Making Plural Bipolar Transistors Of Differing Electrical Characteristics Patents (Class 438/340)
  • Patent number: 6888221
    Abstract: A method and structure for a bipolar transistor comprising a patterned isolation region formed below an upper surface of a semiconductor substrate and a single crystal extrinsic base formed on an upper surface of the isolation region. The single crystal extrinsic base comprises a portion of the semiconductor substrate located between the upper surface of the isolation region and the upper surface of the semiconductor substrate. The bipolar transistor further comprises a single crystal intrinsic base, wherein a portion of the single crystal extrinsic base merges with a portion of the single crystal intrinsic base. The isolation region electrically isolates the extrinsic base from a collector. The intrinsic and extrinsic bases separate the collector from an emitter. The extrinsic base comprises epitaxially-grown silicon. The isolation region comprises an insulator, which comprises oxide, and the isolation region comprises any of a shallow trench isolation region and a deep trench isolation region.
    Type: Grant
    Filed: April 14, 2004
    Date of Patent: May 3, 2005
    Assignee: International Business Machines Corporation
    Inventors: Alvin J. Joseph, Qizhi Liu, Devendra K. Sadana
  • Patent number: 6838348
    Abstract: High-voltage bipolar transistors (30, 60) in silicon-on-insulator (SOI) integrated circuits are disclosed. In one disclosed embodiment, an collector region (28) is formed in epitaxial silicon (24, 25) disposed over a buried insulator layer (22). A base region (32) and emitter (36) are disposed over the collector region (28). Buried collector region (31) are disposed in the epitaxial silicon (24) away from the base region (32). The transistor may be arranged in a rectangular fashion, as conventional, or alternatively by forming an annular buried collector region (31). According to another disclosed embodiment, a high voltage transistor (60) includes a central isolation structure (62), so that the base region (65) and emitter region (66) are ring-shaped to provide improved performance. A process for fabricating the high voltage transistor (30, 60) simultaneously with a high performance transistor (40) is also disclosed.
    Type: Grant
    Filed: May 12, 2004
    Date of Patent: January 4, 2005
    Assignee: Texas Instruments Incorporated
    Inventors: Jeffrey A. Babcock, Gregory E. Howard, Angelo Pinto, Phillipp Steinmann, Scott G. Balster
  • Patent number: 6806129
    Abstract: A method for forming a heterojunction bipolar transistor (HBT) includes forming an etch mask a top layer of the HBT to expose a portion of the emitter cap layer, and selectively etching the exposed portion of the emitter cap layer to (1) form a reentry feature and (2) to expose a portion of the emitter layer. The method further includes selectively etching the exposed portion of the emitter layer to expose a portion of the base layer, and forming a metal layer over the exposed portion of the base layer and the exposed portion of the emitter cap layer.
    Type: Grant
    Filed: May 9, 2003
    Date of Patent: October 19, 2004
    Assignee: Agilent Technologies, Inc.
    Inventors: Scott A. McHugo, Gregory N. DeBrabander
  • Patent number: 6759303
    Abstract: A method for fabricating complementary vertical bipolar junction transistors of silicon-on-sapphire in fewer steps than required for true complimentary vertical bipolar junction transistors is disclosed. Initially a thin layer of silicon is grown on a sapphire substrate. The silicon is improved using double solid phase epitaxy. The silicon is then patterned and implanted with P+-type and N+-type dopants. Subsequently a micrometer scale N-type layer is grown that acts as the intrinsic base for both an PNP transistor and as the collector for an NPN transistor. The extrinsic base for the NPN is then formed and the emitter, collector and ohmic contact regions are next selectively masked and implanted. Conductive metal is then formed between protecting oxide to complete the complementary vertical bipolar junction transistors.
    Type: Grant
    Filed: March 5, 2002
    Date of Patent: July 6, 2004
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: Eric N. Cartagena
  • Patent number: 6740563
    Abstract: A method for fabricating a polysilicon emitter bipolar transistor employs a pair of ion implant methods. A first of the icon implant methods implants a portion of an intrinsic base region interposed between an extrinsic base region and a polysilicon emitter layer with an amorphizing non-active dopant. A second of the ion implant methods implants the polysilicon emitter layer with an active dopant to form a doped polysilicon emitter layer. The polysilicon emitter bipolar transistor is fabricated with enhanced performance.
