Blood Gas (e.g., Oxygen, Carbon Dioxide, Blood, Ph, Etc.) Patents (Class 436/68)
  • Patent number: 9700251
    Abstract: The invention generally relates to enclosed desorption electrospray ionization probes, systems, and methods. In certain embodiments, the invention provides a source of DESI-active spray, in which a distal portion of the source is enclosed within a transfer member such that the DESI-active spray is produced within the transfer member.
    Type: Grant
    Filed: January 6, 2017
    Date of Patent: July 11, 2017
    Assignee: PURDUE RESEARCH FOUNDATION
    Inventors: Robert Graham Cooks, Zheng Ouyang, Chien-Hsun Chen, Ziqing Lin, Livia Schiavinato Eberlin
  • Patent number: 9538945
    Abstract: The invention generally relates to enclosed desorption electrospray ionization probes, systems, and methods. In certain embodiments, the invention provides a source of DESI-active spray, in which a distal portion of the source is enclosed within a transfer member such that the DESI-active spray is produced within the transfer member.
    Type: Grant
    Filed: April 16, 2015
    Date of Patent: January 10, 2017
    Assignee: PURDUE RESEARCH FOUNDATION
    Inventors: Robert Graham Cooks, Zheng Ouyang, Chien-Hsun Chen, Ziqing Lin, Livia Schiavinato Eberlin
  • Publication number: 20150079685
    Abstract: A method and an apparatus for accelerating the equilibration of a fluid, typically the reference fluid of an analyzer, are provided, the surface of the fluid being in contact with a gas phase. The device can comprise a cassette, which can be exchangeably inserted into an analyzer and which holds at least one flexible, gas-tight bag, in which the fluid and the gas phase are accommodated. The cassette or the analyzer can include at least one transmitting element, which can be caused to vibrate and which mechanically contacts the flexible bag in order to input mechanical energy into the liquid in at least one wall region.
    Type: Application
    Filed: November 24, 2014
    Publication date: March 19, 2015
    Inventors: Christoph Pfeiffer, Wolfgang Hofmann, Horst Ruether
  • Publication number: 20150011016
    Abstract: A pipette tip device for use in dispersive SPE. The device includes a pipette tip having a lower barrier, loose sorbent that is freely moveable during the extraction process, and a baffle system that is shaped to disrupt the flow of liquid sample that is aspirated into the pipette tip. The baffle system includes an insert that may be separate from or monolithic with the interior of the pipette tip.
    Type: Application
    Filed: February 14, 2013
    Publication date: January 8, 2015
    Inventor: William E. Brewer
  • Patent number: 8828728
    Abstract: An aquatic environment monitoring system and method that includes correction for adverse conditions in the monitoring system involving the development of confidence levels for certain conditions in the monitoring system using stored information related to the aquatic environment and/or the monitoring system. Corrections to adverse conditions may be made by the environment monitoring system automatically by the monitoring system and manually via communications to a user of the system.
    Type: Grant
    Filed: December 13, 2012
    Date of Patent: September 9, 2014
    Assignee: Step Ahead Innovations, Inc.
    Inventor: James E. Clark
  • Patent number: 8765060
    Abstract: A device for detecting an analyte present in a fluid includes a fluorous sensing phase into which the analyte enters selectively in comparison with other components of the fluid.
    Type: Grant
    Filed: May 26, 2006
    Date of Patent: July 1, 2014
    Assignee: Regents of the University of Minnesota
    Inventors: Philippe Buhlmann, Paul G. Boswell
  • Patent number: 8747750
    Abstract: A fluorescence quenching based oxygen sensor can be prepared comprising a polystyrene polymer linked to pyrene. The fluorescence based sensor has the formula (I), Polystyrene-Y—R-Pyrene??(I); wherein Y is fluorescence quenching and R is an aliphatic linking group having 1 to 11 carbon atoms. The sensor can be coated onto a support and integrated with an LED excitation source and fluorescence detector.
    Type: Grant
    Filed: December 1, 2011
    Date of Patent: June 10, 2014
    Assignee: Honeywell International Inc.
    Inventors: Bogdan Catalin Serban, Mihai N. Mihaila, Octavian Buiu
  • Patent number: 8637320
    Abstract: The present invention provides a method for determining at least one evaluation parameter of a blood sample, comprising the following steps: providing (S4) at least one blood gas parameter; providing (S5) at least one hemostasis parameter; and determining (S6 . . . S10?) the at least one evaluation parameter as a function of the blood gas parameter and/or the hemostasis parameter.
