Using Epitaxial Lateral Overgrowth Patents (Class 438/341)
  • Patent number: 7824978
    Abstract: A bipolar transistor with very high dynamic performance, usable in an integrated circuit. The bipolar transistor has a single-crystal silicon emitter region with a thickness smaller than 50 nm. The base of the bipolar transistor is made of an SiGe alloy.
    Type: Grant
    Filed: September 6, 2006
    Date of Patent: November 2, 2010
    Assignee: STMicroelectronics S.A.
    Inventors: Alain Chantre, Bertrand Martinet, Michel Marty, Pascal Chevalier
  • Patent number: 7781295
    Abstract: A system and method is disclosed for manufacturing a bipolar junction transistor that comprises an emitter/base layer that is formed by a single deposition process. In one advantageous embodiment of the invention the emitter/base layer comprises an emitter layer that comprises an epitaxially grown mono-silicon emitter. The epitaxially grown mono-silicon emitter significantly reduces the electrical resistivity of the emitter. A non-dopant impurity such as germanium is added to the base layer to endpoint a dry plasma etch process that is applied to etch the emitter/base layer.
    Type: Grant
    Filed: July 13, 2006
    Date of Patent: August 24, 2010
    Assignee: National Semiconductor Corporation
    Inventors: Jamal Ramdani, Craig Printy, Steven J. Adler, Andre P. Labonte
  • Patent number: 7772078
    Abstract: Germanium circuit-type structures are facilitated. In one example embodiment, a multi-step growth and anneal process is implemented to grow Germanium (Ge) containing material, such as heteroepitaxial-Germanium, on a substrate including Silicon (Si) or Silicon-containing material. In certain applications, defects are generally confined near a Silicon/Germanium interface, with defect threading to an upper surface of the Germanium containing material generally being inhibited. These approaches are applicable to a variety of devices including Germanium MOS capacitors, pMOSFETs and optoelectronic devices.
    Type: Grant
    Filed: August 26, 2008
    Date of Patent: August 10, 2010
    Assignees: The Board of Trustees of the Leland Stanford Junior University, Canon Kabushiki Kaisha
    Inventors: Ammar Munir Nayfeh, Chi On Chui, Krishna C. Saraswat, Takao Yonehara
  • Patent number: 7732306
    Abstract: This invention provides methods for fabricating substantially continuous layers of group III nitride semiconductor materials having low defect densities. The methods include epitaxial growth of nucleation layers on a base substrate, thermally treatment of said nucleation layer and epitaxial growth of a discontinuous masking layer. The methods outlined promote defect reduction through masking, annihilation and coalescence, therefore producing semiconductor structures with low defect densities. The invention can be applied to a wide range of semiconductor materials, both elemental semiconductors, e.g., combinations of Si (silicon) with strained Si (sSi) and/or Ge (germanium), and compound semiconductors, e.g., group II-VI and group III-V compound semiconductor materials.
    Type: Grant
    Filed: July 25, 2008
    Date of Patent: June 8, 2010
    Assignee: S.O.I.Tec Silicon on Insulator Technologies
    Inventors: Chantal Arena, Subhash Mahajan, Ranjan Datta
  • Patent number: 7696034
    Abstract: Methods for fabricating a heterojunction bipolar transistor having a raised extrinsic base is provided in which the base resistance is reduced by forming a silicide atop the raised extrinsic base that extends to the emitter region in a self-aligned manner. The silicide formation is incorporated into a BiCMOS process flow after the raised extrinsic base has been formed. The present invention also provides a heterojunction bipolar transistor having a raised extrinsic base and a silicide located atop the raised extrinsic base. The silicide atop the raised extrinsic base extends to the emitter in a self-aligned manner. The emitter is separated from the silicide by a spacer.
    Type: Grant
    Filed: May 28, 2008
    Date of Patent: April 13, 2010
    Assignee: International Business Machines Corporation
    Inventors: Peter J. Geiss, Marwan H. Khater, Qizhi Liu, Randy W. Mann, Robert J. Purtell, Beth Ann Rainey, Jae-Sung Rieh, Andreas D. Stricker
  • Patent number: 7687825
    Abstract: Insulated gate bipolar conduction transistors (IBCTs) are provided. The IBCT includes a drift layer having a first conductivity type. An emitter well region is provided in the drift layer and has a second conductivity type opposite the first conductivity type. A well region is provided in the drift layer and has the second conductivity type. The well region is spaced apart from the emitter well region. A space between the emitter well region and the well region defines a JFET region of the IBCT. An emitter region is provided in the well region and has the first conductivity type and a buried channel layer is provided on the emitter well region, the well region and the JFET region and has the first conductivity type. Related methods of fabrication are also provided.
    Type: Grant
    Filed: September 18, 2007
    Date of Patent: March 30, 2010
    Assignee: Cree, Inc.
    Inventor: Qingchun Zhang
  • Publication number: 20100051946
    Abstract: A poly-emitter type bipolar transistor includes a buried layer formed over an upper portion of a semiconductor substrate, an epitaxial layer formed on the semiconductor substrate, a collector area formed on the epitaxial layer and connected to the buried layer, a base area formed at a part of an upper portion of the epitaxial layer, and a poly-emitter area formed on a surface of the semiconductor substrate in the base area and including a polysilicon material. A BCD device includes a poly-emitter type bipolar transistor having a poly-emitter area including a polysilicon material and at least one of a CMOS and a DMOS formed on a single wafer together with the poly-emitter type bipolar transistor.