    Type: Grant
    Filed: October 2, 2003
    Date of Patent: May 25, 2004
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Feng-Yuan An, Huan-Wen Wang
  • Patent number: 6703685
    Abstract: The invention relates to a process of forming a compact bipolar junction transistor (BJT) that includes forming a self-aligned collector tap adjacent the emitter stack and an isolation structure. A base layer is formed from epitaxial silicon that is disposed in the substrate.
    Type: Grant
    Filed: December 10, 2001
    Date of Patent: March 9, 2004
    Assignee: Intel Corporation
    Inventors: Shahriar Ahmed, Mark Bohr, Stephen Chambers, Richard Green
  • Patent number: 6699741
    Abstract: A high frequency bipolar transistor that has a silicon germanium intrinsic base region is formed in a semiconductor fabrication process that forms the extrinsic base regions after the intrinsic base region has been formed. The extrinsic base regions are epitaxially grown single crystal silicon that is doped during the growth.
    Type: Grant
    Filed: August 16, 2002
    Date of Patent: March 2, 2004
    Assignee: National Semiconductor Corporation
    Inventors: Alexei Sadovnikov, Christopher John Knorr
  • Patent number: 6683366
    Abstract: According to one exemplary embodiment, a bipolar transistor, such as a heterojunction bipolar transistor (“HBT”), comprises a base having a top surface. The HBT further comprises a first inner spacer and a second inner spacer situated on the top surface of the base. The HBT further comprises a first outer spacer situated adjacent to the first inner spacer and a second outer spacer situated adjacent to the second inner spacer on the top surface of the base. According to this exemplary embodiment, the HBT further comprises an emitter situated between the first and second inner spacers. The HBT may further comprise an intermediate oxide layer situated on the first and second outer spacers. The HBT may further comprise an amorphous layer situated on said intermediate oxide layer. The HBT may also comprise an antireflective coating layer on the amorphous layer.
    Type: Grant
    Filed: June 4, 2002
    Date of Patent: January 27, 2004
    Assignee: Newport Fab, LLC
    Inventor: Klaus F. Schuegraf
  • Patent number: 6656809
    Abstract: A method of fabricating a SiGe heterojunction bipolar transistor (HBT) is provided which results in a SiGe HBT that has a controllable current gain and improved breakdown voltage. The SiGe HBT having these characteristics is fabricated by forming an in-situ P-doped emitter layer atop a patterned SiGe base structure. The in-situ P-doped emitter layer is a bilayer of in-situ P-doped a:Si and in-situ P-doped polysilicon. The SiGe HBT structure including the above mentioned bilayer emitter is also described herein.
    Type: Grant
    Filed: January 15, 2002
    Date of Patent: December 2, 2003
    Assignee: International Business Machines Corporation
    Inventors: David R. Greenberg, Basanth Jagannathan, Shwu-Jen Jeng, Joseph T. Kocis, Samuel C. Ramac, David M. Rockwell
  • Patent number: 6645820
    Abstract: An ESD protection circuit protects integrated circuits having multiple power supply voltage sources from damage when an ESD event causes excessive differential voltages between the multiple separate power supply voltage sources. The ESD protection circuit has a string of serially connected lateral polycrystalline silicon diodes characterized by consistent turn-on threshold voltage level such that as the number of stage of the ESD protection circuit increase, the turn-on voltage threshold of the ESD protection circuit increase linearly.
    Type: Grant
    Filed: April 9, 2002
    Date of Patent: November 11, 2003
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Kuo Reay Peng, Jian-Hsing Lee, Shui-Hung Chen
  • Publication number: 20030160302
    Abstract: Silicon carbide bipolar junction transistors having an overgrown base layer are provided. The bipolar junction transistors can be made with a very thin (e.g., 0.3 &mgr;m or less) base layer while still possessing adequate peripheral base resistance values. Self aligning manufacturing techniques for making the silicon carbide bipolar junction transistors are also provided. Using these techniques, the spacing between emitter and base contacts on the device can be reduced. The silicon carbide bipolar junction transistors can also be provided with edge termination structures such as guard rings to increase the blocking capabilities of the device.
    Type: Application
    Filed: February 22, 2002
    Publication date: August 28, 2003
    Inventors: Igor Sankin, Janna B. Dufrene
  • Publication number: 20030116822
    Abstract: A bipolar transistor and a method for manufacturing the bipolar transistor are provided.
