966
    Abstract: A method for reacting a plurality of materials in parallel within a reactor vessel having a plurality of reaction wells formed therein. Each of the reaction wells has an open end exposed to a common pressure chamber defined by the reactor vessel. The method includes opening a cover of the reactor vessel, inserting components into the reaction wells, closing the cover of the reactor vessel to create a sealed chamber, supplying a gas substantially above atmospheric pressure that reacts with the components within the reaction wells, and releasing pressure from the reactor vessel.
    Type: Grant
    Filed: February 27, 2006
    Date of Patent: July 7, 2009
    Assignee: Symyx Technologies, Inc.
    Inventors: Lynn Van Erden, Howard Turner, David M. Lowe
  • Patent number: 7537737
    Abstract: An installation structure for a gas sensor capable of detecting gas concentration in a highly accurate manner is provided. The installation structure for a gas sensor which detects concentration of gas circulating inside an outlet-side piping comprises a through hole 18 in an inner wall of the outlet-side piping and the gas sensor comprises a gas inlet portion with one face open within the outlet-side piping 14, and the gas sensor is installed to the outlet-side piping in a condition where the gas inlet portion does not protrude from the inner wall of outlet-side piping.
    Type: Grant
    Filed: March 28, 2003
    Date of Patent: May 26, 2009
    Assignee: Honda Motor Co., Ltd.
    Inventors: Hiroyuki Abe, Akihiro Suzuki, Takashi Sasaki
  • Patent number: 7491549
    Abstract: This invention relates generally to methods and apparatus for desorption and ionization of analytes for the purpose of subsequent scientific analysis by such methods, for example, as mass spectrometry or biosensors. More specifically, this invention relates to the field of mass spectrometry, especially to the type of matrix-assisted laser desorption/ionization, time-of-flight mass spectrometry used to analyze macromolecules, such as proteins or biomolecules. Most specifically, this invention relates to the sample probe geometry, sample probe composition, and sample probe surface chemistries that enable the selective capture and desorption of analytes, including intact macromolecules, directly from the probe surface into the gas (vapor) phase without added chemical matrix.
    Type: Grant
    Filed: August 10, 2006
    Date of Patent: February 17, 2009
    Assignee: Baylor College of Medicine
    Inventors: T. William Hutchens, Tai-Tung Yip
  • Patent number: 7485854
    Abstract: A sampling device, for example a sampling valve, is disclosed for introduction of samples into an analysis system. The sampling device comprises a turning element provided with a sampling area. The sampling area is configured to retain samples to be analysed. The turning element is arranged for movement between a first position where the sampling area is exposed to material to be sampled for collection of samples and a second position where samples are released for use by the analysis system.
    Type: Grant
    Filed: May 23, 2006
    Date of Patent: February 3, 2009
    Assignees: University of Helsinki, Department of Chemistry, Laboratory of Analytical Chemistry, University of Helsinki, Department of Physical Science, division of Atmospheric Sciences, Finnish Meteorological Instutute
    Inventors: Kari Hartonen, Kari Kuuspalo, Heikki Lihavainen, Pasi Aalto, Markku Rasilainen, Marja-Liisa Riekkola, Markku Kulmala, Yrjo Viisanën
  • Patent number: 7482164
    Abstract: The present invention relates to a method of testing catalysts and catalyst systems via a plurality of stations in which each station can accommodate a common reactor module in order to accomplish unattended, automated, rapid serial experimentation.
    Type: Grant
    Filed: July 13, 2007
    Date of Patent: January 27, 2009
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Matthew J. Vincent, Larry L. Iaccino, John K. Pierce, Douglas B. King, Toby W. Cox
  • Patent number: 7445936
    Abstract: The present invention pertains to A cyclic process for testing FCC catalysts with resid feedstock on a small scale wherein in a first cycle: a) the feed to be cracked is heated to a temperature between 50 and 500° C., b) the heated feed is injected into a riser reactor containing the FCC catalyst to be tested having a temperature between 500 and 800° C., the injection time being less than 2 seconds, c) an inert gas is injected into the lower end of said reactor riser together in the vicinity of the feed injection in a volume ratio of inert gas to vaporized feed of about 0.03 and 10, the mixing of feed and inert gas occurring in said riser reactor; d) the feed is contacted with the FCC catalyst under fluidized conditions for a contact time of less than 8 seconds; e) the feed is stripped from the FCC catalyst and the properties of the product are analyzed; and in a second cycle a quench liquid is injected into said riser reactor in an amount of up to about 20 wt.
    Type: Grant
    Filed: February 14, 2005
    Date of Patent: November 4, 2008
    Assignee: Albemarle Netherlands B.V.
    Inventors: Paul O'Connor, Edwin Mark Berends, Martinus Johannes Maria Baas, Eelko Brevoord
  • Patent number: 7435598
    Abstract: An apparatus and process are described in which a plurality of preloaded catalyst samples tubes can be serially and automatically moved from a support to a reaction zone where each catalyst sample can be heated and a preheated reagent feed contacted with the sample and the effluent fed to a product collection and analysis system.
