Combined With Vertical Bipolar Transistor Patents (Class 438/336)
-
Patent number: 10018759Abstract: A plastic substrate having a porous layer is disclosed. In an embodiment, the porous layer is formed at least partially from a material of the plastic substrate and has pores. The proportion by volume of pores is greater in a first region of the porous layer than in a second region of the porous layer. The second region follows the first region, as seen proceeding from the plastic substrate. The porous layer can be produced by a plasma process that simultaneously effects structuring of the plastic substrate by ion bombardment and coating of the plastic substrate.Type: GrantFiled: October 12, 2016Date of Patent: July 10, 2018Assignee: Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.Inventors: Ulrike Schulz, Peter Munzert, Matthias Fahland, Waldemar Schoenberger
-
Patent number: 9018062Abstract: In one embodiment, a method of making a super-junction MOS transistor in a wafer can include: (i) forming a first doping layer having a high doping concentration; (ii) forming a second doping layer on the first doping layer, wherein a doping concentration of the second doping layer is less than a doping concentration of the first doping layer; (iii) forming a third doping layer on the second doping layer, wherein the third doping layer comprises an intrinsic layer; (iv) etching through the third doping layer and partially through the second doping layer to form trenches; and (v) filling the trenches to form pillar structures.Type: GrantFiled: February 3, 2014Date of Patent: April 28, 2015Assignee: Silergy Semiconductor Technology (Hangzhou) Ltd.Inventor: Zhongping Liao
-
Patent number: 9006041Abstract: A method for manufacturing a bipolar punch-through semiconductor device is disclosed, which includes providing a wafer having a first and a second side, wherein on the first side a high-doped layer of the first conductivity type having constant high doping concentration is arranged; epitaxially growing a low-doped layer of the first conductivity type on the first side; performing a diffusion step by which a diffused inter-space region is created at the inter-space of the layers; creating at least one layer of the second conductivity type on the first side; and reducing the wafer thickness within the high-doped layer on the second side so that a buffer layer is created, which can include the inter-space region and the remaining part of the high-doped layer, wherein the doping profile of the buffer layer decreases steadily from the doping concentration of the high-doped region to the doping concentration of the drift layer.Type: GrantFiled: October 4, 2013Date of Patent: April 14, 2015Assignee: ABB Technology AGInventors: Munaf Rahimo, Arnost Kopta, Thomas Clausen, Maxi Andenna
-
Patent number: 9000469Abstract: A nitride group semiconductor light emitting device includes a nitride group semiconductor layer, and an electrode structure. The electrode structure is arranged on or above the semiconductor layer, and includes a plurality of deposited metal layers. The plurality of deposited metal layers of the electrode structure includes first and second metal layers. The first metal layer is arranged on the semiconductor layer side. The second metal layer is arranged on or above the first metal layer. The first metal layer contains Cr, and a first metal material. The first metal material has a reflectivity higher than Cr at the light emission peak wavelength of the light emitting device. According to this construction, the first metal layer can have a higher reflectivity as compared with the case where the first metal layer is only formed of Cr, but can keep tight contact with the semiconductor layer.Type: GrantFiled: October 13, 2011Date of Patent: April 7, 2015Assignee: Nichia CorporationInventors: Yasuhiro Miki, Masahiko Onishi, Hirofumi Nishiyama, Shusaku Bando
-
Patent number: 8963217Abstract: In one embodiment, a wafer structure configured for a power device can include: (i) a first doping layer having a high doping concentration; (ii) a second doping layer on the first doping layer, where a doping concentration of the second doping layer is less than the high doping concentration; and (iii) a third doping layer on the second doping layer, where a doping concentration of the third doping layer is greater than the doping concentration of the second doping layer. For example, the power device can be part of a switching voltage regulator.Type: GrantFiled: February 3, 2014Date of Patent: February 24, 2015Assignee: Silergy Semiconductor Technology (Hangzhou) LtdInventor: Zhongping Liao
-
Patent number: 8946013Abstract: A disposable structure displaced from an edge of a gate electrode and a drain region aligned to the disposable structure is formed. Thus, the drain region is self-aligned to the edge of the gate electrode. The disposable structure may be a disposable spacer, or alternately, the disposable structure may be formed simultaneously with, and comprise the same material as, a gate electrode. After formation of the drain regions, the disposable structure is removed. The self-alignment of the drain region to the edge of the gate electrode provides a substantially constant drift distance that is independent of any overlay variation of lithographic processes.Type: GrantFiled: February 2, 2012Date of Patent: February 3, 2015Assignee: International Business Machines CorporationInventors: Natalie B. Feilchenfeld, Jeffrey P. Gambino, Xuefeng Liu, Benjamin T. Voegeli, Steven H. Voldman, Michael J. Zierak
-