    Type: Application
    Filed: May 9, 2002
    Publication date: June 26, 2003
    Applicant: Samsung Electro-Mechanics Co., Ltd.
    Inventor: Hun Joo Hahm
  • Patent number: 6566217
    Abstract: A manufacturing process for a semiconductor device including a semiconductor memory region and a peripheral circuit region including bipolar transistors, in which a plurality of bipolar transistors with characteristics different from each other are effectively manufactured according to design requirements while minimizing the number of manufacturing steps. In manufacturing the semiconductor memory region and the bipolar transistors in the peripheral circuit region, a plurality of holes for forming the bipolar transistors are provided in the peripheral circuit region in correspondence to a plurality of steps for forming holes for interlayer insulating films in the semiconductor memory region, whereby the bipolar transistors with characteristics different from each other are formed in the holes of the peripheral region.
    Type: Grant
    Filed: October 11, 1996
    Date of Patent: May 20, 2003
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventor: Yukio Maki
  • Patent number: 6521972
    Abstract: An RF microwave power transistor has an input/output feed structure which functions as a low impedance microstrip line by providing a ground plane in close proximity to the feed structure on one surface of a semiconductor body. A second ground plane can be provided on an opposing surface of the semiconductor body with vias interconnecting the first and second ground planes. In addition to reducing feed impedance, a larger total transistor size can be provided before “odd mode oscillation” occurs.
    Type: Grant
    Filed: September 28, 2000
    Date of Patent: February 18, 2003
    Assignee: EiC Corporation
    Inventors: Wei-Shu Zhou, Shuo-Yuan Hsiao, Nanlei Larry Wang
  • Patent number: 6518139
    Abstract: A power semiconductor device structure formed in a chip of semiconductor material includes an N-type substrate and an N-type epitaxial layer. The structure comprises a P-type insulation region which forms a pocket in which control circuitry is formed, and a plurality of fully insulated PNP power transistors. Each PNP power transistor comprises a P-type collector region including of a buried region between the substrate and the epitaxial layer and a contact region. The P region delimits a base N region within which an emitter P region is formed.
    Type: Grant
    Filed: May 11, 2000
    Date of Patent: February 11, 2003
    Assignee: CO.RI.M.ME Consorzio per la Sulla Microelectronica nel Mezzogiorno
    Inventors: Natale Aiello, Davide Patti, Salvatore Scaccianoce, Salvatore Leonardi
  • Patent number: 6472286
    Abstract: The invention describes the fabrication and structure of an ESD protection device for integrated circuit semiconductor devices with improved ESD protection and resiliency. A vertical bipolar npn transistor forms the basis of the protection device. To handle the large current requirements of an ESD incident, the bipolar transistor has multiple base and emitter elements formed in an npn bipolar array. To assure turn-on of the multiple elements of the array the emitter fingers are continuously or contiguously connected with an unique emitter design layout. The contiguous emitter design provides an improved electrical emitter connection for the device, minimizing any unbalance that can potentially occur when using separate emitter fingers and improving the ability for the simultaneous turn on of the multiple emitter-base elements.
    Type: Grant
    Filed: August 9, 2000
    Date of Patent: October 29, 2002
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventor: Ta-Lee Yu
  • Patent number: 6461926
    Abstract: A memory cell is provided. The memory cell includes a field-effect transistor having a source region, a drain region and a gate coupled to a wordline. The memory cell also includes a vertical bipolar junction transistor that is biased for use of the reverse base current effect to store data. The bipolar junction transistor has an emitter region formed within a source/drain region of the field-effect transistor. The emitter region is self-aligned with a minimum dimension isolation region adjacent to the memory cell and is coupled to a ground line. A portion of the source/drain region acts as the base of the bipolar junction transistor.
    Type: Grant
    Filed: August 21, 2001
    Date of Patent: October 8, 2002
    Assignee: Micron Technology, Inc.
    Inventor: Wendell P. Noble
  • Patent number: 6462397
    Abstract: The present invention is related to a bipolar transistor in which the in-situ doped epitaxial Si or SiGe base layer is used instead of using an ion-implanted Si base, in order to achieve higher cutoff frequency. The SiGe base having the narrower energy bandgap than the Si emitter allows to enhance the current gain, the cutoff frequency(fT), and the maximum oscillation frequency (fmax). The narrow bandgap SiGe base also allows to have higher base doping concentration. As a result, the intrinsic base resistance is lowered and the noise figure is thus lowered. Parasitic base resistance is also minimized by using a metallic silicide base ohmic electrode. The present invention is focused on low cost, high repeatability and reliability by simplifying the manufacturing process step.