    Type: Grant
    Filed: April 21, 2010
    Date of Patent: January 28, 2014
    Assignee: C A Casyso AG
    Inventors: Axel Schubert, Kevin Bels
  • Publication number: 20130323845
    Abstract: A carbon dioxide detector including a sensor component, where the sensor component has a colorimetric indicator salt of a colorimetric pH indicator and a lipophilic phosphonium quaternary cation, a transparent polymer vehicle or a plasticizer not being in a mixture with the colorimetric indicator salt; and a porous memory, a porous polymer membrane in one instance, the colorimetric indicator salt being deposited on a surface of the porous polymer membrane; the colorimetric indicator salt deposited on the porous polymer membrane does not include a transparent polymer vehicle or a plasticizer, and carbon dioxide detection systems using the detector.
    Type: Application
    Filed: May 30, 2013
    Publication date: December 5, 2013
    Inventor: James A. Kane
  • Patent number: 8592219
    Abstract: A method for transporting in a microfluidic conduit an aliquot of a liquid, possibly containing a substance I, which is dissolved in the liquid and typically exhibits charged groups and/or hydrophobic groups. The method is characterized in that the liquid contains an amphiphilic macromolecular substance.
    Type: Grant
    Filed: January 20, 2005
    Date of Patent: November 26, 2013
    Assignee: Gyros Patent AB
    Inventors: Rickard Kange, Mats Inganas, Magnus Gustafsson, Johan Engstrom, Bo Ek, Helene Dérand, Ann-Kristine Honerud
  • Patent number: 8574921
    Abstract: Provided is an optical sensing membrane, including a mixture of two or more fluorescent dyes for detection of dissolved oxygen concentration, pH and temperature, immobilized on a support, a detection device including the optical sensing membrane and a detection method using the detection device.
    Type: Grant
    Filed: April 29, 2009
    Date of Patent: November 5, 2013
    Assignee: Industry Foundation of Chonnam National University
    Inventors: Jong Il Rhee, Chun-Kwang Kim, Ok-Jae Sohn
  • Publication number: 20130266668
    Abstract: Methods which increase the bioavailability of beneficial gases in the circulatory system are provided. The methods involve administering agents that changes the binding affinity of a medicinal gas such as NO, CO, H2S, N2O, SO, SO2 and O2 for Hb and/or hemoglobin based oxygen carriers (HBOCs). The change results in increased release of gases carried by Hb and HBOCs. As a result, the concentration of the OH gases in circulation is raised, and they are more available to exert their beneficial effects, e.g. in the treatment of disease or conditions caused by low levels of the gases. The methods are optionally used together with administration of medicinal gases and/or administration of HBOCs and/or other non-HBOC gas carriers such as PFC, and as (or in conjunction with) diagnostic methods.
    Type: Application
    Filed: December 1, 2011
    Publication date: October 10, 2013
    Applicant: VIRGINIA COMMONWEALTH UNIVERSITY
    Inventors: Martin Safo, Kevin R. Ward
  • Patent number: 8507262
    Abstract: Disclosed is a bubble excluder device (2) adapted for use with, and attachment to, a probe (6) for continuous measurement of the cell density of a culture in a liquid medium; the bubble excluder device comprising an inlet and an outlet to allow flow of liquid through the device and bubble exclusion means (20) to reduce or prevent ingress of bubbles from the liquid medium outside the device.
    Type: Grant
    Filed: February 23, 2007
    Date of Patent: August 13, 2013
    Assignee: Cytoprom Ltd
    Inventors: Edmund Kunji, Shane Palmer
  • Patent number: 8440140
    Abstract: A sample analyzer prepares a measurement sample from a blood sample or a body fluid sample which differs from the blood sample; measures the prepared measurement sample; obtains characteristic information representing characteristics of the components in the measurement sample; sets either a blood measurement mode for measuring the blood sample, or a body fluid measurement mode for measuring the body fluid sample as an operating mode; and measures the measurement sample prepared from the blood sample by executing operations in the blood measurement mode when the blood measurement mode has been set, and measuring the measurement sample prepared from the body fluid sample by executing operations in the body fluid measurement mode that differs from the operations in the blood measurement mode when the body fluid measurement mode has been set, is disclosed. A computer program product is also disclosed.