Patent number: 8921194Abstract: Lateral PNP bipolar junction transistors, methods for fabricating lateral PNP bipolar junction transistors, and design structures for a lateral PNP bipolar junction transistor. An emitter and a collector of the lateral PNP bipolar junction transistor are comprised of p-type semiconductor material that is formed by a selective epitaxial growth process. The source and drain each directly contact a top surface of a device region used to form the emitter and collector. A base contact may be formed on the top surface and overlies an n-type base defined within the device region. The emitter is laterally separated from the collector by the base contact. Another base contact may be formed in the device region that is separated from the other base contact by the base.Type: GrantFiled: November 11, 2011Date of Patent: December 30, 2014Assignee: International Business Machines CorporationInventors: David L. Harame, Qizhi Liu
-
Patent number: 8765562Abstract: A collector layer having p type is formed on a silicon carbide substrate having n type. A drift layer having n type is formed on a top surface side of the collector layer. A body region provided on the drift layer and having p type, and an emitter region provided on the body region to be separated from the drift layer by the body region and having n type are formed. A bottom surface side of the collector layer is exposed by removing the silicon carbide substrate.Type: GrantFiled: September 13, 2012Date of Patent: July 1, 2014Assignee: Sumitomo Electric Industries, Ltd.Inventors: Toru Hiyoshi, Takeyoshi Masuda, Keiji Wada
-
Patent number: 8748936Abstract: A semiconductor device includes a first well region of a first conductivity type, a second well region of a second conductive type within the first well region. A first region of the first conductivity type and a second region of the second conductivity type are disposed within the second well region. A third region of the first conductivity type and a fourth region of the second conductivity type are disposed within the first well region, wherein the third region and the fourth region are separated by the second well region. The semiconductor device also includes a switch device coupled to the third region.Type: GrantFiled: July 20, 2012Date of Patent: June 10, 2014Assignee: Macronix International Co., Ltd.Inventors: Shih-Yu Wang, Chia-Ling Lu, Yan-Yu Chen, Yu-Lien Liu, Tao-Cheng Lu
-
Patent number: 8637355Abstract: Actuating a semiconductor device includes providing a transistor that includes a substrate and a first electrically conductive material layer, including a reentrant profile, positioned on the substrate. An electrically insulating material layer is conformally positioned over the first electrically conductive material layer and at least a portion of the substrate. A semiconductor material layer conforms to and is in contact with the electrically insulating material layer. A second electrically conductive material layer and third electrically conductive material layer are nonconformally positioned over and in contact with a first portion of the semiconductor material layer and a second portion of the semiconductor material layer, respectively.Type: GrantFiled: August 26, 2011Date of Patent: January 28, 2014Assignee: Eastman Kodak CompanyInventors: Shelby F. Nelson, Lee W. Tutt
-
Patent number: 8546917Abstract: A semiconductor structure and a manufacturing method and an operating method for the same are provided. The semiconductor structure comprises a first well region, a second well region, a first doped region, a second doped region, an anode, and a cathode. The second well region is adjacent to the first well region. The first doped region is on the second well region. The second doped region is on the first well region. The anode is coupled to the first doped region and the second well region. The cathode is coupled to the first well region and the second doped region. The first well region and the first doped region have a first conductivity type. The second well region and the second doped region have a second conductivity type opposite to the first conductivity type.Type: GrantFiled: March 28, 2011Date of Patent: October 1, 2013Assignee: Macronix International Co., Ltd.Inventors: Hsin-Liang Chen, Wing-Chor Chan, Shyi-Yuan Wu
-
Patent number: 8507107Abstract: An electronic device housing is provided. The electronic device housing includes a substrate, a first metallic coating formed on the substrate, and a second metallic coating formed on a portion of the first metallic coating. The first and second metallic coatings are formed by vacuum sputtering or vacuum vapor deposition. The first and second metallic coatings are all non-conductive. A method for making the electronic device housing is also described there.Type: GrantFiled: November 19, 2010Date of Patent: August 13, 2013Assignees: Shenzhen Futaihong Precision Industry Co., Ltd., FIH (Hong Kong) LimitedInventors: Qi-Jian Du, Chwan-Hwa Chiang
-
Publication number: 20130119516Abstract: Lateral PNP bipolar junction transistors, methods for fabricating lateral PNP bipolar junction transistors, and design structures for a lateral PNP bipolar junction transistor. An emitter and a collector of the lateral PNP bipolar junction transistor are comprised of p-type semiconductor material that is formed by a selective epitaxial growth process. The source and drain each directly contact a top surface of a device region used to form the emitter and collector. A base contact may be formed on the top surface and overlies an n-type base defined within the device region. The emitter is laterally separated from the collector by the base contact. Another base contact may be formed in the device region that is separated from the other base contact by the base.Type: ApplicationFiled: November 11, 2011Publication date: May 16, 2013Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: David L. Harame, Qizhi Liu