    Type: Grant
    Filed: October 22, 2001
    Date of Patent: October 8, 2002
    Assignee: ASB, Inc.
    Inventors: Byung Ryul Ryum, Tae Hyeon Han, Soo Min Lee, Deok Ho Cho
  • Patent number: 6448125
    Abstract: An electronic power device is integrated on a substrate of semiconductor material having a first conductivity type, on which an epitaxial layer of the same type of conductivity is grown. The power device comprises a power stage PT and a control stage CT, this latter enclosed in an isolated region having a second type of conductivity type. The power stage PT comprises a first buried area having the second type of conductivity type and a second buried area, partially overlapping the first buried area and having the first conductivity type. The isolation region and the control stage CT comprise respectively a third buried area, having the second conductivity type, and a fourth buried area, partially overlapped to the third buried area and having the first conductivity type. Said first, second, third and fourth buried areas are formed in the epitaxial layers at a depth sufficient to allow the power stage PT and the control stage CT to be entirely formed in the epitaxial layers.
    Type: Grant
    Filed: January 27, 1999
    Date of Patent: September 10, 2002
    Assignee: STMicroelectronics S.r.l.
    Inventors: Davide Patti, Francesco Priolo, Vittorio Privitera, Giorgia Franzo
  • Patent number: 6436780
    Abstract: A number of npn and pnp bipolar transistors are formed in a single chip of silicon, so that some of the transistors have a greater frequency response than others The higher frequency transistors have their emitters located closer to the collectors, by positioning a collector, or emitter, of a transistor in a recessed portion of the surface of the chip. The recess is formed in an accurate and controlled manner by locally oxidising the silicon surface, and subsequently removing the oxide to leave the recess.
    Type: Grant
    Filed: September 29, 2000
    Date of Patent: August 20, 2002
    Assignee: Mitel Semiconductor Limited
    Inventors: Peter H Osborne, Martin C Wilson
  • Patent number: 6352901
    Abstract: A process for fabricating a bipolar junction transistor, featuring the use of multiple self-aligned collector regions, used to limit the width of the base region of the transistor, has been developed. The self-aligned collector regions are formed via multiple ion implantation procedures, performed through, and self-aligned to, an overlying emitter opening, in an oxide layer. The self-aligned collector regions, completely fill the space in the lighter doped collector region, located between the overlying base region, and the underlying subcollector region.
    Type: Grant
    Filed: March 24, 2000
    Date of Patent: March 5, 2002
    Assignee: Industrial Technology Research Institute
    Inventor: Kuan-Lun Chang
  • Patent number: 6333237
    Abstract: A method for manufacturing a semiconductor device separately forms two collector regions, two base extension regions, two base regions, and two collector extension regions on a first bipolar transistor forming region and a second bipolar transistor forming region that are formed on a semiconductor substrate, and includes a step of forming an emitter region on the first bipolar transistor region and forming, in the same process step, a base contact layer for an emitter electrode in the second bipolar transistor region as well, after which an emitter electrode is formed on the base contact layer.
    Type: Grant
    Filed: March 20, 2000
    Date of Patent: December 25, 2001
    Assignee: NEC Corporation
    Inventor: Hiroshi Yoshida
  • Patent number: 6322849
    Abstract: An integrated circuit is formed containing a metal-oxide ferroelectric thin film. An inert-gas recovery anneal is conducted to reverse the degradation of ferroelectric properties caused by hydrogen. The inert-gas recovery anneal is conducted in an unreactive gas atmosphere at a temperature range from 300° to 1000° C. for a time period from one minute to two hours. Preferably, the metal-oxide thin film comprises layered superlattice material. Preferably, the layered superlattice material comprises strontium bismuth tantalate or strontium bismuth tantalum niobate. If the integrated circuit manufacture includes a forming-gas anneal, then the inert-gas recovery anneal is performed after the forming-gas anneal, preferably at or near the same temperature and for the same time duration as the forming-gas anneal.