    Type: Grant
    Filed: January 31, 2008
    Date of Patent: May 14, 2013
    Assignee: Sysmex Corporation
    Inventors: Takaaki Nagai, Noriyuki Narisada, Daigo Fukuma
  • Patent number: 8425839
    Abstract: A sample analyzer is disclosed that comprising: a first reagent container to hold a first reagent container with a first record section which contains a first reagent management information; a second reagent container holder to hold a second reagent container with a second record section which contains a second reagent management information; a first information reader; a second information reader; a registration section for registering the combination of the first reagent and the second reagent based on the first reagent management information; a measurement section for conducting a measurement of a predetermined analysis item by using the first reagent and the second reagent corresponding to the combination registered by the registration section; and a processing section for processing a measurement result obtained by the measurement section, and for obtaining an analysis result of the sample.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: April 23, 2013
    Assignee: Sysmex Corporation
    Inventors: Yuji Wakamiya, Tomohiro Okuzaki, Hisato Takehara
  • Patent number: 8420404
    Abstract: The present disclosure relates to various methods for measuring the amount of an analyte present in a biological fluid using an electrochemical testing process. Various embodiments are disclosed, including the use of AC test signals and the performance of tests having a Total Test Time within about 3.0 seconds or less, and/or having a clinically low Total System Error.
    Type: Grant
    Filed: October 24, 2012
    Date of Patent: April 16, 2013
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Eric R. Diebold, Terry A. Beaty, Harvey B. Buck, Jr.
  • Patent number: 8394338
    Abstract: A process for producing a film of a hydrophilic polymer on the inner surfaces of a fluidic component is provided comprising subjecting the inner surfaces of the fluidic component to a physicochemical pre-treatment, contacting the inner surfaces of the fluidic component with a solution of the hydrophilic polymer, replacing the solution of the hydrophilic polymer with a gaseous medium in such a manner that firstly the inner surfaces of the fluidic component remain wetted with part of the polymer solution, and removing the solvent to produce a film of the hydrophilic polymer on the inner surfaces of the fluidic component. The hydrophilic polymer used has a surface wettability for aqueous solutions which is higher than the surface wettability of the inner surfaces of the fluidic component itself.
    Type: Grant
    Filed: April 14, 2005
    Date of Patent: March 12, 2013
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Léonie Weis, Dietmar Werkl, Marco Leiner, Werner Ziegler
  • Patent number: 8309320
    Abstract: The invention features methods and compositions for diagnosis, including prognosis, of conditions associated with decreased arginine bioavailability (which can result from dysregulated arginine metabolism, e.g., due to increased arginase activity) by assessing in a sample from a subject the ratio of arginine to one or more, usually two or more, modulators of arginine bioavailability. In one embodiment, the ratio of arginine to (ornithine+citrulline) is assessed to aid in diagnosis.
    Type: Grant
    Filed: December 1, 2009
    Date of Patent: November 13, 2012
    Assignees: Children's Hospital & Research Center at Oakland, The Cleveland Clinic Foundation
    Inventors: Claudia R. Morris, Stanley L. Hazen
  • Publication number: 20120283283
    Abstract: Methods for detecting enhanced risk of opioid-induced respiratory dysfunction in patients with normal levels of oxygen saturation. The method may comprise: (1) assaying blood of the patient for a normal level of oxygen saturation; (2) measuring the patient's respiration rate at rest for a normal rate; and (3) correlating the normal level of oxygen saturation and the normal rate of respiration with enhanced risk of opioid-induced respiratory dysfunction if: (a) the patient is at an altitude of about 1000 feet above sea level or greater; or (b) the patient's oxygen saturation level is normal but no greater than about 95%; or (c) the patient received prior dosing with intravenous opioid and is converted to dosing with an oral opioid. The method may further comprise administering opioids to a patient after detecting whether there is an enhanced risk of opioid-induced respiratory dysfunction.
    Type: Application
    Filed: May 4, 2012
    Publication date: November 8, 2012
    Inventors: Warren C. Stern, Patricia T. Richards
  • Patent number: 8298828
    Abstract: The present disclosure relates to various methods for measuring the amount of an analyte present in a biological fluid using an electrochemical testing process. Various embodiments are disclosed, including the use of AC test signals and the performance of tests having a Total Test Time within about 3.0 seconds or less, and/or having a clinically low Total System Error.