    Type: Grant
    Filed: November 10, 2003
    Date of Patent: October 14, 2008
    Assignee: Exxonmobil Chemical Patents Inc.
    Inventors: Stephen N. Vaughn, John K. Pierce, Douglas B. King, Christopher G. Lington
  • Publication number: 20080206882
    Abstract: Apparatus and method for determining incomplete combustion in a combustion analyzer comprising a combustion chamber (60). A sample is supplied to the combustion chamber and combusted to produce combustion products. A target gas characteristic of incomplete combustion of the sample is detected in the combustion products by a target gas sensor (72). The target gas may be carbon monoxide, methane, methanal and/or methanol, among others. Preferably, the gas sensor is an electronic or catalytic combustible gas sensor. Whether incomplete combustion of the sample has occurred may be determined. A signal indicative of incomplete combustion is output from the target gas sensor to a controller (78). The combustion products can be directed to waste and/or further supply of the sample/oxygen may be stopped/adjusted. Faulty analysis measurements and/or contamination of downstream components, which would otherwise result from incomplete combustion—in particular, from soot formation—can thereby be avoided.
    Type: Application
    Filed: February 26, 2008
    Publication date: August 28, 2008
    Applicant: THERMO FISHER SCIENTIFIC INC.
    Inventors: Louis Marie SMEETS, Maurice Stephan VAN DOESELAAR, David Marco Gertruda ALBERTI
  • Patent number: 7390664
    Abstract: The present invention relates to an apparatus and a process for the high-throughput, quick screening, optimization, regeneration, reduction and activation of catalysts. More specifically, the present invention is a method and apparatus to quickly screen, optimize and regenerate multiple fast deactivating catalysts while maintaining a predefined range of time-on-stream.
    Type: Grant
    Filed: December 20, 2002
    Date of Patent: June 24, 2008
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Shun Chong Fung, Teh Chung Ho
  • Patent number: 7387764
    Abstract: An apparatus for analyzing the amount of gas in a solid sample such as a contained oxygen analyzing apparatus and method utilizing a preliminary reducing furnace which can be connected to an analyzing furnace by a transfer unit. A sample such as steel can be reduced in the preliminary reducing furnace and transferred to the analyzing furnace, for example, by a magnetic force, a gripping unit or a transporting sample body holder. A controller can control the application of heat and the mixing of a metal flux to provide discharge gas to an analyzer.
    Type: Grant
    Filed: May 28, 2003
    Date of Patent: June 17, 2008
    Assignee: Horiba, Ltd.
    Inventors: Hiroshi Uchihara, Masahiko Ikeda
  • Patent number: 7374942
    Abstract: A process and apparatus for testing material libraries, in particular catalysts, by means of coupled use of at least two analytical methods, preferably IR thermography and mass spectrometry. Owing to the selected arrangement, the disadvantages of the two previously known individual methods are compensated for: the subsequent selectivity determination for selected sections by means of mass spectrometry invalidates the argument against IR thermography, of only being able to determine activities; the rapid integrated determination of potentially “good” materials via IR thermography prevents an excessive loss of time by needing to test all materials of a library successively with the mass spectrometer.
    Type: Grant
    Filed: March 16, 2001
    Date of Patent: May 20, 2008
    Assignee: BASF Aktiengesellschaft
    Inventors: Jens Klein, Wolfram Stichert, Wolfgang Strehlau, Armin Brenner, Stephan Andreas Schunk, Dirk Demuth
  • Patent number: 7338640
    Abstract: A method of manufacturing a sensor is provided. The method includes disposing a sacrificial layer on a substrate, disposing a low-thermal-conductivity layer on the sacrificial layer, and disposing a first set of conductive arms and a second set of conductive arms on the low-thermal-conductivity layer to form a plurality of thermal junctions. The plurality of thermal junctions is adapted to form a plurality of hot junctions and a plurality of cold junctions when subjected to a difference in temperature. The method also includes removing the sacrificial layer and a portion of the low-thermal-conductivity layer to form a cavity therein. The cavity is configured to provide insulation for the plurality of hot junctions. A thermopile sensor is also provided, and a calorimetric gas sensor implementing the thermopile sensor is provided.
    Type: Grant
    Filed: March 31, 2005
    Date of Patent: March 4, 2008
    Assignee: General Electric Company
    Inventors: Sunil Srinivasa Murthy, Anis Zribi, Shankar Chandrasekaran
  • Patent number: 7329389
    Abstract: New sensors and methods for qualitative and quantitative analysis of multiple gaseous substances simultaneously with both high selectivity and high sensitivity are provided. The new sensors rely on a characteristic difference in energy between the interaction of a particular substance with a catalyst coated heat transfer device (HTD) and a non-catalyst coated (or one coated with a different catalyst) reference HTD. Molecular detection is achieved by an exothermic or endothermic chemical or physical reaction between the catalytic surface of the sensor and the molecule, tending to induce a temperature change of the sensor. Both high temperature and non-destructive low temperature detection are possible. The magnitude and rate of endothermic or exothermic heat transfer from a specific molecule-catalyst interaction is related to molecular concentration.