-
Patent number: 8415764Abstract: An integrated circuit device includes a semiconductor substrate having a top surface; at least one insulation region extending from the top surface into the semiconductor substrate; a plurality of base contacts of a first conductivity type electrically interconnected to each other; and a plurality of emitters and a plurality of collectors of a second conductivity type opposite the first conductivity type. Each of the plurality of emitters, the plurality of collectors, and the plurality of base contacts is laterally spaced apart from each other by the at least one insulation region. The integrated circuit device further includes a buried layer of the second conductivity type in the semiconductor substrate, wherein the buried layer has an upper surface adjoining bottom surfaces of the plurality of collectors.Type: GrantFiled: March 30, 2010Date of Patent: April 9, 2013Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Tao-Wen Chung, Po-Yao Ke, Wei-Yang Lin, Shine Chung
-
Patent number: 8409959Abstract: Methods, devices, and systems for using and forming vertically base-connected bipolar transistors have been shown. The vertically base-connected bipolar transistors in the embodiments of the present disclosure are formed with a CMOS fabrication technique that decreases the transistor size while maintaining the high performance characteristics of a bipolar transistor.Type: GrantFiled: March 13, 2007Date of Patent: April 2, 2013Assignee: Micron Technology, Inc.Inventors: Badih El-Kareh, Leonard Forbes, Kie Y. Ahn
-
Patent number: 8377788Abstract: A SiGe heterojunction bipolar transistor is fabricated by etching an epitaxially-formed structure to form a mesa that has a collector region, a cap region, and a notched SiGe base region that lies in between. A protective plug is formed in the notch of the SiGe base region so that thick non-conductive regions can be formed on the sides of the collector region and the cap region. Once the non-conductive regions have been formed, the protective plug is removed. An extrinsic base is then formed to lie in the notch and touch the base region, followed by the formation of isolation regions and an emitter region.Type: GrantFiled: November 15, 2010Date of Patent: February 19, 2013Assignee: National Semiconductor CorporationInventors: Wibo Van Noort, Jamal Ramdani, Andre Labonte, Donald Robertson Getchell
-
Patent number: 8343824Abstract: Gallium nitride material devices and related processes are described. In some embodiments, an N-face of the gallium nitride material region is exposed by removing an underlying region.Type: GrantFiled: June 20, 2008Date of Patent: January 1, 2013Assignee: International Rectifier CorporationInventors: Edwin Lanier Piner, Jerry Wayne Johnson, John Claassen Roberts
-
Patent number: 8114750Abstract: A disposable structure displaced from an edge of a gate electrode and a drain region aligned to the disposable structure is formed. Thus, the drain region is self-aligned to the edge of the gate electrode. The disposable structure may be a disposable spacer, or alternately, the disposable structure may be formed simultaneously with, and comprise the same material as, a gate electrode. After formation of the drain regions, the disposable structure is removed. The self-alignment of the drain region to the edge of the gate electrode provides a substantially constant drift distance that is independent of any overlay variation of lithographic processes.Type: GrantFiled: April 17, 2008Date of Patent: February 14, 2012Assignee: International Business Machines CorporationInventors: Natalie B. Feilchenfeld, Jeffrey P. Gambino, Xuefeng Liu, Benjamin T. Voegeli, Steven H. Voldman, Michael J. Zierak
-
Patent number: 8067290Abstract: The disclosed invention provides a method for the fabrication of a bipolar transistor having a collector region comprised within a semiconductor body separated from an overlying base region by one or more isolation cavities (e.g., air gaps) filled with low permittivity gas. In particular, a multilayer base-collector dielectric film is deposited over the collector region. A base region is formed onto the multilayer dielectric film and is patterned to form one or more base connection regions. The multilayer dielectric film is selectively etched during a plurality of isotropic etch processes to allow for the formation of one or more isolation region between the base connection regions and the collector region, wherein the one or more isolation regions comprise cavities filled with a gas having a low dielectric constant (e.g., air). The resultant bipolar transistor has a reduced base-collector capacitance, thereby allowing for improved frequency properties (e.g., higher maximum frequency operation).Type: GrantFiled: December 18, 2009Date of Patent: November 29, 2011Assignee: Infineon Technologies AGInventors: Josef Boeck, Wolfgang Liebl, Thomas Meister, Herbert Schaefer
-