    Type: Grant
    Filed: March 13, 2012
    Date of Patent: October 30, 2012
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Eric R. Diebold, Terry A. Beaty, Harvey B. Buck, Jr.
  • Patent number: 8277729
    Abstract: The present invention is to present a sample analyzer which is capable of respond immediately when a need to perform analysis of multiple items arises. The sample analyzer 1 includes a table 12 capable of holding a first rack 320 and a second rack 330; a reagent dispensing arm 120 which comprises a pipette part 121; a reagent dispensing driving section 120a for moving the reagent dispensing arm 120; a reagent barcode reader 350; and a control section 501 for controlling the reagent dispensing driving section 120a so as to move the pipette part 121 to a predetermined reagent aspirating position according to the identification information obtained by the reagent barcode reader 350.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: October 2, 2012
    Assignee: Sysmex Corporation
    Inventors: Naohiko Matsuo, Hiroyuki Fujino, Takamichi Naito, Nobuhiro Kitagawa
  • Patent number: 8278110
    Abstract: A method and a blood oxygen tester for determining whether a blood sample is arterial or venous blood are disclosed. A blood oxygen tester for determining whether a blood sample is arterial or venous blood includes a housing and a blood sample receptacle defined by the housing. A blood oxygen sensor is in communication with the blood sample receptacle and a test result indicator is in communication with the blood oxygen sensor. The indicator is responsive to the blood oxygen sensor for indicating whether a tested blood sample is arterial blood or venous blood.
    Type: Grant
    Filed: November 1, 2011
    Date of Patent: October 2, 2012
    Inventor: Ali Ghobadi
  • Patent number: 8262878
    Abstract: The present invention pertains to a means of combining and configuring specific hydrophilic and dielectric materials in such a way as to allow an antimony/reference electrode pH sensor to be packaged and stored dry yet become fully hydrated to an activated state after exposure to aqueous liquids. The sensor is packaged and stored dry to maintain component stability and minimize component degradation. When the user removes the sensor from the package and the sensor tip is submerged in a hydration (ion conduction) media or solution, the hydrophilic coating along with the impregnated reference wick, absorb the fluid to create an electrolytic gel inside the reference wick, which activates the pH sensor.
    Type: Grant
    Filed: July 25, 2007
    Date of Patent: September 11, 2012
    Assignee: Sierra Medical Technology, Inc.
    Inventors: Erich H. Wolf, Charles Bankert, Ross Tsukashima, Elmer Custodio
  • Patent number: 8231830
    Abstract: A sample analyzer: measures a measurement sample including a sample and a reagent; creates a calibration curve based on first measurement data obtained by measuring a measurement standard sample including a standard sample and the reagent; provides calibration curve specifying information for specifying the calibration curve to the calibration curve; acquires an analysis result by processing second measurement data obtained by measuring the measurement sample based on the calibration curve; and stores the analysis result and the calibration curve specifying information provided to the calibration curve used in the process of the second measurement data in correspondence to each other.
    Type: Grant
    Filed: March 18, 2008
    Date of Patent: July 31, 2012
    Assignee: Sysmex Corporation
    Inventors: Yuji Wakamiya, Tomohiro Okuzaki, Hisato Takehara
  • Patent number: 8222041
    Abstract: A high electron mobility transistor (HEMT) capable of performing as a CO2 or O2 sensor is disclosed, hi one implementation, a polymer solar cell can be connected to the HEMT for use in an infrared detection system. In a second implementation, a selective recognition layer can be provided on a gate region of the HEMT. For carbon dioxide sensing, the selective recognition layer can be, in one example, PEI/starch. For oxygen sensing, the selective recognition layer can be, in one example, indium zinc oxide (IZO). In one application, the HEMTs can be used for the detection of carbon dioxide and oxygen in exhaled breath or blood.
    Type: Grant
    Filed: May 8, 2009
    Date of Patent: July 17, 2012
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Fan Ren, Stephen John Pearton
  • Publication number: 20120171713
    Abstract: A semiconductor die includes a chemical sensor, a digital to analog converter, and microcontroller formed therein. The chemical sensor detects the presence of a chemical and outputs an analog signal to the digital to analog converter. The analog to digital converter converts the analog signal to a digital signal. The analog to digital converter outputs the digital signal to the microcontroller. Microcontroller calculates a value of the concentration of the selected chemical.