    Type: Grant
    Filed: July 9, 2002
    Date of Patent: February 12, 2008
    Assignee: Sensor Tech, Inc.
    Inventors: Michael L. Horovitz, Karl F. Anderson
  • Patent number: 7306770
    Abstract: An improved reaction tube having an interior configured for bifurcated chambers. The present device has an inert chamber and a catalyst chamber where the materials contained therein are decoupled from one another. This improved tube is especially beneficial as it provides for greater working efficiency, preservation of catalytic materials, straightforward maintenance and replacement procedures, and effective isolation of unwanted particles.
    Type: Grant
    Filed: September 15, 2004
    Date of Patent: December 11, 2007
    Assignee: O.I. Corporation
    Inventors: Noel C. Bauman, Gary Erickson, Richard K. Simon, Jr.
  • Publication number: 20070275474
    Abstract: A sampling device, for example a sampling valve, is disclosed for introduction of samples into an analysis system. The sampling device comprises a turning element provided with a sampling area. The sampling area is configured to retain samples to be analysed. The turning element is arranged for movement between a first position where the sampling area is exposed to material to be sampled for collection of samples and a second position where samples are released for use by the analysis system.
    Type: Application
    Filed: May 23, 2006
    Publication date: November 29, 2007
    Inventors: Kari Hartonen, Kari Kuuspalo, Heikki Lihavainen, Pasi Aalto, Markku Rasilainen, Marja-Liisa Riekkola, Markku Kulmala, Yrjo Viisanen
  • Patent number: 7297549
    Abstract: A method of determining bias in a measurement of a constituent concentration level in a sample gas is provided. The method comprises establishing a sample gas flow from an emission stream into a sample gas line of an emissions monitoring system. The method further comprises removing water from the sample gas flow and cooling the sample gas flow to a temperature below about 41° F. to produce a cooled, dried sample gas flow. The constituent concentration level is then determined for the cooled, dried sample gas flow. The method further comprises introducing a span gas having a known span gas constituent concentration level into the sample gas flow to form a combined sample and span gas flow, the span gas being introduced at a desired span gas flow rate. The method still further comprises removing water from the combined sample and span gas and cooling the combined sample and span gas to a temperature below about 41° F. to produce a cooled, dried, combined sample and span gas flow.
    Type: Grant
    Filed: March 6, 2002
    Date of Patent: November 20, 2007
    Assignee: General Electric Company
    Inventors: William Steven Lanier, Glenn England
  • Patent number: 7294515
    Abstract: This invention relates generally to methods and apparatus for desorption and ionization of analytes for the purpose of subsequent scientific analysis by such methods, for example, as mass spectrometry or biosensors. More specifically, this invention relates to the field of mass spectrometry, especially to the type of matrix-assisted laser desorption/ionization, time-of-flight mass spectrometry used to analyze macromolecules, such as proteins or biomolecules. Most specifically, this invention relates to the sample probe geometry, sample probe composition, and sample probe surface chemistries that enable the selective capture and desorption of analytes, including intact macromolecules, directly from the probe surface into the gas (vapor) phase without added chemical matrix.
    Type: Grant
    Filed: October 31, 2003
    Date of Patent: November 13, 2007
    Assignee: Baylor College of Medicine
    Inventors: T. William Hutchens, Tai-Tung Yip
  • Patent number: 7288411
    Abstract: A process for simultaneously testing a plurality of catalysts using combinatorial chemistry has been developed. The process involves containing the plurality of catalysts in an array of parallel reactors with each reactor containing a bed of catalyst. Each bed of catalyst is then simultaneously contacted, at reaction conditions, with a reactant to form an effluent of each reactor. The reactant or an inert fluid is at a space velocity sufficient to fluidize the catalyst beds. Each of the effluents is analyzed.
    Type: Grant
    Filed: August 27, 2003
    Date of Patent: October 30, 2007
    Assignee: UOP LLC
    Inventors: Duncan E. Akporiaye, Arne Karlsson, Ivar M. Dahl, Rune Wendelbo, Kurt M. Vanden Bussche, Gavin P. Towler, Ralph D. Gillespie
  • Patent number: 7282184
    Abstract: An instrument is disclosed for carrying out controlled microwave assisted chemical processes, and that is particularly useful for handling relatively small samples. The instrument includes a microwave-transparent reaction vessel with an open mouth, a pressure-resistant seal on the mouth of the vessel, and a needle, portions of which penetrate the seal with a first end of the needle and provide fluid communication into the vessel. A pressure transducer is at the opposite end of the needle and in fluid communication with the interior of the vessel through the needle. The instrument defines a pressure control flow path from a portion of the needle outside of the vessel to a fluid port, the flow path being in communication with the needle, the interior of the vessel and the transducer. A controllable pressure release valve for the flow path is-associated with the port.