    Type: Grant
    Filed: November 13, 1998
    Date of Patent: November 27, 2001
    Assignees: Symetrix Corporation, Spemens AG
    Inventors: Vikram Joshi, Narayan Solayappan, Walter Hartner, Günther Schindler
  • Patent number: 6313001
    Abstract: The present invention relates to a method for semiconductor manufacturing of one semiconductor circuit, having a multiple of transistors NMOS1, NMOS2, NPN1, NPN2 of one type. The method comprises the steps of arranging a first region 4, 16 on a semiconductor substrate 1, and implementing two transistors of said type, having different sets of characteristics, in said first region 4, 16. The step of implementing said active devices comprises a step of creating a first 6′, 10′ and a second 6″, 10″ subregion within said first region 4, 16, and said step further comprising a step of introducing dopants having different sets of dose parameters, into a first and a second area, respectively, of said first region, said dopants being of a similar type, and a step of annealing said substrate 1 to create said first 6′, 10′ and second 6″, 10″ subregion, respectively, whereby two subregions, having different doping profiles, can be manufactured on a single integrated circuit.
    Type: Grant
    Filed: November 3, 1999
    Date of Patent: November 6, 2001
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Ted Johansson, Jan-Christian Nyström
  • Patent number: 6300669
    Abstract: A semiconductor integrated circuit device comprises a multiple-stage amplifier including a plurality of transistors. The multiple-stage amplifier has a first stage comprising a plurality of bipolar transistors each having a single emitter structure. The bipolar transistors are connected parallel to each other. The semiconductor integrated circuit device can easily be designed, is of a self-aligned structure, and has a single transistor size. The semiconductor integrated circuit device may be used as a low-noise, high-power-gain high-frequency amplifier.
    Type: Grant
    Filed: September 25, 1998
    Date of Patent: October 9, 2001
    Assignee: NEC Corporation
    Inventor: Yasushi Kinoshita
  • Patent number: 6284615
    Abstract: The method comprises forming an implantation screening layer of predetermined thickness on the wafer, forming, in the screening layer, a first rectilinear, elongate opening having a first width, and at least a second rectilinear, elongate opening substantially parallel to the first opening and having a second width smaller than the first width is formed on the screening layer. The wafer is then subjected to ion implantation with two ion beams directed in directions substantially perpendicular to the longitudinal axes of the openings and inclined to the surface of the wafer at predetermined angles so as to strike the openings from two opposite sides. The thickness of the screening layer, the widths of the openings, and the angles of inclination of the ion beams being selected in a manner such that the beams strike the base of the first opening for substantially uniform doping of the underlying area of the wafer, but do not strike the base of the second opening.
    Type: Grant
    Filed: June 16, 1999
    Date of Patent: September 4, 2001
    Assignee: STMicroelectronics S.r.l.
    Inventors: Angelo Pinto, Sergio Palara
  • Patent number: 6277701
    Abstract: A memory cell is provided. The memory cell includes a field-effect transistor having a source region, a drain region and a gate coupled to a wordline. The memory cell also includes a vertical bipolar junction transistor that is biased for use of the reverse base current effect to store data. The bipolar junction transistor has an emitter region formed within a source/drain region of the field-effect transistor. The emitter region is self-aligned with a minimum dimension isolation region adjacent to the memory cell and is coupled to a ground line. A portion of the source/drain region acts as the base of the bipolar junction transistor.
    Type: Grant
    Filed: March 23, 2000
    Date of Patent: August 21, 2001
    Assignee: Micron Technology, Inc.
    Inventor: Wendell P. Noble
  • Patent number: 6150200
    Abstract: A semiconductor device (10) is formed in a semiconductor substrate (11) and an epitaxial layer (14). The semiconductor device includes a p-type body region (16), a source region (17), a channel region (19), and a drain region (34) formed in the epitaxial layer (14). A doped region (13) is formed in the semiconductor substrate (11) to reduce the drift resistance of the semiconductor device (10). The drain region (34) is formed from a plurality of doped regions (30-33) that can be formed with high energy implants.
    Type: Grant
    Filed: April 3, 1998
    Date of Patent: November 21, 2000
    Assignee: Motorola, Inc.
    Inventor: Steven L. Merchant
  • Patent number: 6103584
    Abstract: A bipolar transistor designed to support a substantially uniform current density in base and collector regions to prevent the characteristic early fall-off of bipolar transistor current gain, and to improve the forward safe operating area performance. The advantages of the present invention are achieved by optimally spacing the neighboring emitters in relation to base thickness and further by maintaining a symmetrical topology by the self-aligned formation of emitters and base contacts. The spacing distance between the neighboring emitters does not exceed the base thickness. As a result, the current density below each emitter island is substantially uniform and the transistor as a whole can conduct a higher total current. Moreover, the transistor inhibits formation of current filaments and hot spots because the electric field in the collector region is uniform.