    Type: Application
    Filed: August 24, 2009
    Publication date: March 4, 2010
    Inventor: Bon-Keun Jun
  • Publication number: 20100032804
    Abstract: High voltage bipolar transistors built with a BiCMOS process sequence exhibit reduced gain at high current densities due to the Kirk effect. Threshold current density for the onset of the Kirk effect is reduced by the lower doping density required for high voltage operation. The widened base region at high collector current densities due to the Kirk effect extends laterally into a region with a high density of recombination sites, resulting in an increase in base current and drop in the gain. The instant invention provides a bipolar transistor in an IC with an extended unsilicided base extrinsic region in a configuration that does not significantly increase a base-emitter capacitance. Lateral extension of the base extrinsic region may be accomplished using a silicide block layer, or an extended region of the emitter-base dielectric layer. A method of fabricating an IC with the inventive bipolar transistor is also disclosed.
    Type: Application
    Filed: August 6, 2009
    Publication date: February 11, 2010
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Scott Gerard Balster, Hiroshi Yasuda, Philipp Steinmann, Badih El-Kareh
  • Publication number: 20100032686
    Abstract: Bipolar semiconductor devices have a Zener voltage controlled very precisely in a wide range of Zener voltages (for example, from 10 to 500 V). A bipolar semiconductor device has a mesa structure and includes a silicon carbide single crystal substrate of a first conductivity type, a silicon carbide conductive layer of a first conductivity type, a highly doped layer of a second conductivity type and a silicon carbide conductive layer of a second conductivity type which substrate and conductive layers are laminated in the order named.
    Type: Application
    Filed: January 31, 2008
    Publication date: February 11, 2010
    Applicants: THE KANSAI ELECTRIC POWER CO., INC., CENTRAL RESEARCH INSTITUTE OF ELECTRIC POWER INDUSTRY
    Inventors: Ryosuke Ishii, Koji Nakayama, Yoshitaka Sugawara, Hidekazu Tsuchida
  • Patent number: 7648893
    Abstract: A method for manufacturing a semiconductor including the steps of supplying a substrate having a support with one face supporting a strained silicon thin layer; forming a first mask on a portion of the strained silicon thin layer; epitaxy of Si1-xGex on the portion of the layer not masked by the first mask; condensating germanium to obtain a strained germanium layer, the strained germanium layer then covered by a silicon oxide layer; eliminating the first mask and of the silicon oxide layer thereby exposing a semi-conducting thin layer; forming a second mask on the semi-conducting thin layer exposed via the previous step, the second mask protecting a region of the exposing a remaining strained germanium portion; epitaxial growing germanium on the remaining strained germanium portion; and removing the second mask.
    Type: Grant
    Filed: June 24, 2008
    Date of Patent: January 19, 2010
    Assignee: Commissariat A l'Energie Atomique
    Inventors: Jean-Francois Damlencourt, Laurent Clavelier
  • Publication number: 20090283861
    Abstract: A semiconductor device is presented, which includes a semiconductor substrate with a high concentration impurity of a first type conductivity and an epitaxial layer with a low concentration impurity provided on the semiconductor substrate, where a trench coupled to the semiconductor substrate is provided in the epitaxial layer with the low concentration impurity. And the semiconductor device further includes a high concentration impurity region of the first type conductivity having the same type conductivity as the type of the semiconductor substrate formed in at least the epitaxial layer with the low concentration impurity along an inner wall of the trench and coupled to the semiconductor substrate with the high concentration impurity of a first type conductivity, and contacts formed on the high concentration impurity region of the first type conductivity.
    Type: Application
    Filed: May 5, 2009
    Publication date: November 19, 2009
    Applicant: NEC Electronics Corporation
    Inventor: Kazuaki TAKAHASHI
  • Patent number: 7615457
    Abstract: A method is provided for making a bipolar transistor which includes a tapered, i.e. frustum-shaped, collector pedestal having an upper substantially planar surface, a lower surface, and a slanted sidewall extending between the upper surface and the lower surface, the upper surface having substantially less area than the lower surface. The collector pedestal can be formed on a surface of a collector active region exposed within an opening extending through first and second overlying dielectric regions, where the opening defines vertically aligned edges of the first and second dielectric regions.
    Type: Grant
    Filed: July 25, 2008
    Date of Patent: November 10, 2009
    Assignee: International Business Machines Corporation
    Inventors: Hiroyuki Akatsu, Rama Divakaruni, Gregory G. Freeman, David R. Greenberg, Marwan H. Khater, William R. Tonti
  • Publication number: 20090250724
    Abstract: A bipolar transistor is formed on a heavily doped silicon substrate (1). An epitaxially grown collector (12) is formed on the substrate (1) and comprises silicon containing germanium at least at the top of the collector (12). An epitaxial base (13) is formed on the collector (12) to have the opposite polarity and also comprises silicon containing germanium at least at the bottom of the base (13). An emitter is formed at the top of the base (13) and comprises polysilicon doped to have the same polarity as the collector (12).