    Type: Grant
    Filed: April 19, 2002
    Date of Patent: October 16, 2007
    Assignee: CEM Corporation
    Inventors: Edward Earl King, James Edward Thomas
  • Patent number: 7276381
    Abstract: The present invention provides polymerizable monomers that incorporate moieties derived from energy absorbing molecules (EAM). The invention also provides polymers that are based on the monomers. The polymers have unique properties that make them ideally suited for use in diverse analyses, including desorption/ionization mass spectrometry of analytes. The invention also provides a device that incorporates the polymeric compositions of the inventions, methods of using the device to detect, quantify and identify analytes, and a method of preparing a device of the invention.
    Type: Grant
    Filed: December 20, 2002
    Date of Patent: October 2, 2007
    Assignee: Bio-Rad Laboratories, Inc.
    Inventor: Naotaka Kitagawa
  • Patent number: 7267987
    Abstract: A process and an assembly for simultaneously evaluating a plurality of catalysts is provided wherein the flow rate of a reactive fluid to each of a plurality of reactors is automatically adjusted based on the measured amount of catalyst sample in each reactor to concurrently obtain a substantially identical fluid space velocity in each of the reactors.
    Type: Grant
    Filed: January 6, 2003
    Date of Patent: September 11, 2007
    Assignee: UOP LLC
    Inventors: Maureen L. Bricker, J. W. Adriaan Sachtler, Charles P. McGonegal, Mark A. Krawczyk, Ara J. Alexanian, Martin Plassen
  • Patent number: 7256044
    Abstract: An apparatus and a method for rapidly generating a plurality of isolated effluents have been developed. A specific embodiment involves screening a plurality of solids through simultaneously contacting the members of the plurality with a fluid, sampling the resulting fluids, and processing the resulting fluids to, for example, determine changes as compared to the feed fluid or as compared to other resulting fluids.
    Type: Grant
    Filed: September 12, 2005
    Date of Patent: August 14, 2007
    Assignee: UOP LLC
    Inventors: Arne Karlsson, Mark A. Krawczyk, Ara J. Alexanian, Duncan E. Akporiaye, Ivar M. Dahl
  • Patent number: 7255834
    Abstract: A method and device are provided for dynamic flash combustion reaction connected with gas chromatography for the elemental analysis of C H N S O in an automatic elemental analyzer. A combustion reactor is provided with a sampling device and an oxygen feed line. Controlled volumes of oxygen are admitted with the oxygen feed line into the combustion reactor depending on the sample for the complete combustion thereof. A pneumatic circuit is provided, in which the oxygen feed line converges and the pneumatic circuit creates a continuous flow of a carrier gas that is able to carry the oxygen to the reactor and the gases of the combustion through the reactor, then through a gas chromatographic analyzer, and after their separation, into a thermal conductivity detector. An electronic apparatus with a data processor is provided for controlling the process systems. The difference in the pressure of the gas upstream and downstream of a restrictor or restriction is determined.
    Type: Grant
    Filed: November 22, 2002
    Date of Patent: August 14, 2007
    Assignee: Eurovector S.p.A.
    Inventors: Stefano Boursier Niutta, Leonardo Sisti
  • Patent number: 7223607
    Abstract: The invention relates to a process for the detection of hydrocarbons other than methane in a gas predominantly or essentially comprising oxygen, as well as methane and the said hydrocarbons other than methane, the said process comprising: a stage of detection of the combined hydrocarbons in the said gas, providing a first value for the combined hydrocarbons, a stage of combustion of the hydrocarbons other than methane, a stage of detection of methane in the said gas, providing a second value, a stage of calculation of the amount of hydrocarbons other than methane by the difference between the first value and the second value. The invention also relates to a device for implementing this process.
    Type: Grant
    Filed: February 5, 2002
    Date of Patent: May 29, 2007
    Assignee: L'Air Liquide Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventor: Francis Bryselbout
  • Patent number: 7201877
    Abstract: A device for detecting sulfuryl fluoride, in which the gas specimen to be examined is subjected to pyrolysis with ensuing detection of a pyrolysis product, is to be improved for the sake of achieving a mobile, economical structure. To attain this object, in a preliminary tube (1) for pyrolysis, there is a chemical layer (5) of pyrophoric iron, and as an indicator system for the pyrolysis product, a test tube (2) for hydrogen fluoride is used.