    Type: Grant
    Filed: April 27, 1999
    Date of Patent: August 15, 2000
    Assignee: Semicoa Semiconductors
    Inventors: Richard A. Metzler, Vladimir Rodov
  • Patent number: 5976940
    Abstract: In a semiconductor device comprising a first bipolar transistor and a second bipolar transistor having different voltages formed on a semiconductor substrate made by forming an epitaxial layer on a silicon substrate, in an upper part of the silicon substrate the first bipolar transistor has an N.sup.+ -type first embedded diffusion layer having an impurity concentration higher than that of the epitaxial layer and the second bipolar transistor has an N-type second embedded diffusion layer having a lower impurity concentration and a deeper diffusion layer depth than the first embedded diffusion layer, whereby a high speed bipolar transistor and a high voltage bipolar transistor are formed on the same substrate.
    Type: Grant
    Filed: December 10, 1996
    Date of Patent: November 2, 1999
    Assignee: Sony Corporation
    Inventors: Takayuki Gomi, Hiroaki Ammo
  • Patent number: 5915186
    Abstract: In a semiconductor device manufacturing method for forming first and second bipolar transistors on a semiconductor substrate 1, a link base layer 5 for connecting a graft base layer (graft base layer 8) of the first bipolar transistor and an intrinsic base layer 12 to each other, and at least a part of a base layer 6 of the second bipolar transistor are formed simultaneously with each other, and then the link base layer 5 in a region where the intrinsic base layer 12 will be formed is removed by an etching treatment, and then by a selective epitaxial growth method, the intrinsic base layer 12 is formed in the region where the link base layer 5 is removed.
    Type: Grant
    Filed: December 18, 1997
    Date of Patent: June 22, 1999
    Assignee: Sony Corporation
    Inventor: Takayuki Gomi
  • Patent number: 5866461
    Abstract: A bipolar power transistor and a low voltage bipolar transistor are combined in an emitter switching or a semibridge configuration in an integrated structure. In a version with non-isolated components, the components of the structure are totally or partially superimposed on each other, partly in a first epitaxial layer and partly in a second epitaxial layer, and the low voltage bipolar transistor is situated above the emitter region of the bipolar power transistor which is thus a completely buried active structure. In a version with isolated components, there are two P+ regions in an N- epitaxial layer. The first P+ region constitutes the power transistor base and encloses the N+ emitter region of the power transistor. The second P+ region encloses two N+ regions and one P+ region, constituting the collector, emitter, and base regions respectively of the low voltage transistor.
    Type: Grant
    Filed: February 18, 1997
    Date of Patent: February 2, 1999
    Assignees: STMicroelectronics s.r.l., Consorzio Per La Ricerca Sulla Microelettronica Nel Mezzogiorno
    Inventors: Santo Puzzolo, Raffaele Zambrano, Mario Paparo
  • Patent number: 5661047
    Abstract: A method of forming bipolar ROM device on a semiconductor substrate comprises forming a collector region by doping with a dopant of a first polarity, forming an array of common base regions by doping with a dopant of an opposite polarity, forming a plurality of emitter regions selectively in the base regions by doping with a dopant of first polarity and diffusing the dopant into the emitter regions from doped conductors, which conductors are formed as an array of conductors disposed orthogonally relative to the array of common base elements. The conductors are connected to emitter regions traversed thereby and are isolated from other regions by dielectric layers selectively formed over the other regions to prevent diffusion of dopant therethrough to prevent formation of such emitter regions.
    Type: Grant
    Filed: October 5, 1994
    Date of Patent: August 26, 1997
    Assignee: United Microelectronics Corporation
    Inventors: Chen-Chiu Hsue, Ming-Tzong Yang
  • Patent number: RE38510
    Abstract: The device uses the horizontal insulating region and the buried layer as the power transistor base and emitter respectively. An epitaxial growth is interposed between the two diffusions needed to form the aforesaid regions and those needed to create the base and the emitter of the transistor of the integrated control circuit.
    Type: Grant
    Filed: February 6, 1995
    Date of Patent: May 4, 2004
    Assignee: STMicroelectronics Srl
    Inventors: Raffaele Zambrano, Salvatore Musumeci