    Type: Application
    Filed: December 14, 2005
    Publication date: October 8, 2009
    Applicant: X-FAB SEMICONDUCTOR FOUNDRIES AG
    Inventor: John Nigel Ellis
  • Patent number: 7582536
    Abstract: An electronic device contains a substrate, a sub-collector supported by the substrate, an un-doped layer having a selectively implanted buried sub-collector and supported by the sub-collector, an As-based nucleation layer partially supported by the un-doped layer, a collector layer supported by the As-based nucleation layer, a base layer supported by the collector layer, an emitter layer and a base contact supported by the base layer, an emitter cap layer supported by the emitter layer, an emitter contact supported by the emitter cap layer, and a collector contact supported by the sub-collector. A method provides for selecting a first InP layer, forming an As-based nucleation layer on the first InP layer, and epitaxially growing a second InP layer on the As-based nucleation layer.
    Type: Grant
    Filed: August 14, 2008
    Date of Patent: September 1, 2009
    Assignee: HRL Laboratories, LLC
    Inventors: Rajesh D. Rajavel, Mary Y. Chen, Steven S. Bui, David H. Chow, James Chingwei Li, Mehran Mokhtari, Marko Sokolich
  • Patent number: 7579230
    Abstract: A high voltage BICMOS device and a method for manufacturing the same, which may improve the reliability of the device by securing a distance between adjacent DUF regions, are provided. The high voltage BICOMOS device includes: a reverse diffusion under field (DUF) region formed by patterning a predetermined region of a semiconductor substrate; a diffusion under field (DUF) region formed in the substrate adjacent to the reverse DUF region; a spacer formed at a sidewall of the reverse DUF region; an epitaxial layer formed on an entire surface of the substrate; and a well region formed in contact with the DUF region.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: August 25, 2009
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Kwang Young Ko
  • Patent number: 7566919
    Abstract: A method for forming an epitaxial base layer in a bipolar device. The method comprises the steps of: providing a structure having a field isolation oxide region (12) adjacent to an active silicon region (10); forming a silicon nitride/silicon stack (14, 16) above the field isolation oxide region (12), wherein the silicon nitride/silicon stack (14, 16) includes a top layer of silicon (14) and a bottom layer of silicon nitride (16); performing an etch to the silicon nitride/silicon stack (14, 16) to form a stepped seed layer, wherein the top layer of silicon is etched laterally at the same time the bottom layer of silicon nitride is etched; and growing an Si/SiGe/Si stack (20) over the stepped seed layer and active region (10).
    Type: Grant
    Filed: December 9, 2004
    Date of Patent: July 28, 2009
    Assignee: NXP B.V.
    Inventors: Johannes Josephus Theodorus Marinus Donkers, Petrus Hubertus Cornelis Magnee, Eddy Kunnen, Francois Igor Neuilly
  • Patent number: 7563684
    Abstract: A process for manufacturing an array of cells, including: implanting, in a body of semiconductor material of a first conductivity type, a common conduction region of the first conductivity type; forming, in the body, above the common conduction region, a plurality of active area regions of a second conductivity type and a first doping level; forming, on top of the body, an insulating layer having first and second openings; implanting first portions of the active area regions through the first openings with a doping agent of the first conductivity type, thereby forming, in the active area regions, second conduction regions of the first conductivity type; implanting second portions of the active area regions through the second openings with a doping agent of the second conductivity type, thereby forming control contact regions of the second conductivity type and a second doping level, higher than the first doping level; forming, on top of the body, a plurality of storage components, each storage component havin
    Type: Grant
    Filed: November 1, 2005
    Date of Patent: July 21, 2009
    Inventors: Fabio Pellizzer, Giulio Casagrande, Roberto Gastaldi, Loris Vendrame, Augusto Benvenuti, Tyler Lowrey
  • Patent number: 7560364
    Abstract: In accordance with the present invention, improved methods for reducing the dislocation density of nitride epitaxial films are provided. Specifically, an in-situ etch treatment is provided to preferentially etch the dislocations of the nitride epitaxial layer to prevent threading of the dislocations through the nitride epitaxial layer. Subsequent to etching of the dislocations, an epitaxial layer overgrowth is performed. In certain embodiments, the etching of the dislocations occurs simultaneously with growth of the epitaxial layer. In other embodiments, a dielectric mask is deposited within the etch pits formed at the dislocations prior to the epitaxial layer overgrowth.
    Type: Grant
    Filed: May 5, 2006
    Date of Patent: July 14, 2009
    Assignee: Applied Materials, Inc.
    Inventors: David Bour, Sandeep Nijhawan, Jacob Smith, Lori Washington
  • Publication number: 20090174034
    Abstract: The invention relates to a semiconductor device (10) with a substrate (12) and a semiconductor body (11) of silicon comprising a bipolar transistor with an emitter region, a base region and a collector region (1,2,3) first conductivity type, a second conductivity type opposite to said first conductivity type and the first conductivity type, respectively, with a first semiconductor region (3) comprising the collector region or the emitter region being formed in the semiconductor body (11), on top of which a second semiconductor region (2) comprising the base region is present, on top of which a third semiconductor region (1) comprising the other of said collector region and said emitter region is present, said semiconductor body (11) being provided with a constriction at the location of the transition between the first and the second semiconductor region (3, 2), which constriction has been formed by means of an electrically insulating region (26, 27) buried in the semiconductor body (11).