    Type: Grant
    Filed: September 25, 2003
    Date of Patent: April 10, 2007
    Assignee: Dräger Safety AG & Co. KGaA
    Inventors: Holger Bohm, Silke Guga, Andreas Mohrmann, Armin Schulten, Bernd Siemensmeyer, Katja Stern, Bettina Runge
  • Patent number: 7198952
    Abstract: An upstream side catalyst and a downstream side catalyst are disposed in an exhaust passage. A first oxygen sensor is disposed between these two catalysts and a second oxygen sensor is disposed downstream of the downstream side catalyst. The air-fuel ratio is forcibly oscillated and the oxygen storage capacity of the upstream side catalyst is detected. Deterioration of the upstream side catalyst is then detected based on whether this oxygen storage capacity is larger than a predetermined value. The forced oscillation of the air-fuel ratio is performed only when the oxygen storage state of the downstream side catalyst is appropriate.
    Type: Grant
    Filed: July 15, 2002
    Date of Patent: April 3, 2007
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Takahiro Uchida, Hiroshi Sawada, Toshinari Nagai, Akihiro Katayama, Yasuhiro Kuze, Naoto Kato
  • Patent number: 7189373
    Abstract: Carbon monoxide contained in reformate gas is removed by a preferential oxidation reaction in a catalyst, two preferential oxidation reactors (20A, 20B) being disposed in series. Valves (7, 8) supply air containing oxygen as an oxidizing agent individually to these preferential oxidation reactors (20A, 20B). Temperature sensors (9, 10) detect the catalyst temperatures of the preferential oxidation reactors (20A, 20B), and a controller (5), by adjusting the flow rate of the valves (7, 8) based on the detected temperatures, maximizes the carbon monoxide removal performance of the preferential oxidation reactors (20A, 20B), while preventing excessive catalyst temperature rise.
    Type: Grant
    Filed: February 19, 2003
    Date of Patent: March 13, 2007
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Ikuhiro Taniguchi, Hiroaki Hashigaya
  • Patent number: 7153693
    Abstract: A method for determining a urea concentration in an aqueous solution containing urea, includes: hydrolyzing the urea in the aqueous solution, measuring an electric conductivity ? of the aqueous solution, and determining the urea concentration in the aqueous solution from the electric conductivity ? using a correlation between the urea concentration and an electric conductivity.
    Type: Grant
    Filed: February 21, 2003
    Date of Patent: December 26, 2006
    Assignee: Toyo Engineering Corporation
    Inventors: Yoshihiro Tajiri, Takuya Hayabuchi, Naohiro Teramoto, Yasuhiko Kojima, Eiji Sakata, Haruyuki Morikawa
  • Patent number: 7150994
    Abstract: Parallel flow reaction systems comprising four or more reaction channels are disclosed. Distribution systems, and parallel flow reaction systems comprising such distribution systems are also disclosed. Specifically, the distribution systems comprise one or more subsystems, including for example, a flow-partitioning subsystem for providing a different flow rate to each of the four or more reactors, a pressure-partitioning subsystem for providing a different reaction pressure in the reaction cavity of each of the four or more reactors, and a feed-composition subsystem for providing a different feed composition to each of the four or more reactors. In preferred embodiments, the one or more subsystems can comprise at least one set of four or more flow restrictors, each of the four or more flow restrictors having a flow resistance that varies relative to other flow restrictors in the set.
    Type: Grant
    Filed: March 7, 2001
    Date of Patent: December 19, 2006
    Assignee: Symyx Technologies, Inc.
    Inventors: H. Sam Bergh, James R. Engstrom, Shenheng Guan, Daniel Meron Pinkas, Kyle W. Self
  • Patent number: 7129092
    Abstract: An apparatus and a method for rapidly generating a plurality of isolated effluents have been developed. A specific embodiment involves screening a plurality of solids through simultaneously contacting the members of the plurality with a fluid, simultaneously sampling the resulting fluids, and processing the resulting fluids to, for example, determine changes as compared to the feed fluid or as compared to other resulting fluids.
    Type: Grant
    Filed: June 17, 2004
    Date of Patent: October 31, 2006
    Assignee: UOP LLC
    Inventors: Duncan E. Akporiaye, Maureen L. Bricker, Ivar M. Dahl, Arne Karlsson, Charles P. McGonegal, Elisabeth M. Myhrvold, Martin Plassen, Svend A. Taftø
  • Patent number: 7094608
    Abstract: The present invention relates to a method for measuring the content of Lanthanides dissolved in uranium oxide, wherein the Lanthanides content in the nuclear fuel pellet is measured using the thermo gravimetric analysis which measures the weight variation caused by the oxidation and heat treatment of the nuclear fuel pellet. This method provides an advantage in that the Lanthanide content can be measured using relatively simple equipments such as an electric furnace and a balance.
    Type: Grant
    Filed: November 27, 2002
    Date of Patent: August 22, 2006
    Assignees: Korea Atomic Energy Research Institute, Korea Hydro & Nuclear Power Co., Ltd.