Patent number: 7932156Abstract: The invention relates to a semiconductor device (10) with a substrate (12) and a semiconductor body (11) of silicon comprising a bipolar transistor with an emitter region, a base region and a collector region (1,2,3) first conductivity type, a second conductivity type opposite to said first conductivity type and the first conductivity type, respectively, with a first semiconductor region (3) comprising the collector region or the emitter region being formed in the semiconductor body (11), on top of which a second semiconductor region (2) comprising the base region is present, on top of which a third semiconductor region (1) comprising the other of said collector region and said emitter region is present, said semiconductor body (11) being provided with a constriction at the location of the transition between the first and the second semiconductor region (3, 2), which constriction has been formed by means of an electrically insulating region (26, 27) buried in the semiconductor body (11).Type: GrantFiled: July 26, 2006Date of Patent: April 26, 2011Assignee: NXP B.V.Inventors: Johannes J. T. M. Donkers, Wibo D. Van Noort, Francois Neuilly
-
Patent number: 7851320Abstract: A mesostructured aluminosilicate material is described, constituted by at least two spherical elementary particles, each of said spherical particles being constituted by a matrix based on silicon oxide and aluminum oxide, having a pore size in the range 1.5 to 30 nm, a Si/Al molar ratio of at least 1, having amorphous walls with a thickness in the range 1 to 20 nm, said spherical elementary particles having a maximum diameter of 10 ?m. A process for preparing said material and its application in the fields of refining and petrochemistry are also described.Type: GrantFiled: March 20, 2009Date of Patent: December 14, 2010Assignee: IFP Energies NouvellesInventors: Alexandra Chaumonnot, Aurélie Coupe, Clément Sanchez, Patrick Euzen, Cédric Boissiere, David Grosso
-
Patent number: 7846805Abstract: A structure and a process for a self-aligned vertical PNP transistor for high performance SiGe CBiCMOS process. Embodiments include SiGe CBiCMOS with high-performance SiGe NPN transistors and PNP transistors. As the PNP transistors and NPN transistors contained different types of impurity profile, they need separate lithography and doping step for each transistor. The process is easy to integrate with existing CMOS process to save manufacturing time and cost. As plug-in module, fully integration with SiGe BiCMOS processes. High doping Polysilicon Emitter can increase hole injection efficiency from emitter to base, reduce emitter resistor, and form very shallow EB junction. Self-aligned N+ base implant can reduce base resistor and parasitical EB capacitor. Very low collector resistor benefits from BP layer. PNP transistor can be Isolated from other CMOS and NPN devices by BNwell, Nwell and BN+ junction.Type: GrantFiled: February 9, 2009Date of Patent: December 7, 2010Assignee: Chartered Semiconductor Manufacturing, Ltd.Inventors: Shaoqiang Zhang, Purakh Raj Verma, Sanford Chu
-
Patent number: 7622357Abstract: The present invention relates to a device structure that comprises a substrate with front and back surfaces, and at least one semiconductor device with a first conductive structure located in the substrate and a second conductive structure located thereover. A first conductive contact is located over the front surface of the substrate and laterally offset from the first conductive structure. The first conductive contact is electrically connected to the first conductive structure by a conductive path that extends: (1) from the first conductive structure through the substrate to the back surface, (2) across the back surface, and (3) from the back surface through the substrate to the first conductive contact on the front surface. Further, a second conductive contact is located over the front surface and is electrically connected to the second conductive structure. The conductive path can be formed by lithography and etching followed by metal deposition.Type: GrantFiled: May 25, 2006Date of Patent: November 24, 2009Assignee: International Business Machines CorporationInventors: Kunal Vaed, Jae-Sung Rieh, Richard P. Volant, Francois Pagette
-
Patent number: 7595249Abstract: A method for fabricating a bipolar transistor includes forming a vertical sequence of semiconductor layers, forming an implant mask on the last formed semiconductor layer, and implanting dopant ions into a portion of one or more of the semiconductor layers. The sequence of semiconductor layers includes a collector layer, a base layer that is in contact with the collector layer, and an emitter layer that is in contact with the base layer. The implanting uses a process in which the implant mask stops dopant ions from penetrating into a portion of the sequence of layers.Type: GrantFiled: September 29, 2008Date of Patent: September 29, 2009Assignee: Alcatel-Lucent USA Inc.Inventors: Young-Kai Chen, Lay-Lay Chua, Vincent Etienne Houtsma, Rose Fasano Kopf, Andreas Leven, Chun-Ting Liu, Wei-Jer Sung, Yang Yang
-
Patent number: 7569910Abstract: A semiconductor structure is fabricated with two different portions. The first portion forms a first transistor, while the second portion forms a second transistor. Notably, portions of the first transistor also a make up portions of the second transistor. That is, both the first transistor and the second transistor are made of portions of the same structure.Type: GrantFiled: August 30, 2006Date of Patent: August 4, 2009Assignee: Silicon Storage Technology, Inc.Inventors: Mauchung (Frank) Chang, Peiming (Daniel) Chow, Liyang Zhang
-