    Type: Application
    Filed: July 26, 2006
    Publication date: July 9, 2009
    Applicant: NXP B.V.
    Inventors: Johannes J., T., M. Donkers, Wibo D. Van Noort, Francois Neuilly
  • Patent number: 7557010
    Abstract: The invention, in one aspect, provides a method for fabricating a semiconductor device, which includes conducting an etch through an opening in an emitter layer to form a cavity from an underlying oxide layer that exposes a doped tub. A first silicon/germanium (SiGe) layer, which has a Ge concentration therein, is formed within the cavity and over the doped tub by adjusting a process parameter to induce a strain in the first SiGe layer. A second SiGe layer is formed over the first SiGe layer, and a capping layer is formed over the second SiGe layer.
    Type: Grant
    Filed: February 12, 2007
    Date of Patent: July 7, 2009
    Assignee: Agere Systems Inc.
    Inventors: Alan S. Chen, Mark Dyson, Nace M. Rossi, Ranbir Singh
  • Patent number: 7531851
    Abstract: An electronic device contains a substrate, a sub-collector supported by the substrate, an un-doped layer having a selectively implanted buried sub-collector and supported by the sub-collector, an As-based nucleation layer partially supported by the un-doped layer, a collector layer supported by the As-based nucleation layer, a base layer supported by the collector layer, an emitter layer and a base contact supported by the base layer, an emitter cap layer supported by the emitter layer, an emitter contact supported by the emitter cap layer, and a collector contact supported by the sub-collector. A method provides for selecting a first InP layer, forming an As-based nucleation layer on the first InP layer, and epitaxially growing a second InP layer on the As-based nucleation layer.
    Type: Grant
    Filed: February 28, 2007
    Date of Patent: May 12, 2009
    Assignee: HRL Laboratories, LLC
    Inventors: Rajesh D. Rajavel, Mary Y. Chen, Steven S. Bui, David H. Chow, James Chingwei Li, Mehran Mokhtari, Marko Sokolich
  • Patent number: 7495313
    Abstract: Germanium circuit-type structures are facilitated. In one example embodiment, a multi-step growth and anneal process is implemented to grow Germanium (Ge) containing material, such as heteroepitaxial-Germanium, on a substrate including Silicon (Si) or Silicon-containing material. In certain applications, defects are generally confined near a Silicon/Germanium interface, with defect threading to an upper surface of the Germanium containing material generally being inhibited. These approaches are applicable to a variety of devices including Germanium MOS capacitors, pMOSFETs and optoelectronic devices.
    Type: Grant
    Filed: July 22, 2005
    Date of Patent: February 24, 2009
    Assignees: Board of Trustees of the Leland Stanford Junior University, Canon Kabushiki Kaisha
    Inventors: Ammar Munir Nayfeh, Chi On Chui, Krishna C. Saraswat, Takao Yonehara
  • Publication number: 20080191245
    Abstract: A method for forming a germanium-enriched region in a heterojunction bipolar transistor and a heterojunction bipolar transistor comprising a germanium-enriched region. A base having a silicon-germanium portion is formed over a collector. Thermal oxidation of the base causes a germanium-enriched region to form on a surface of the silicon-germanium portion subjected to the thermal oxidation. An emitter is formed overlying the germanium-enriched portion region. The germanium-enriched region imparts advantageous operating properties to the heterojunction bipolar transistor, including improved high-frequency/high-speed operation.
    Type: Application
    Filed: March 10, 2005
    Publication date: August 14, 2008
    Inventor: Michelle D. Griglione
  • Patent number: 7405098
    Abstract: A method is provided for forming a liquid phase epitaxial (LPE) germanium (Ge)-on-insulator (GOI) thin-film with a smooth surface. The method provides a silicon (Si) wafer, forms a silicon nitride insulator layer overlying the Si wafer, and selectively etches the silicon nitride insulator layer, forming a Si seed access region. Then, the method conformally deposits Ge overlying the silicon nitride insulator layer and Si seed access region, forming a Ge layer with a first surface roughness, and smoothes the Ge layer using a chemical-mechanical polish (CMP) process. Typically, the method encapsulates the Ge layer and anneals the Ge layer to form a LPE Ge layer. A Ge layer is formed with a second surface roughness, less than the first surface roughness. In some aspects, the method forms an active device in the LPE Ge layer.
    Type: Grant
    Filed: January 25, 2006
    Date of Patent: July 29, 2008
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Jong-Jan Lee, Jer-Shen Maa, Douglas J. Tweet, David R. Evans, Allen Burmaster
  • Publication number: 20080157280
    Abstract: According to one embodiment, a collector electrode including metal is used for a sink region for connecting an n+ type buried layer, so that the sink region can be narrowly formed. Further, an interval between a base region and the collector electrode can be reduced, thereby considerably decreasing the size of the transistor. Furthermore, collector resistance is reduced, so that the performance of the transistor can be improved.