    Type: Application
    Filed: October 31, 2011
    Publication date: July 5, 2012
    Applicant: STMICROELECTRONICS PTE LTD.
    Inventors: Suman Cherian, Olivier Le Neel
  • Patent number: 8206650
    Abstract: Some embodiments of the invention provide a system comprising a meter and a disposable cartridge for analyzing a fluid sample typically blood that is drawn into the cartridge by capillary action, negative pressure, positive pressure, or a combination thereof. The cartridge has at least one flow path, and includes at least one optical chamber for spectroscopic measurement, and at least one biosensor for biosensor measurement. The meter has a sample slot for receiving the disposable cartridge. The cartridges have electrical output contacts, and the meter slot has electrical input contacts. When the output contacts mate with the input contacts, the optical chamber becomes positioned for spectroscopic measurement. The present invention can provide joint-diagnostic spectroscopic and biosensor measurements.
    Type: Grant
    Filed: May 2, 2006
    Date of Patent: June 26, 2012
    Assignee: Chromedx Inc.
    Inventor: James Samsoondar
  • Patent number: 8148164
    Abstract: The present disclosure relates to various methods for measuring the amount of an analyte present in a biological fluid using an electrochemical testing process. Various embodiments are disclosed, including the use of AC test signals and the performance of tests having a Total Test Time within about 2.0 seconds or less, and/or having a clinically low Total System Error.
    Type: Grant
    Filed: December 30, 2009
    Date of Patent: April 3, 2012
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Eric R. Diebold, Terry A. Beaty, Harvey B. Buck, Jr.
  • Patent number: 8133698
    Abstract: A system is disclosed that extracts bodily fluid to a reaction chamber for monitoring a substance or property of the patient fluid. In one embodiment, a pump is used to advance the sample of bodily fluid through a filter to produce a filtrate. Another pump advances filtrate into the reaction chamber, while another pump advances reactant into the reaction chamber. A sensor in communication with the reaction chamber determines a concentration of nitric oxide or one of its metabolic products. Methods are also disclosed.
    Type: Grant
    Filed: January 16, 2008
    Date of Patent: March 13, 2012
    Inventor: James H. Silver
  • Patent number: 8114350
    Abstract: A system is disclosed that extracts bodily fluid to a reaction chamber for monitoring a substance or property of the patient fluid. In one embodiment, a pump is used to advance the sample of bodily fluid through a filter to produce a filtrate. Another pump advances filtrate into the reaction chamber, while another pump advances reactant into the reaction chamber. A sensor in communication with the reaction chamber determines a concentration of nitric oxide or one of its metabolic products. Methods are also disclosed.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: February 14, 2012
    Inventors: James H. Silver, Darius F. Mostowfi
  • Patent number: 8105491
    Abstract: An extracorporeal filtration and detoxification system and method generally comprise separating ultrafiltrate from cellular components of blood, treating the ultrafiltrate independently of the cellular components in a recirculation circuit, recombining treated ultrafiltrate and the cellular components, and returning whole blood to the patient. A recirculation circuit generally comprises an active cartridge including active cells operative to effectuate a selected treatment; in some embodiments, the active cells are the C3A cell line.
    Type: Grant
    Filed: February 23, 2005
    Date of Patent: January 31, 2012
    Assignee: Vital Therapies, Inc.
    Inventors: John D. Brotherton, Dar He
  • Patent number: 8095196
    Abstract: A sensor probe for in-situ measurement of pH in a human tissue (e.g., cardiovascular) environment comprises a hollow needle having a tip and a back end. The tip is insertable into the tissue. An optic cable comprises a light conduit surrounded by a cladding. A first end of the light conduit is inserted from the back end of the needle and extends to within a predetermined distance of the tip to define a cavity within the tip. A porous dye layer is contained within the cavity, wherein the dye layer has a response to excitation light delivered through the light conduit that varies according to the pH of the tissue environment. An overcoat layer is deposited on the dye layer, wherein the overcoat layer is ionically permeable and substantially opaque at a light wavelength corresponding to the variable response of the dye layer.