Patent number: 7566619Abstract: A method of forming an integrated circuit device includes forming a non-planar field-effect transistor in a cell array portion of a semiconductor substrate and forming a planar field-effect transistor in a peripheral circuit portion of the semiconductor substrate. The non-planar field-effect transistor may be selected from the group of a FinFET and a recessed gate FET. Dopants may be implanted into a channel region of the non-planar field-effect transistor, and a cell protection layer may be formed on the non-planar field-effect transistor. Then, dopants may be selectively implanted into a channel region of the planar field-effect transistor using the cell protection layer as a mask to block implanting of the dopants into the channel region of the non-planar field-effect transistor.Type: GrantFiled: April 20, 2005Date of Patent: July 28, 2009Assignee: Samsung Electronics Co., Ltd.Inventors: Young-Joon Ahn, Dong-Gun Park, Choong-Ho Lee, Hee-Soo Kang
-
Patent number: 7521310Abstract: In a complementary SiGe bipolar process, a pnpn thyristor structure is formed from some of the layers of a pnp transistor and an npn transistor formed on top of each other and making use of the SiGe gates to define the blocking junction.Type: GrantFiled: October 29, 2005Date of Patent: April 21, 2009Assignee: National Semiconductor CorporationInventors: Vladislav Vashchenko, Alexel Sadovnikov, Peter J. Hopper
-
Patent number: 7488662Abstract: A structure and a process for a self-aligned vertical PNP transistor for high performance SiGe CBiCMOS process. Embodiments include SiGe CBiCMOS with high-performance SiGe NPN transistors and PNP transistors. As the PNP transistors and NPN transistors contained different types of impurity profile, they need separate lithography and doping step for each transistor. The process is easy to integrate with existing CMOS process to save manufacturing time and cost. As plug-in module, fully integration with SiGe BiCMOS processes. High doping Polysilicon Emitter can increase hole injection efficiency from emitter to base, reduce emitter resistor, and form very shallow EB junction. Self-aligned N+ base implant can reduce base resistor and parasitical EB capacitor. Very low collector resistor benefits from BP layer. PNP transistor can be Isolated from other CMOS and NPN devices by BNwell, Nwell and BN+ junction.Type: GrantFiled: December 13, 2005Date of Patent: February 10, 2009Assignee: Chartered Semiconductor Manufacturing, Ltd.Inventors: Shaoqiang Zhang, Purakh Raj Verma, Sanford Chu
-
Patent number: 7446012Abstract: The present invention relates to a lateral PNP transistor and the method of manufacturing the same. The medium doping N-type base area and the light doping P? collector area were first introduced in the structure before the formation of P+ doping emitter area and the collector area. The emitter-base-collector doping profile in the lateral and the base width of LPNP were similar to NPN. The designer can optimize the doping profile and area size of each area according to the request of the current gain (Hfe), collector-base breakdown voltage (BVceo), and early voltage (VA) of LPNP transistor. These advantages may cause to reduce the area and enhance performance of the LPNP transistor.Type: GrantFiled: January 20, 2006Date of Patent: November 4, 2008Assignee: BCD Semiconductor Manufacturing LimitedInventors: Chong Ren, Xian-Feng Liu, Bin Qiu
-
Patent number: 7432169Abstract: An excessive etch in the conventional manufacturing process causes a roughened surface of a contact bottom, resulting in an increased variation in characteristics of semiconductor devices. A bipolar transistor having a collector region 4 provided in a bottom of a trench formed in a P-type silicon substrate 1 is formed. An interlayer insulating film 23 is formed on the P-type silicon substrate 1. The interlayer insulating film 23 above the trench is partially etched to form a portion 30 of an opening for a collector contact. The interlayer insulating film 23 above the trench is partially etched until reaching the bottom thereof to form a residual section 32 of the opening for the collector contact. The residual section 32 of the opening for the collector contact is formed simultaneously with forming an opening 25 for an emitter contact and an opening 27 for a base contact.Type: GrantFiled: June 21, 2007Date of Patent: October 7, 2008Assignee: NEC Electronics CorporationInventor: Masaki Kagamihara
-
Patent number: 7352042Abstract: The invention relates to a radiation-emitting semiconductor device (10) with a semiconductor body (1) and a substrate (2), wherein the semiconductor body (1) comprises a vertical bipolar transistor with an emitter region (3), a base region (4) and a collector region (5), which regions are each provided with a connection region (6, 7, 8), and the border between the base region (4) and the collector region (5) forms a pn-junction and, in operation, at a reverse bias of the pn-junction or at a sufficiently large collector current, avalanche multiplication of charge carriers occurs whereby radiation is generated in the collector region (5). According to the invention, the collector region (5) has a thickness through which transmission of the generated radiation occurs, and the collector region (5) borders on a free surface of the semiconductor body (1).Type: GrantFiled: October 28, 2003Date of Patent: April 1, 2008Assignee: Koninklijke Philips Electronics N.V.Inventors: Johan Hendrik Klootwijk, Jan Willem Slotboom
-
Patent number: 7332788Abstract: The invention relates to a semiconductor power device with charge compensation structure and monolithic integrated circuit, and method for fabricating it. In the case of this semiconductor power device, zones (6) in charge compensation cells (27) that are arranged vertically and doped complimentarily to the semiconductor chip volume (5) are arranged in the entire chip volume, the complimentarily doped zones (6) extending right into surface regions (11) of the semiconductor power elements (7) and not projecting into surface regions (12) of semiconductor surface elements (1).Type: GrantFiled: August 26, 2004Date of Patent: February 19, 2008Assignee: Infineon Technologies AGInventors: Dirk Ahlers, Miguel Cuadron Marion, Uwe Wahl, Armin Willmeroth