    Type: Application
    Filed: October 31, 2007
    Publication date: July 3, 2008
    Inventor: Nam Joo KIM
  • Publication number: 20080150083
    Abstract: In the substrate and the epitaxial layer, isolation regions are formed to divide the substrate and the epitaxial layer into a plurality of element formation regions. Each of the isolation regions is formed by connecting first and second P type buried diffusion layers with a P type diffusion layer. By disposing the second P type buried diffusion layer between the first P type buried diffusion layer and the P type diffusion layer, a lateral diffusion width of the first P type buried diffusion layer is reduced. This structure allows a formation region of the isolation region to be reduced in size.
    Type: Application
    Filed: December 20, 2007
    Publication date: June 26, 2008
    Applicants: Sanyo Electric Co., Ltd., Sanyo Semiconductor Co., Ltd.
    Inventors: Mitsuru Soma, Hirotsugu Hata, Yoshimasa Amatatsu
  • Publication number: 20080105949
    Abstract: An insulated gate bipolar transistor (IGBT) includes a substrate having a first conductivity type, a drift layer having a second conductivity type opposite the first conductivity type, and a well region in the drift layer and having the first conductivity type. An epitaxial channel adjustment layer is on the drift layer and has the second conductivity type. An emitter region extends from a surface of the epitaxial channel adjustment layer through the epitaxial channel adjustment layer and into the well region. The emitter region has the second conductivity type and at least partially defines a channel region in the well region adjacent to the emitter region. A gate oxide layer is on the channel region, and a gate is on the gate oxide layer. Related methods are also disclosed.
    Type: Application
    Filed: June 18, 2007
    Publication date: May 8, 2008
    Inventors: Qingchun Zhang, Sei-Hyung Ryu, Charlotte Jonas, Anant K. Agarwal
  • Patent number: 7364976
    Abstract: A method to selectively etch, and hence pattern, a semiconductor film deposited non-selectively is described. In one embodiment, a carbon-doped silicon film is deposited non-selectively such that the film forms an epitaxial region where deposited on a crystalline surface and an amorphous region where deposited on an amorphous surface. A four-component wet etch mixture is tuned to selectively etch the amorphous region while retaining the epitaxial region, wherein the four-component wet etch mixture comprises an oxidizing agent, an etchant, a buffer and a diluent.
    Type: Grant
    Filed: March 21, 2006
    Date of Patent: April 29, 2008
    Assignee: Intel Corporation
    Inventors: Willy Rachmady, Anand Murthy
  • Patent number: 7291898
    Abstract: According to one exemplary embodiment, a bipolar transistor includes an active area situated between first and second isolation regions in a substrate. The bipolar transistor further includes an epitaxial extension layer situated on the active area, where the epitaxial extension layer extends over the first and second isolation regions. The bipolar transistor further includes a base layer situated on the epitaxial extension layer, where the base layer includes an epitaxial base, and where the epitaxial base includes a usable emitter formation area. The active area has a first width and the usable emitter formation area has a second width, where the second width is at least as large as the first width.
    Type: Grant
    Filed: June 6, 2005
    Date of Patent: November 6, 2007
    Assignee: Newport Fab, LLC
    Inventor: Greg D. U'Ren
  • Patent number: 7271023
    Abstract: A floating body germanium (Ge) phototransistor and associated fabrication process are presented. The method includes: providing a silicon (Si) substrate; selectively forming an insulator layer overlying the Si substrate; forming an epitaxial Ge layer overlying the insulator layer using a liquid phase epitaxy (LPE) process; forming a channel region in the Ge layer; forming a gate dielectric, gate electrode, and gate spacers overlying the channel region; and, forming source/drain regions in the Ge layer. The LPE process involves encapsulating the Ge with materials having a melting temperature greater than a first temperature, and melting the Ge using a temperature lower than the first temperature. The LPE process includes: forming a dielectric layer overlying deposited Ge; melting the Ge; and, in response to cooling the Ge, laterally propagating an epitaxial growth front into the Ge from an underlying Si substrate surface.
    Type: Grant
    Filed: July 1, 2005
    Date of Patent: September 18, 2007
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Jong-Jan Lee, Sheng Teng Hsu, Jer-Shen Maa, Douglas J. Tweet
  • Patent number: 7241700
    Abstract: A gate structure is formed overlying a substrate. A source/drain region of the substrate is exposed to a soluction comprising ammonium hydroxide, hydrogen peroxide, and deionized water to etch an upper-most semiconductor porton of the source/drain region.
    Type: Grant
    Filed: October 20, 2004
    Date of Patent: July 10, 2007
    Assignee: Advanced Micro Devices, Inc.
    Inventors: William George En, Eric N. Paton, Scott D. Luning
  • Patent number: 7195985
    Abstract: This invention adds to the art of replacement source-drain cMOS transistors. Processes may involve etching a recess in the substrate material using one equipment set, then performing deposition in another. Disclosed is a method to perform the etch and subsequent deposition in the same reactor without atmospheric exposure. In-situ etching of the source-drain recess for replacement source-drain applications provides several advantages over state of the art ex-situ etching. Transistor drive current is improved by: (1) Eliminating contamination of the silicon-epilayer interface when the as-etched surface is exposed to atmosphere and (2) Precise control over the shape of the etch recess. Deposition may be done by a variety of techniques including selective and non-selective methods. In the case of blanket deposition, a measure to avoid amorphous deposition in performance critical regions is also presented.