    Inventors: Keon-Sik Kim, Jae-Ho Yang, Kun-Woo Song, Ki-Won Kang, Youn-Ho Jung
  • Patent number: 7078237
    Abstract: A micropyrolyzer has applications to pyrolysis, heated chemistry, and thermal desorption from liquid or solid samples. The micropyrolyzer can be fabricated from semiconductor materials and metals using standard integrated circuit technologies. The micropyrolyzer enables very small volume samples of less than 3 microliters and high sample heating rates of greater than 20° C. per millisecond. A portable analyzer for the field analysis of liquid and solid samples can be realized when the micropyrolyzer is combined with a chemical preconcentrator, chemical separator, and chemical detector. Such a portable analyzer can be used in a variety of government and industrial applications, such as non-proliferation monitoring, chemical and biological warfare detection, industrial process control, water and air quality monitoring, and industrial hygiene.
    Type: Grant
    Filed: October 23, 2001
    Date of Patent: July 18, 2006
    Assignee: Sandia Corporation
    Inventors: Curtis D. Mowry, Catherine H. Morgan, Ronald P. Manginell, Gregory C. Frye-Mason
  • Patent number: 7074367
    Abstract: The invention concerns a thermostated block for laboratory thermostats and comprising wells at a wells side to receive and make large-area contact with the parts of vials filled with sample liquids and comprising at least two heat regulating devices contacting the thermostated block in thermally conducting manner to generate different temperatures at different sites of the thermostated block, said block being characterized in that the heat regulating devices are in large-area contact with adjoining zones of the contact side opposite the wells side of the thermostated block.
    Type: Grant
    Filed: July 22, 2004
    Date of Patent: July 11, 2006
    Assignee: D-Eppendorf AG
    Inventors: Werner Lurz, Ruediger Brust, Dietmar Jodies, Ernst Tennstedt
  • Patent number: 7074619
    Abstract: This invention relates generally to methods and apparatus for desorption and ionization of analytes for the purpose of subsequent scientific analysis by such methods, for example, as mass spectrometry or biosensors. More specifically, this invention relates to the field of mass spectrometry, especially to the type of matrix assisted laser desorption/ionization, time-of-flight mass spectrometry used to analyze macromolecules, such as proteins or biomolecules. Most specifically, this invention relates to the sample probe geometry, sample probe composition, and sample probe surface chemistries that enable the selective capture and desorption of analytes, including intact macromolecules, directly from the probe surface into the gas (vapor) phase without added chemical matrix.
    Type: Grant
    Filed: July 7, 2004
    Date of Patent: July 11, 2006
    Assignee: Baylor College of Medicine
    Inventors: T. William Hutchens, Tai-Tung Yip
  • Patent number: 7071003
    Abstract: This invention is directed to probes that are removably insertable into mass spectrometers. The probes have sample presenting surfaces, at least, that contain non-metallic materials. The probes are useful in methods of desorbing analytes from the probe surface. The invention also is directed to detection systems that include the probes and methods of detecting analytes using the system.
    Type: Grant
    Filed: July 27, 1998
    Date of Patent: July 4, 2006
    Assignee: Baylor College of Medicine
    Inventors: T. William Hutchens, Tai-Tung Yip
  • Patent number: 7063982
    Abstract: A process for evaporating a liquid feed and reacting said feed in the presence of catalyst to make product within a reactor having both an evaporation zone and a reaction zone comprises the steps of providing packing in the evaporation zone, providing catalyst in the reaction zone, introducing the liquid feed to the evaporation zone through an injector having an orifice, where the orifice and the packing define a gap that is sufficiently small to interfere with the formation of a liquid drop at the orifice, vaporizing the liquid feed within the evaporation zone to form a vapor, flowing the vapor to the reaction zone and contacting, at reaction conditions, the vapor with a catalyst to form product.
    Type: Grant
    Filed: March 12, 2002
    Date of Patent: June 20, 2006
    Assignee: UOP LLC
    Inventors: Arne Karlsson, Ivar M. Dahl, Jonny Engedahl, Mark A. Krawczyk, Ara J. Alexianin
  • Patent number: 7052914
    Abstract: The invention relates to an automated method for carrying out reactions with high spatial resolution on libraries of different materials and for analysis of the products obtained using a simple robot system and an analyzer, for example a mass spectrometer.
    Type: Grant
    Filed: October 29, 2001
    Date of Patent: May 30, 2006
    Assignee: hte Aktiengesellschaft the high throughput experimentation company
    Inventors: Wilhelm Maier, Matthias Orschel, Jens Klein, Christian Lettmann, Hans Werner Schmidt
  • Patent number: 7048891
    Abstract: A heat generation amount qr/r per unit flow amount of combustible substances supplied to a catalyst is estimated based on upstream and downstream temperature information and supplemental engine information. A deteriorated condition of the catalyst is detected based on a judgement whether or not the estimated heat generation amount is smaller than a predetermined judging value D.