    Type: Grant
    Filed: December 19, 2006
    Date of Patent: January 10, 2012
    Assignee: Terumo Cardiovascular Systems
    Inventors: Thomas G. Hacker, Tetsuro Kawanishi
  • Patent number: 8080424
    Abstract: A method and a blood oxygen tester for determining whether a blood sample is arterial or venous blood are disclosed. A blood oxygen tester for determining whether a blood sample is arterial or venous blood includes a housing and a blood sample receptacle defined by the housing. A blood oxygen sensor is in communication with the blood sample receptacle and a test result indicator is in communication with the blood oxygen sensor. The indicator is responsive to the blood oxygen sensor for indicating whether a tested blood sample is arterial blood or venous blood.
    Type: Grant
    Filed: March 20, 2009
    Date of Patent: December 20, 2011
    Inventor: Ali Ghobadi
  • Patent number: 8071029
    Abstract: A sample analyzer and sample analyzing method perform following: a) mixing a sample with at least one of a first reagent and a second reagent, thereby preparing a measurement specimen; b) storing, in a memory, standard curve data corresponding to a reagent to be used in the step a) for preparing a measurement specimen; c) measuring the measurement specimen thereby obtaining measurement data; d) processing the measurement data based on the standard curve data, thereby obtaining an analysis result; and e) when the first, reagent and the second reagent are of the same type, determining a reagent to be used for the measuring between the first reagent and the second reagent, based on information regarding standard curve data stored in the memory.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: December 6, 2011
    Assignee: Sysmex Corporation
    Inventors: Yuji Wakamiya, Tomohiro Okuzaki, Hisato Takehara
  • Patent number: 8048677
    Abstract: The invention relates to a sensor board comprising a plate-like body comprising a body material and having two surfaces substantially parallel to each other, and at least one optical sensor and at least one non-optical sensor, the sensors being positioned at the same surface of the body, wherein the body includes a first area having a thickness D1 of the body material and a second area having a thickness D2 of the body material, where D1>D2>0, the at least one optical sensor being positioned at the second area.
    Type: Grant
    Filed: April 24, 2008
    Date of Patent: November 1, 2011
    Assignee: Radiometer Medical ApS
    Inventor: Michael Svendsmark Hansen
  • Patent number: 7977112
    Abstract: A method of measuring an analyte in a biological fluid comprises applying an excitation signal having a DC component and an AC component. The AC and DC responses are measured; a corrected DC response is determined using the AC response; and a concentration of the analyte is determined based upon the corrected DC response. Other methods and devices are disclosed.
    Type: Grant
    Filed: December 9, 2008
    Date of Patent: July 12, 2011
    Assignees: Roche Diagnostics Operations, Inc., Roche Operations Ltd.
    Inventors: David W. Burke, Lance S. Kuhn, James Maxwell
  • Patent number: 7848891
    Abstract: Embodiments of the present invention relate to a system and method for detecting a blood characteristic in a patient. Embodiments of the present invention may comprise detecting a first modulating signal at a first wavelength, detecting a second modulating signal at a second wavelength, and determining a relative amplitude of the first and second modulating signals. Further, embodiments of the present invention may comprise regressing the first and second modulating signals relative to one another, wherein a first uncertainty value in the first modulating signal and a second uncertainty value in the second modulating signal are accommodated.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: December 7, 2010
    Assignee: Nellcor Puritan Bennett LLC
    Inventors: Paul D. Mannheimer, Steven E. Pav
  • Patent number: 7842823
    Abstract: The present invention provides a novel class of fluorogenic probes for reactive oxygen species. Exemplary probes of the invention utilize a boronate deprotection mechanism to provide high selectivity and optical dynamic range for detecting H2O2 in aqueous solution over similar reactive oxygen species (ROS) including superoxide, nitric oxide, tert-butyl hydroperoxide, and hydroxyl radical; Peroxyresorufin-1 (PR1), Peroxyfluor-1 (PF1), and Peroxyxanthone-1 (PX1) are first-generation probes that respond to H2O2 by an increase in red, green, and blue fluorescence, respectively. The boronate dyes are cell-permeable and can detect micromolar changes in H2O2 concentrations in living cells, including hippocampal neurons, using confocal and two-photon microscopy. The unique combination of ROS selectivity, membrane permeability, and a range of available excitation/emission colors establishes the potential value of PR1, PF1, PX1, and related probes for interrogating the physiology and pathology of cellular H2O2.