    Type: Grant
    Filed: January 4, 2005
    Date of Patent: March 27, 2007
    Assignee: Intel Corporation
    Inventors: Anand Murthy, Glenn A. Glass, Andrew N. Westmeyer, Michael L. Hattendorf, Jeffrey R. Wank
  • Patent number: 7192838
    Abstract: Method of producing complementary SiGe bipolar transistors. In a method of producing complementary SiGe bipolar transistors, interface oxide layers (38, 58) for NPN and PNP emitters (44, 64), are separately formed and emitter polysilicon (40, 60) is separately patterned, allowing these layers to be optimized for the respective conductivity type.
    Type: Grant
    Filed: August 26, 2004
    Date of Patent: March 20, 2007
    Assignee: Texas Instruments Incorporated
    Inventors: Philipp Steinmann, Scott Balster, Badih El-Kareh, Thomas Scharnagl
  • Patent number: 7169226
    Abstract: A method of fabricating high-quality, substantially relaxed SiGe-on-insulator substrate materials which may be used as a template for strained Si is described. A silicon-on-insulator substrate with a very thin top Si layer is used as a template for compressively strained SiGe growth. Upon relaxation of the SiGe layer at a sufficient temperature, the nature of the dislocation motion is such that the strain-relieving defects move downward into the thin Si layer when the buried oxide behaves semi-viscously. The thin Si layer is consumed by oxidation of the buried oxide/thin Si interface. This can be accomplished by using internal oxidation at high temperatures. In this way the role of the original thin Si layer is to act as a sacrificial defect sink during relaxation of the SiGe alloy that can later be consumed using internal oxidation.
    Type: Grant
    Filed: July 1, 2003
    Date of Patent: January 30, 2007
    Assignee: International Business Machines Corporation
    Inventors: Stephen W. Bedell, Huajie Chen, Anthony G. Domenicucci, Keith E. Fogel, Devendra K. Sadana
  • Patent number: 7151035
    Abstract: A sidewall-insulation film 9 is provided on a side surface of a first opening portion 8a formed in a base extraction electrode 5B of a hetero-junction bipolar transistor, and a portion of the sidewall-insulation film 9 extends so as to protrude from a surface opposite to a semiconductor substrate 1 toward a main surface of the semiconductor substrate 1 in the base extraction electrode 5B, and protruded length thereof is set to be equal to or smaller than one half of thickness of the insulation film 4 interposed between the main surface of the semiconductor substrate 1 and a lower surface of the base extraction electrode 5B.
    Type: Grant
    Filed: April 16, 2002
    Date of Patent: December 19, 2006
    Assignee: Renesas Technology Corp.
    Inventors: Makoto Koshimizu, Yasuaki Kagotoshi, Nobuo Machida
  • Patent number: 7141478
    Abstract: The present invention is generally directed to a multi-stage epi process for forming semiconductor devices, and the resulting device. In one illustrative embodiment, the method comprises forming a first layer of epitaxial silicon above a surface of a semiconducting substrate, forming a second layer of epitaxial silicon above the first layer of epitaxial silicon, forming a third layer of epitaxial silicon above the second layer of epitaxial silicon, forming a trench isolation region that extends through at least the third layer of epitaxial silicon and forming a portion of a semiconductor device above the third layer of epitaxial silicon within an area defined by the isolation region.
    Type: Grant
    Filed: January 26, 2004
    Date of Patent: November 28, 2006
    Assignee: Legerity Inc.
    Inventor: Chris Speyer
  • Patent number: 7128846
    Abstract: A method including the steps of: modifying at least one part of a sapphire substrate by dry etching to thereby form any one of a dot shape, a stripe shape, a lattice shape, etc. as an island shape on the sapphire substrate; forming an AlN buffer layer on the sapphire substrate; and epitaxially growing a desired Group III nitride compound semiconductor vertically and laterally so that the AlN layer formed on a modified portion of the surface of the sapphire substrate is covered with the desirably Group III nitride compound semiconductor without any gap while the AlN layer formed on a non-modified portion of the surface of the sapphire substrate is used as a seed, wherein the AlN buffer layer is formed by means of reactive sputtering with Al as a target in an nitrogen atmosphere.
    Type: Grant
    Filed: February 24, 2003
    Date of Patent: October 31, 2006
    Assignee: Toyoda Gosei Co., Ltd.
    Inventors: Kazuki Nishijima, Masanobu Senda, Toshiaki Chiyo, Jun Ito, Naoki Shibata, Toshimasa Hayashi
  • Patent number: 7118981
    Abstract: In a method of fabricating an integrated silicon-germanium heterobipolar transistor a silicon dioxide layer arranged between a silicon-germanium base layer and a silicon emitter layer is formed by means of Rapid Thermal Processing (RTP) to ensure enhanced component properties of the integrated silicon-germanium heterobipolar transistor.