    Type: Grant
    Filed: June 24, 2002
    Date of Patent: May 23, 2006
    Assignee: Denso Corporation
    Inventors: Masumi Kinugawa, Kiyonori Sekiguchi, Tsukasa Kuboshima
  • Patent number: 7029920
    Abstract: A method and system for determining a concentration level of NOx in an exhaust stream from a combustion source. The method comprises capturing sample gas from the exhaust stream using a sampling device. NO2 in the sample gas is converted to NO by passing the sample gas through a catalytic NO2 converter. The method also comprises removing water from the sample gas by passing the sample gas through a dryer and determining a sample gas NO concentration level. The step of converting NO2 is performed at a temperature above the dew point temperature of the sample gas.
    Type: Grant
    Filed: October 31, 2001
    Date of Patent: April 18, 2006
    Assignee: General Electric Company
    Inventors: William Steven Lanier, Glenn England
  • Patent number: 7018845
    Abstract: A more efficient method for combustion or oxidation of samples containing nitrogen, phosphorus and/or sulfur to their corresponding oxides is disclosed, where method uses multi-staged addition of an oxidizing agent to enhance oxidation and liberation of nitrogen, phosphorus and/or sulfur oxides for subsequent detection. The method of the present invention allows for the injection of larger samples or the introduction of a greater amount of sample per unit of time which results in a larger amount of analyte being delivered to the detector per unit of time, thereby improving detection limits and detection efficiency.
    Type: Grant
    Filed: June 7, 2002
    Date of Patent: March 28, 2006
    Assignee: Petroleum Analyzer Company, LP
    Inventor: Randy L. Wreyford
  • Patent number: 6977179
    Abstract: A method for determining the heating value of a fuel gas or fuel gas mixture in which the chemiluminescense intensity of at least one chemical bond in a known volume of the fuel gas or mixture is measured. Based upon the results of the measurement(s), the amount of the at least one chemical bond in the known volume of the fuel gas or mixture is determined. Having determined the amount of the at least one chemical bond, the heating value of the fuel gas or mixture can be determined.
    Type: Grant
    Filed: March 19, 2004
    Date of Patent: December 20, 2005
    Assignee: Gas Technology Institute
    Inventors: David M. Rue, John Charles Wagner, Serguei Zelepouga
  • Patent number: 6960477
    Abstract: Disclosed are a closed heat-decomposing appliance comprising a heating section with one side closed and other side having common ground portion, screw portion or O-ring-mounted portion and a closed introducing section that allows to connect to this heating section and common ground portion, screw portion or O-ring via O-ring-mounted portion and has cock or valve as a mechanism for closing and introducing the absorbing liquid to absorb the testing components from outside after heat-decomposition, or has packing or septum to introduce the absorbing liquid with needle pipe as well, and a pretreatment method of sample using this appliance.
    Type: Grant
    Filed: February 1, 2001
    Date of Patent: November 1, 2005
    Assignee: Tosoh Corporation
    Inventors: Noriyuki Tanimoto, Yoshimitsu Tada, Hideo Morinaka, Tadashi Okada
  • Patent number: 6955787
    Abstract: An array of piezoelectric resonators used in a sensor device in order to identify chemical and biological agents. The resonators can operate as bulk acoustic wave (BAW), surface acoustic wave (SAW), or Love mode devices. The sensor device integrates gravimetric, calorimetric, thermal gravimetric, voltage gravimetric and optical detection methods into one sensor system, improving the accuracy of identifying hazardous agents. For gravimetric detection, dual-mode resonators provide simultaneous calorimetric and gravimetric data, one type from each mode. Resonators with heaters on the surfaces will provide thermal gravimetric data. An optical detector can be used to analyze the optical signal from the surface of a coated resonator. Additionally, voltage gravimetric measurements can be made with an electric field set up between the resonator and an external electrode. Thermal voltage gravimetric measurements can be made by adding an integrated heater on the resonator with an external electrode.
    Type: Grant
    Filed: October 11, 2003
    Date of Patent: October 18, 2005
    Inventor: William Paynter Hanson
  • Patent number: 6913934
    Abstract: A cannula for use in transferring small volumes of fluid materials, such as in a parallel reaction process. The cannula comprises a long thin needle having various end (port) configurations, and an adapter for connecting the needle to a fluid line. The adapter may include the combination of a reservoir and transition, or simply a transition.
    Type: Grant
    Filed: January 7, 2002
    Date of Patent: July 5, 2005
    Assignee: Symyx Technologies, Inc.
    Inventors: G. Cameron Dales, Gary Diamond, Trevor G. Frank, J. Christopher Freitag, Kenneth S. Higashihara, Dave Huffman, Jonah R. Troth
  • Patent number: 6911180
    Abstract: A combustible gas sensor includes an active element in electrical connection with a measurement circuit. The measurement circuit includes a thermistor network to compensate for the effect of changes in ambient temperature to the resistance of the active element. Another combustible gas sensor includes an active element having a geometric surface area no greater than approximately 0.5 mm2 in electrical connection with a measurement circuit. The measurement circuit includes a compensator that compensates for the effect of changes in ambient temperature to the resistance of the active element without compensating for heat lost by thermal conduction from the active element.