    Type: Grant
    Filed: October 27, 2006
    Date of Patent: November 30, 2010
    Assignee: The Regents of the University of California
    Inventor: Christopher J. Chang
  • Patent number: 7736320
    Abstract: The present invention is a system for monitoring a patient's breath chemistry comprising a plurality of components, including a self-condensing pH sensor distally mounted on a catheter, a transmitter with hydration sensing circuitry for the pH sensor, and, a processing receiver/data recorder. The specifically designed self-condensing pH sensor located on the distal end of the catheter is designed to be inserted into the patient's airway. Monitoring of a patient's breath pH is accomplished by using the miniaturized self-condensing pH sensor, providing for real-time monitoring of patient airway pH values.
    Type: Grant
    Filed: May 25, 2005
    Date of Patent: June 15, 2010
    Assignee: Sierra Medical Technology, Inc.
    Inventors: Ross Tsukashima, Erich H. Wolf, Jeffery D. Schipper, Charles S. Bankert, Leo R. Roucher, Thomas Germain Wallner
  • Patent number: 7731897
    Abstract: Formats for the optical testing of fluids are manufacturing using modular format components. The format components are constructed so that matching format components can be mated together to form a single format for optical testing. Formats may be manufactured using pin-and-hole construction so that pins on optical format components mate with holes on opposing format components. Optical read surfaces provided on optical format components oppose each other in a completed optical format to form a read area.
    Type: Grant
    Filed: October 15, 2008
    Date of Patent: June 8, 2010
    Assignee: Bayer HealthCare LLC
    Inventor: Allen J. Brenneman
  • Patent number: 7704745
    Abstract: An apparatus and methods for monitoring the status of a cell that consumes oxygen. In one embodiment of the present invention, the method includes the steps of confining the cell in a sensing volume, measuring dynamically intracellular or extracellular signaling of the cell, and determining the status of the cell from the measured intracellular or extracellular signaling of the cell.
    Type: Grant
    Filed: August 6, 2002
    Date of Patent: April 27, 2010
    Assignee: Vanderbilt University
    Inventors: Franz Baudenbacher, John P. Wikswo, R. Robert Balcarcel, David Cliffel, Sven Eklund, Jonathan Mark Gilligan, Owen McGuinness, Todd Monroe, Ales Prokop, Mark Andrew Stremler, Andreas Augustinus Werdich
  • Patent number: 7687272
    Abstract: The present invention relates to a method and apparatus for determining blood oxygen transport, and to measure lipid levels by correlating these levels with the rate at which oxygen diffuses through the red blood cell membrane.
    Type: Grant
    Filed: August 24, 2000
    Date of Patent: March 30, 2010
    Inventors: Henry Buchwald, Hector J. Menchaca, Van N. Michalek, Thomas J. O'Dea, Thomas D. Rohde
  • Patent number: 7674626
    Abstract: An oxygen sensitive probe comprises a monofunctional derivative of an oxygen-sensitive photoluminescent dye covalently attached to a water soluble and/or hydrophilic macromolecular carrier. The probe may be a chemical conjugate of a monofunctional phosphorescent porphyrin dye and a poly(ethyleneglycol), polypeptide or polysaccharide.
    Type: Grant
    Filed: September 6, 2005
    Date of Patent: March 9, 2010
    Assignee: Luxcel Biosciences Limited
    Inventors: Dmitri Boris Papkovsky, Richard Fernandes
  • Patent number: 7662632
    Abstract: A non-invasive blood gas test is carried out by a method that utilizes a venous blood sample together with a pulse oximeter and a plurality of mathematical equations. The method generates the following data points of the blood: (i) the pH level; (ii) the [H+] concentration; (iii) the [HCO3?] concentration; (iv) the partial pressure of carbon dioxide; and (v) the oxygen saturation level. Mathematical formulas, tables, and chemical equations provide a simple method by which a doctor or other medical professional can easily calculate the blood gas data without the need for an arterial blood sample or specialized machines. Blood gas measurements are obtained from a patient in a faster, safer and less painful manner than tests that require an arterial blood sample. In another embodiment of the present invention, a system for locating a dysfunctional organ in a patient is disclosed.