    Type: Grant
    Filed: April 15, 2004
    Date of Patent: October 10, 2006
    Assignee: Texas Instruments Incorporated
    Inventors: Alfred Haeusler, Philipp Steinmann, Scott Balster, Badih El-Kareh
  • Patent number: 7091056
    Abstract: When a semiconductor light emitting device or a semiconductor device is manufactured by growing nitride III–V compound semiconductor layers, which will form a light emitting device structure or a device structure, on a nitride III–V compound semiconductor substrate composed of a first region in form of a crystal having a first average dislocation density and a plurality of second regions having a second average dislocation density higher than the first average dislocation density and periodically aligned in the first region, device regions are defined on the nitride III–V compound semiconductor substrate such that the device regions do not substantially include second regions, emission regions or active regions of devices finally obtained do not include second regions.
    Type: Grant
    Filed: June 9, 2005
    Date of Patent: August 15, 2006
    Assignees: Sony Corporation, Sumitomo Electric Industries, Ltd.
    Inventors: Tsunenori Asatsuma, Shigetaka Tomiya, Koshi Tamamura, Tsuyoshi Tojo, Osamu Goto, Kensaku Motoki
  • Patent number: 7078353
    Abstract: The invention provides a method of producing a structure of a thin layer of semiconductor material on a support substrate. The thin layer is obtained from a donor substrate and includes an upper layer of semiconductor material. The method includes forming on the upper layer a bonding layer of a material that accepts diffusion from an element of the material of the upper layer, bonding the donor substrate from the side on which the bonding layer is formed on the upper layer to the support substrate, and diffusing the element from the upper layer into the bonding layer to homogenize the concentration of the element in the bonding layer and the upper layer. The result is that the thin layer of the structure is joined by the bonding layer to the upper layer.
    Type: Grant
    Filed: January 6, 2004
    Date of Patent: July 18, 2006
    Assignee: S.O.I.Tec Silicon on Insulator Technologies S.A.
    Inventors: Nicolas Daval, Bruno Ghyselen, Cécile Aulnette, Oliver Rayssac, Ian Cayrefourcq
  • Patent number: 7074685
    Abstract: A method of fabricating a semiconductor device includes a SiGe(C) heterojunction bipolar transistor using a non-selective epitaxial growth where an insulating layer is formed on a substrate and a layer structure including a conductive layer is provided on the insulating layer. A transistor area opening is etched through the conductive layer, and an SiGe base layer is deposited inside the transistor area opening. An insulator is formed on an upper surface so as to fill the transistor area opening, wherein prior to filling the opening, a nitride layer is formed as an inner layer of the transistor area opening.
    Type: Grant
    Filed: May 27, 2003
    Date of Patent: July 11, 2006
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Petrus Hubertus Cornelis Magnee, Johannes Josephus Theodorus Marinus Donkers
  • Patent number: 7037798
    Abstract: The invention includes methods of fabricating a bipolar transistor that adds a silicon germanium (SiGe) layer or a third insulator layer of, e.g., high pressure oxide (HIPOX), atop an emitter cap adjacent the intrinsic base prior to forming a link-up layer. This addition allows for removal of the link-up layer using wet etch chemistries to remove the excess SiGe or third insulator layer formed atop the emitter cap without using oxidation. In this case, an oxide section (formed by deposition of an oxide or segregation of the above-mentioned HIPOX layer) and nitride spacer can be used to form the emitter-base isolation. The invention results in lower thermal cycle, lower stress levels, and more control over the emitter cap layer thickness, which are drawbacks of the first embodiment. The invention also includes the resulting bipolar transistor structure.
    Type: Grant
    Filed: November 12, 2004
    Date of Patent: May 2, 2006
    Assignee: International Business Machines Corporation
    Inventors: Thomas N. Adam, Kevin K. Chan, Alvin J. Joseph, Marwan H. Khater, Qizhi Liu, Beth Ann Rainey, Kathryn T. Schonenberg
  • Patent number: 7033901
    Abstract: A method and system for providing a ground strap on a semiconductor device is disclosed. The method and system includes providing a substrate region and providing an epitaxial (EPI) layer over the substrate region. The method and system includes etching a plurality of device structures in the EPI layer and providing a slot in the semiconductor substrate that is in contact with the substrate region. Finally, the method and system includes oxidizing the slot except at the bottom of the slot and providing a metal within the slot.
    Type: Grant
    Filed: November 23, 2004
    Date of Patent: April 25, 2006
    Assignee: Micrel, Inc.
    Inventor: John Durbin Husher
  • Patent number: 6881650
    Abstract: A method for forming SOI substrates including a SOI layer containing germanium and a strained silicon layer disposed on the SOI layer, comprises forming a relaxed silicon-germanium layer on a first silicon substrate using an epitaxial growth method, and forming a porous silicon-germanium layer thereon. A silicon-germanium epitaxial layer is formed on the porous silicon-germanium layer, an oxide layer is formed on a second silicon substrate, the second silicon substrate is bonded where the oxide layer is formed to the first silicon substrate where the silicon-germanium epitaxial layer is formed. Layers are removed to expose the silicon-germanium epitaxial layer and a strained silicon epitaxial layer is formed thereon. The porous silicon-germanium layer prevents lattice defects of the relaxed silicon-germanium layer from transferring to the silicon-germanium epitaxial layer. Therefore, it is possible to form the silicon-germanium layer and the strained silicon layer of the SOI layer without defects.