    Type: Grant
    Filed: October 22, 2003
    Date of Patent: June 28, 2005
    Assignee: Mine Safety Appliances Company
    Inventors: James B. Miller, Celeste Hort, Towner B. Scheffler
  • Patent number: 6867047
    Abstract: Methods and apparatus are described for preventing nitrogen interference in the detection of a substance. In particular, it relates to new methods and apparatus for preventing interference due to nitrogen in pyro-electrochemical methods for measuring substances, for example sulfur content, contained within liquids such as petroleum products and beverages. One preferred apparatus and method comprises a catalytic converter or thermal converter to selectively remove the nitrogen-containing interferant, for example NO2, in the pyrolyzed gas stream to NO without affecting the sulfur content. A second preferred apparatus and method comprises a chemical scrubber to selectively remove the nitrogen-containing interferant from the gas stream without affecting the sulfur content.
    Type: Grant
    Filed: January 23, 2002
    Date of Patent: March 15, 2005
    Assignee: Spectro Analytical Instruments
    Inventor: John R. Rhodes
  • Patent number: 6838287
    Abstract: An improved, affordable, and rapid fluid mixture composition or process monitor based on a thermal microstructure sensor. This is preferably accomplished with a microbridge sensor design that has reduced susceptibility to interfering components of the mixture. The sensor described herein is therefore suitable for monitoring the concentration of at least one component in a fluid mixture when the fluid mixture consists of either (1) two components with very different thermal conductivities; or (2) three or more components wherein at least one component has a very different thermal conductivity and the effects of the other components can be largely eliminated, especially if the component of interest is hydrogen and the interference is from the variability in the concentrations of CO2 and H2O.
    Type: Grant
    Filed: December 20, 2001
    Date of Patent: January 4, 2005
    Assignee: Honeywell International Inc.
    Inventors: Ulrich Bonne, Kenneth Creasy, Troy W. Francisco
  • Patent number: 6827903
    Abstract: A single pass analyzer includes multiple infrared sensors, a catalytic converter, a scrubber and a thermal conductivity cell all coupled in series to provide a single pass (i.e., one sample) analyzer which allows for fast analysis, allows for the speciation of hydrogen samples, requires no purging between different sample types, utilizes a single carrier gas, and eliminates molecular sieves and Shutze converters. The resultant analyzer provides improved quicker results with less plumbing (i.e., gas conduits and valving) in a single instrument.
    Type: Grant
    Filed: October 26, 2001
    Date of Patent: December 7, 2004
    Assignee: Leco Corporation
    Inventor: Carlos Guerra
  • Patent number: 6806087
    Abstract: Methods for discovering optimum catalysts and/or reaction conditions for performing endo-or exothermic reactions, in particular gas-to-liquid reactions, are disclosed. A combinatorial approach is used to identify optimum catalysts and/or reaction conditions for performing the reactions. The reactions are performed in the channels of a microchannel reactor. These results can be used directly to optimize large scale reactions performed in a plurality of microchannel reactors, or can be correlated to useful catalysts and reaction conditions for use in large scale reactors by taking into consideration the heat transfer effects in the microchannel reactor and the large scale reactor. The method can advantageously be used to generate a database of combinations of catalyst systems and/or reaction conditions which provide various product streams, such that as market conditions vary and/or product requirements change, conditions suitable for forming desired products can be identified with little or no downtime.
    Type: Grant
    Filed: May 28, 2002
    Date of Patent: October 19, 2004
    Assignee: Chevron U.S.A. Inc.
    Inventors: Charles L. Kibby, Dennis J. O'Rear, Georgieanna L. Scheuerman
  • Patent number: 6803237
    Abstract: A sequential processing reactor vessel and method is disclosed for accelerated extraction and fractionation of chemical analytes from complex solid sample materials. The device and method provide for sequential extraction of elemental constituents from solid materials by sequentially contacting target samples within a single reaction vessel using a series of different reagents at temperatures as high as 150° C. and pressures up to 150 psi to accelerate reactions. The aggressive chemical treatments provided by the disclosed device and method enable the complete digestion of solid samples in liquid analyte samples that can be directly analyzed by conventional spectrometry or other suitable methods. The disclosed device and method provide for efficient sample processing and accelerated reactions to significantly reduce processing times and costs for elemental analysis of solids while improving accuracy, precision and reliability of results compared to conventional devices and methods.
    Type: Grant
    Filed: January 25, 2001
    Date of Patent: October 12, 2004
    Assignee: Woods Hole Oceanographic Institution
    Inventors: Steven J. Manganini, Kenneth W. Doherty, Terence R. Hammer, Bruce A. Lancaster