-
Patent number: 7320922Abstract: An integrated circuit on a semiconductor chip is provided with a first bipolar transistor and a second bipolar transistor. The first bipolar transistor has a first collector region of a first conductivity type, grown by at least one epitaxial layer, and the second bipolar transistor has a second collector region of this first conductivity type grown by this epitaxial layer. The first collector region also has a first collector drift zone, and the second collector region has a second collector drift zone. Whereby, the first collector drift zone is shortened as compared to the second collector drift zone by partial etching of the epitaxial layer.Type: GrantFiled: November 15, 2005Date of Patent: January 22, 2008Assignee: Atmel Germany GmbHInventor: Christoph Bromberger
-
Patent number: 7169660Abstract: A method for formation of openings in semiconducting devices not limited by constraints of photolithography include forming a first dielectric layer over a semiconducting substrate, depositing a polysilicon layer over the first dielectric layer, forming a second dielectric layer over the polysilicon layer, forming a third dielectric layer over the second dielectric layer, etching a dielectric window through the third dielectric layer, forming a fourth dielectric layer into the dielectric window and over the third dielectric layer, the fourth dielectric layer being of a material dissimilar to the second dielectric layer, etching the fourth dielectric layer anisotropically using an etchant with a high selectivity ratio between the fourth dielectric layer and the second dielectric layer thereby forming a spacer, and etching portions of the first and second dielectric layers and the polysilicon layer anisotropically, the portions underlying an area bounded by a periphery of the spacer thereby forming the opening.Type: GrantFiled: October 28, 2004Date of Patent: January 30, 2007Assignee: Atmel CorporationInventor: Bohumil Lojek
-
Patent number: 7098113Abstract: A power lateral PNP device is disclosed which includes an epitaxial layer; a first and second collector region embedded in the epitaxial layer; an emitter region between the first and second collector regions. Therefore slots are placed in each of the regions. Accordingly, in a first approach the standard process flow will be followed until reaching the point where contact openings and metal are to be processed. In this approach slots are etched that are preferably 5 to 6 um deep and 5 to 6 um wide. These slots are then oxidized and will be subsequently metalized. When used for making metal contacts to the buried layer or for ground the oxide is removed from the bottom of the slots by an anisotropic etch. Subsequently when these slots receive metal they will provide contacts to the buried layer where this is desired and to the substrate when a ground is desired. In a second approach the above-identified process is completed up through the slot process without processing the lateral PNPs.Type: GrantFiled: March 13, 2003Date of Patent: August 29, 2006Assignee: Micrel, Inc.Inventors: John Durbin Husher, Ronald L. Schlupp
-
Patent number: 6949439Abstract: A semiconductor power component and a method for producing a semiconductor power component, in particular a vertical NPT-IGBT for ignition applications with a breakdown voltage of less than approx. 1000 V. The semiconductor power component includes a wafer substrate of a first conductive type including a rear-side emitter region of a second conductive type and a front-side drift region of the first conductive type; a rear-side anode contact which is connected to the emitter region and extends partially to the front-side surface; a front-side MOS control structure; and a front-side cathode contact which is connected to a front-side source region and a body region of the front-side MOS control structure. The thickness of the drift region is much larger than the width of the space charge region at a defined breakdown voltage; and the thickness of the rear-side emitter region is greater than 5 ?m.Type: GrantFiled: March 26, 2002Date of Patent: September 27, 2005Assignee: Robert Bosch GmbHInventors: Peter Flohrs, Robert Plikat, Wolfgang Feiler
-
Patent number: 6890826Abstract: A method of manufacturing a bipolar junction transistor results in an integrated polysilicon base contact and field plate element minimally spaced from a polysilicon emitter contact by using a single mask to define respective openings for these elements. In particular, a dielectric layer is deposited on a semiconductor wafer and has two openings defined by a single masking step, one opening above an emitter region and a second opening above a base-collector junction region. Polysilicon is deposited on the dielectric layer and selectively doped in the areas of the openings. Thus for an NPN transistor for example, the area above the emitter opening is doped N type and the area above the base/field plate opening is doped P type. The doped polysilicon is patterned and etched to leave a polysilicon emitter contact and an integrated polysilicon base contact and field plate within the respective openings.Type: GrantFiled: August 23, 2002Date of Patent: May 10, 2005Assignee: Texas Instruments IncorporatedInventor: Sheldon Douglas Haynie