    Type: Grant
    Filed: November 5, 2007
    Date of Patent: February 16, 2010
    Inventor: Wayne P. Franco
  • Patent number: 7659074
    Abstract: The invention concerns a method for detecting disorders of iron metabolism and in particular the differential diagnosis of disorders of iron metabolism by means of three independent parameters. The differential diagnosis can be used to classify disorders of iron metabolism and to recommend the required treatment and to monitor the progress and response to treatment.
    Type: Grant
    Filed: May 30, 2003
    Date of Patent: February 9, 2010
    Assignee: Roche Diagnostics Corporation
    Inventors: Ralf Roddiger, Paul Lehmann, Lothar Thomas
  • Patent number: 7659119
    Abstract: We describe an improved method for generating sizable numbers of mature dendritic cells from nonproliferating progenitors in human blood. The first step or “priming” phase is a culture of T cell depleted mononuclear cells in medium supplemented with GM-CSF and IL-4 to produce immature dendritic cells. The second step or “differentiation” phase requires the exposure to dendritic cell maturation factor such as monocyte conditioned medium. Using this two-step approach, substantial yields are obtained. The dendritic cells derive from this method have all the features of mature cells. They include a stellate cell shape, nonadherence to plastic, and very strong T cell stimulatory activity. The mature dendritic cells produced according to this invention are useful for activating T cells.
    Type: Grant
    Filed: February 12, 1996
    Date of Patent: February 9, 2010
    Assignees: Argos Therapeutics, Inc., The Rockefeller University
    Inventors: Ralph M. Steinman, Nina Bhardwaj, Gerold Schuler
  • Patent number: 7651846
    Abstract: The invention features methods and compositions for diagnosis and treatment of conditions associated with decreased nitric oxide bioavailability, such as a condition associated with elevated arginase activity, using an arginine- and/or arginase-inhibitor based therapy, which therapies include administration of arginine or an arginase inhibitor, either alone or in combination. The invention also contemplates administration of magnesium with arginine, an arginase inhibitor, or with arginine-arginase inhibitor combination therapy. The invention also features methods and compositions for diagnosis, including prognosis, of conditions associated with arginase activity by assessing the ratio of arginine to ornithine in samples from a subject.
    Type: Grant
    Filed: December 1, 2004
    Date of Patent: January 26, 2010
    Assignee: Children's Hospital & Research Center at Oakland
    Inventor: Claudia R. Morris
  • Patent number: 7608460
    Abstract: Fluorescent pH detector and methods for measuring pH using the fluorescent pH detector.
    Type: Grant
    Filed: August 19, 2005
    Date of Patent: October 27, 2009
    Assignee: Blood Cell Storage, Inc.
    Inventors: Michael W. Reed, Steven J. Geelhood, Paul C. Harris, Randy D. Pfalzgraf
  • Publication number: 20090233372
    Abstract: The instant application is to compositions, kits and methods to determine if a person in need of a blood transfusion is at-risk for TRALI. The invention includes embodiments of methods for testing the priming activity of a blood component or serum or plasma from a patient sustaining TRALI or the priming status of neutrophils of a patient at risk for TRALI by exposing the neutrophils to samples or priming agents, and measuring the respiratory burst in response to an activating agent. The respiratory burst may then be compared to a pre-determined value to find if the patient has abnormally high respiratory burst or the plasma or serum samples have priming activity. The present invention also contemplates kits designed to measure respiratory burst, and compositions/reagents to be used in same.
    Type: Application
    Filed: March 10, 2009
    Publication date: September 17, 2009
    Applicant: Bonfils Blood Center
    Inventor: Daniel Ambruso
  • Patent number: 7534619
    Abstract: A method for determining a person's metabolic typing. The method includes the steps of taking a baseline reading to determine a person's blood pH, administering a substance challenge to a person to determine how the substance affects the person's blood pH, waiting a period of time, retaking the person's blood ph, and from any difference in the baseline reading and post-challenge reading, determining if the patient's blood has been alkalized or acidified by the substance challenge in order to determine the person's metabolic type. The invention is also a method to test the blood pH shifting effects of substances on people of different metabolic types, by determining whether the substance will cause the blood of persons having known metabolic types to become more acidic or alkaline.
    Type: Grant
    Filed: October 27, 2006
    Date of Patent: May 19, 2009
    Inventor: Brandon Horn