    Type: Grant
    Filed: December 2, 2002
    Date of Patent: April 19, 2005
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jung-Il Lee, Kazuyuki Fujihara, Nae-In Lee, Geum-Jong Bae, Hwa-Sung Rhee, Sang-su Kim
  • Patent number: 6855620
    Abstract: A GaN layer 31 is subjected to etching, so as to form an island-like structure having, for example, a dot, stripe, or grid shape, thereby providing a trench/mesa structure including mesas and trenches whose bottoms sink into the surface of a substrate base 1. Subsequently, a GaN layer 32 is lateral-epitaxially grown with the top surfaces of the mesas and sidewalls of the trenches serving as nuclei, to thereby fill upper portions of the trenches (depressions of the substrate base 1), and then epitaxial growth is effected in the vertical direction. In this case, propagation of threading dislocations contained in the GaN layer 31 can be prevented in the upper portion of the GaN layer 32 that is formed through lateral epitaxial growth.
    Type: Grant
    Filed: March 2, 2001
    Date of Patent: February 15, 2005
    Assignee: Toyoda Gosei Co., Ltd.
    Inventors: Masayoshi Koike, Seiji Nagai, Yuta Tezen
  • Patent number: 6841457
    Abstract: A method of forming a relaxed SiGe-on-insulator substrate having enhanced relaxation, significantly lower defect density and improved surface quality is provided. The method includes forming a SiGe alloy layer on a surface of a first single crystal Si layer. The first single crystal Si layer has an interface with an underlying barrier layer that is resistant to Ge diffusion. Next, ions that are capable of forming defects that allow mechanical decoupling at or near said interface are implanted into the structure and thereafter the structure including the implanted ions is subjected to a heating step which permits interdiffusion of Ge throughout the first single crystal Si layer and the SiGe layer to form a substantially relaxed, single crystal and homogeneous SiGe layer atop the barrier layer. SiGe-on-insulator substrates having the improved properties as well as heterostructures containing the same are also provided.
    Type: Grant
    Filed: July 16, 2002
    Date of Patent: January 11, 2005
    Assignee: International Business Machines Corporation
    Inventors: Stephen W. Bedell, Keith E. Fogel, Devendra K. Sadana
  • Patent number: 6818521
    Abstract: This invention provides a method for manufacturing a hetero-junction bipolar transistor, in which a hole concentration of a base layer doped with carbon can be increased. The method comprises the following steps. 1) A sub-collector 30, a collector 50, a base 60 doped with carbon are sequentially grown after setting a semiconductor substrate on the stage in the growth chamber; 2) an emitter 70 and an emitter contact 80 are grown at a temperature T; and 3) grown layers are annealed at a temperature TA, where the relation of T<Ta≦600° C. is satisfied. This process enhances the activation of carbon atoms by dissociating hydrogen atoms captured in the base 60 to the ambience.
    Type: Grant
    Filed: April 23, 2003
    Date of Patent: November 16, 2004
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Kenji Hiratsuka
  • Publication number: 20040209434
    Abstract: The present invention provides a highly doped semiconductor layer.
    Type: Application
    Filed: May 11, 2004
    Publication date: October 21, 2004
    Applicant: RF MICRO DEVICES, INC.
    Inventors: Matthew L. Seaford, Arthur E. Geiss, Wayne Lewis, Larry W. Kapitan, Thomas J. Rogers
  • Patent number: 6784063
    Abstract: The present invention discloses a method for fabricating a BiCMOS transistor, which improves the high frequency characteristics of a bipolar transistor by reducing base resistance and a parasitic capacitance between the base and collector.
    Type: Grant
    Filed: July 30, 2003
    Date of Patent: August 31, 2004
    Assignee: Hynix Semiconductor Inc.
    Inventor: Jae-han Cha
  • Patent number: 6767798
    Abstract: A self-aligned bipolar transistor and a method of formation thereof are provided. The bipolar transistor has a raised extrinsic base such that the link base resistance is reduced by providing an extrinsic base which is thicker than the intrinsic base. The increase in thickness of the extrinsic base provides a less resistive layer of the heavily doped base region. The method of forming the bipolar transistor includes depositing a first epitaxial layer on a substrate to form a base region having an intrinsic base region and an extrinsic base region. The extrinsic base region is raised by depositing a second epitaxial layer over a portion of the first epitaxial layer such that the thickness of the extrinsic base layer is x and the thickness of the intrinsic layer is y, wherein x>y. The second epitaxial layer is deposited using a chemical vapor epitaxial device where the concentration of Ge to Si is gradually reduced from above 5% to close to 0% during the epitaxy process.
    Type: Grant
    Filed: April 9, 2002
    Date of Patent: July 27, 2004
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Alexander Kalnitsky, Alexei Shatalov, Michael Rowlandson, Sang H. Park, Robert F. Scheer, Fanling H. Yang