-
Patent number: 6835629Abstract: Integrated circuit including a power component with vertical current flow and at least one low or medium voltage component, the at least one low or medium voltage component formed in a first semiconductor layer separated from a second semiconductor layer by an insulating material layer. The power component with vertical current flow is formed in the second semiconductor layer, and excavations are formed in the insulating material layer which extend from a free surface of the first semiconductor layer to the second semiconductor layer, said excavations having lateral walls of insulating material and being filled up with a conductor material in order to electrically contact active regions of the power component in the second semiconductor layer by electrodes placed on the free surface of the first semiconductor layer.Type: GrantFiled: January 23, 2003Date of Patent: December 28, 2004Assignee: STMicroelectronics S.r.l.Inventor: Piero Fallica
-
Patent number: 6818521Abstract: This invention provides a method for manufacturing a hetero-junction bipolar transistor, in which a hole concentration of a base layer doped with carbon can be increased. The method comprises the following steps. 1) A sub-collector 30, a collector 50, a base 60 doped with carbon are sequentially grown after setting a semiconductor substrate on the stage in the growth chamber; 2) an emitter 70 and an emitter contact 80 are grown at a temperature T; and 3) grown layers are annealed at a temperature TA, where the relation of T<Ta≦600° C. is satisfied. This process enhances the activation of carbon atoms by dissociating hydrogen atoms captured in the base 60 to the ambience.Type: GrantFiled: April 23, 2003Date of Patent: November 16, 2004Assignee: Sumitomo Electric Industries, Ltd.Inventor: Kenji Hiratsuka
-
Patent number: 6790722Abstract: A method and structure for forming an emitter in a vertical bipolar transistor includes providing a substrate having a collector layer and a base layer over the collector layer, forming a patterning mask over the collector layer, and filling openings in the mask with emitter material in a damascene process. The CMOS/vertical bipolar structure has the collector, base regions, and emitter regions vertically disposed on one another, the collector region having a peak dopant concentration adjacent the inter-substrate isolation oxide.Type: GrantFiled: November 22, 2000Date of Patent: September 14, 2004Assignee: International Business Machines CorporationInventors: Ramachandra Divakaruni, Russell J. Houghton, Jack A. Mandelman, Wilbur D. Pricer, William R. Tonti
-
Patent number: 6720622Abstract: A novel device structure and process are described for an SCR ESD protection device used with shallow trench isolation structures. The invention incorporates an SCR device with all SCR elements essentially contained within the sane active area without STI elements being interposed between the device anode and cathode elements. This enhances ESD performance by eliminating thermal degradation effects caused by interposing STI structures, and enhances the parasitic bipolar characteristics essential to ESD event turn on. Enabling this unique design is the use of an insulation oxide surface feature which prevents the formation of contact salicides in unwanted areas. This design is especially suited to silicon-on-insulator design, as well as conventional SCR and LVTSCR designs.Type: GrantFiled: July 5, 2002Date of Patent: April 13, 2004Assignee: Taiwan Semiconductor Manufacturing CompanyInventor: Ta-Lee Yu
-
Patent number: 6713361Abstract: According to one embodiment of the invention, a method for manufacturing bipolar junction transistors includes disposing a first oxide layer between a semiconductor substrate and a base polysilicon layer, forming a dielectric layer outwardly from the base polysilicon layer, and forming an emitter region by removing a portion of the dielectric layer and a portion of the base polysilicon layer. The method further includes removing a portion of the first oxide layer to form undercut regions adjacent the emitter region and to enlarge the emitter region, and forming an oxide pad outwardly from the semiconductor substrate in the emitter region.Type: GrantFiled: September 14, 2001Date of Patent: March 30, 2004Assignee: Texas Instruments IncorporatedInventors: Samuel Z. Nawaz, Jeffrey E. Brighton
-
Patent number: 6693013Abstract: The present invention provides a semiconductor transistor using an L-shaped spacer and a method of fabricating the same. The semiconductor transistor includes a gate pattern formed on a semiconductor substrate and an L-shaped third spacer formed beside the gate pattern and having a horizontal protruding portion. An L-shaped fourth spacer is formed between the third spacer and the gate pattern, and between the third spacer and the substrate. A high-concentration junction area is positioned in the substrate beyond the third spacer, and a low-concentration junction area is positioned under the horizontal protruding portion of the third spacer. A medium-concentration junction area is positioned between the high- and low-concentration junction areas.Type: GrantFiled: March 25, 2002Date of Patent: February 17, 2004Assignee: Samsung Electronics Co., Ltd.Inventors: Geum-Jong Bae, Nae-In Lee, Hwa-Sung Rhee, Young-Gun Ko, Tae-Hee Choe, Sang-Su Kim
-
Patent number: 6692982Abstract: In an optical semiconductor integrated circuit device in which a vertical pnp transistor and a photodiode are formed, the preferred embodiments of the present invention eliminates difficulty in performance improvement of the two elements. In an illustrative optical semiconductor integrated circuit device, a vertical pnp transistor and a photodiode have been formed, and first and second epitaxial layers and are stacked without doping. This enables a depletion layer forming region to be remarkably increased in the photodiode, and high-speed response becomes possible. Additionally, in the vertical pnp transistor, an n+ type diffusion region surrounds the transistor forming region. This can remarkably improve voltage endurance of the vertical pnp transistor 21.Type: GrantFiled: January 31, 2003Date of Patent: February 17, 2004Assignee: Sanyo Electric Co., Ltd.Inventors: Tsuyoshi Takahashi, Toshiyuki Okoda
-
Patent number: 6518139Abstract: A power semiconductor device structure formed in a chip of semiconductor material includes an N-type substrate and an N-type epitaxial layer. The structure comprises a P-type insulation region which forms a pocket in which control circuitry is formed, and a plurality of fully insulated PNP power transistors. Each PNP power transistor comprises a P-type collector region including of a buried region between the substrate and the epitaxial layer and a contact region. The P region delimits a base N region within which an emitter P region is formed.Type: GrantFiled: May 11, 2000Date of Patent: February 11, 2003Assignee: CO.RI.M.ME Consorzio per la Sulla Microelectronica nel MezzogiornoInventors: Natale Aiello, Davide Patti, Salvatore Scaccianoce, Salvatore Leonardi
-
Publication number: 20020151147Abstract: A lateral bipolar transistor with a doped zone of a small lateral width can be obtained by means of a method for manufacturing a lateral bipolar transistor with a collector region and a base region in a SOI wafer slice with an insulating layer, a silicon layer over the insulating layer, with a protective coating of oxide over the silicon layer, with trenches through the protective layer and the silicon layer as far as the insulating layer with substantially lateral walls, which are bounded by substantially lateral faces of the protective coating and the silicon layer, by implanting dopants in the silicon layer, in which the implantation takes place on one of the substantially lateral faces of the silicon layer.Type: ApplicationFiled: April 2, 2002Publication date: October 17, 2002Inventor: Lothar Strobel
-
Patent number: 6448125Abstract: An electronic power device is integrated on a substrate of semiconductor material having a first conductivity type, on which an epitaxial layer of the same type of conductivity is grown. The power device comprises a power stage PT and a control stage CT, this latter enclosed in an isolated region having a second type of conductivity type. The power stage PT comprises a first buried area having the second type of conductivity type and a second buried area, partially overlapping the first buried area and having the first conductivity type. The isolation region and the control stage CT comprise respectively a third buried area, having the second conductivity type, and a fourth buried area, partially overlapped to the third buried area and having the first conductivity type. Said first, second, third and fourth buried areas are formed in the epitaxial layers at a depth sufficient to allow the power stage PT and the control stage CT to be entirely formed in the epitaxial layers.Type: GrantFiled: January 27, 1999Date of Patent: September 10, 2002Assignee: STMicroelectronics S.r.l.Inventors: Davide Patti, Francesco Priolo, Vittorio Privitera, Giorgia Franzo
-
Patent number: 6333237Abstract: A method for manufacturing a semiconductor device separately forms two collector regions, two base extension regions, two base regions, and two collector extension regions on a first bipolar transistor forming region and a second bipolar transistor forming region that are formed on a semiconductor substrate, and includes a step of forming an emitter region on the first bipolar transistor region and forming, in the same process step, a base contact layer for an emitter electrode in the second bipolar transistor region as well, after which an emitter electrode is formed on the base contact layer.Type: GrantFiled: March 20, 2000Date of Patent: December 25, 2001Assignee: NEC CorporationInventor: Hiroshi Yoshida
-
Publication number: 20010039092Abstract: A semiconductor device comprises: gate electrode formed on a semiconductor substrate through the intervention of a gate insulating film; and a source/drain region provided with a silicide film on its surface and formed in the semiconductor substrate, wherein the source/drain region has an LDD region whose surface is partially or entirely tapered and an interface between the semiconductor substrate and the silicide film in the source/drain region is located higher than a surface of the semiconductor substrate below the gate electrode.Type: ApplicationFiled: May 2, 2001Publication date: November 8, 2001Inventors: Hidenori Morimoto, Alberto O. Adan
-
Patent number: 6291303Abstract: A method of forming an improved bipolar junction device structure. By forming a well region around the emitter terminal, the area of distribution of ions within the emitter terminal of a vertical bipolar junction transistor is enlarged. Furthermore, by forming a separate well region around the emitter terminal and the collector terminal, the area of distribution of ions within the emitter terminal and the collector terminal of a lateral bipolar junction transistor is also enlarged.Type: GrantFiled: December 16, 1998Date of Patent: September 18, 2001Assignee: United Microelectronics Corp.Inventor: Ming-Tsung Tung