Thinning Or Removal Of Substrate Patents (Class 438/977)
-
Patent number: 9034708Abstract: There is provided a method of fabricating a semiconductor device, the method including: forming a first semiconductor region at a front surface of a substrate, the first semiconductor region including an active element that regulates current flowing in a thickness direction of the substrate; grinding a rear surface of the substrate; after the grinding, performing a first etching that etches the rear surface of the substrate with a chemical solution including phosphorus; after the first etching, performing a second etching that etches the rear surface with an etching method with a lower etching rate than the first etching; and after the second etching, forming a second semiconductor region through which the current is to flow, by implanting impurities from the rear surface of the substrate.Type: GrantFiled: December 10, 2013Date of Patent: May 19, 2015Assignee: LAPIS SEMICONDUCTOR CO., LTD.Inventor: Masataka Yoshinari
-
Patent number: 9023716Abstract: A method for processing substrates includes providing a bonding layer between a substrate and a carrier to bond the substrate to the carrier, processing the substrate while the substrate is supported by the carrier, and removing the bonding layer to separate the substrate from the carrier. The bonding layer may include a thermosetting release layer and thermosetting glue layers, wherein at least one of the thermosetting glue layers is provided on each side of the thermosetting release layer.Type: GrantFiled: January 6, 2014Date of Patent: May 5, 2015Assignee: Samsung Electronics Co., Ltd.Inventors: Chungsun Lee, Jung-Seok Ahn, Kwang-chul Choi, Un-Byoung Kang, Jung-Hwan Kim, Joonsik Sohn, Jeon Il Lee
-
Patent number: 9018031Abstract: A single crystal silicon layer is formed on a principal surface of a first wafer by epitaxial growth. A silicon oxide layer is formed on the single crystal silicon layer. Next, a defect layer is formed inside the single crystal silicon layer by ion implantation, and then, the second wafer is bonded to the silicon oxide layer on the first wafer. After that, an SOI wafer including the silicon oxide layer formed on the second wafer and the single crystal silicon layer formed on the silicon oxide layer is formed by separating the first wafer including the single crystal silicon layer from the second wafer including the single crystal silicon layer in the defect layer. Then, a photodiode is formed in the single crystal silicon layer. An interconnect layer is formed on a surface of the single crystal silicon layer which is opposite to the silicon oxide layer.Type: GrantFiled: October 23, 2013Date of Patent: April 28, 2015Assignee: Panasonic Intellectual Property Management Co., Ltd.Inventor: Akira Tsukamoto
-
Patent number: 9011707Abstract: An etching method that uses an etch reactant retained within at least a semi-solid media (120, 220, 224, 230). The etch reactant media is applied to selectively etch a surface layer (106, 218, 222). The etch reactant media may be applied to remove metal shorts (222), smearing and eaves resulting from CMP or in failure analysis for uniform removal of a metal layer (218) without damaging the vias, contact, or underlying structures.Type: GrantFiled: July 16, 2013Date of Patent: April 21, 2015Assignee: Texas Instruments IncorporatedInventor: Darwin Rusli
-
Patent number: 9006085Abstract: A wafer processing method including a fixing step of providing a wafer on a protective member so that a device area of the wafer faces an unevenness absorbing member provided in a recess of the protective member and providing an adhesive outside the device area to thereby fix the protective member and the wafer, a grinding step of holding the protective member on a holding table in the condition where the back side of the wafer is exposed and next grinding the back side of the wafer by using a grinding unit to thereby reduce the thickness of the wafer to a predetermined thickness, and a removing step of removing the protective member from the wafer. The adhesive is locally provided outside of the device area, so that the protective member can be easily removed from the wafer without leaving the adhesive on the front side of each device.Type: GrantFiled: September 17, 2013Date of Patent: April 14, 2015Assignee: Disco CorporationInventor: Karl Heinz Priewasser
-
Patent number: 8987109Abstract: A method for manufacturing a bonded wafer includes: an ion implantation step of using a batch type ion implanter; a bonding step of bonding an ion implanted surface of a bond wafer to a surface of a base wafer directly or through an insulator film; and a delamination step of delaminating the bond wafer at an ion implanted layer, thereby manufacturing a bonded wafer having a thin film on the base wafer, wherein the ion implantation into the bond wafer carried out at the ion implantation step is divided into a plurality of processes, the bond wafer is rotated on its own axis a predetermined rotation angle after each ion implantation, and the next ion implantation is carried out at an arrangement position obtained by the rotation.Type: GrantFiled: April 25, 2012Date of Patent: March 24, 2015Assignee: Shin-Etsu Handotai Co., Ltd.Inventors: Hiroji Aga, Isao Yokokawa, Nobuhiko Noto
-
Patent number: 8975150Abstract: A transparent board is positioned on a support board provided with a positioning mark, and a release material is provided. A semiconductor element is then positioned so that the electrode element faces upward, and the support board is then removed. An insulating resin is then formed on the release material so as to cover the semiconductor element; and a via, a wiring layer, an insulation layer, an external terminal, and a solder resist are then formed. The transparent board is then peeled from the semiconductor device through the use of the release material. A chip can thereby be mounted with high precision, there is no need to provide a positioning mark during mounting of the chip on the substrate in the manufacturing process, and the substrate can easily be removed. As a result, a semiconductor device having high density and a thin profile can be manufactured at low cost.Type: GrantFiled: July 25, 2011Date of Patent: March 10, 2015Assignee: Renesas Electronics CorporationInventors: Kentaro Mori, Shintaro Yamamichi, Hideya Murai, Takuo Funaya, Masaya Kawano, Takehiko Maeda, Kouji Soejima
-
Patent number: 8933570Abstract: A Three-Dimensional Structure (3DS) Memory allows for physical separation of the memory circuits and the control logic circuit onto different layers such that each layer may be separately optimized. One control logic circuit suffices for several memory circuits, reducing cost. Fabrication of 3DS memory involves thinning of the memory circuit to less than 50 ?m in thickness and bonding the circuit to a circuit stack while still in wafer substrate form. Fine-grain high density inter-layer vertical bus connections are used. The 3DS memory manufacturing method enables several performance and physical size efficiencies, and is implemented with established semiconductor processing techniques.Type: GrantFiled: March 17, 2009Date of Patent: January 13, 2015Assignee: Elm Technology Corp.Inventor: Glenn J. Leedy
-
Patent number: 8928119Abstract: A Three-Dimensional Structure (3DS) Memory allows for physical separation of the memory circuits and the control logic circuit onto different layers such that each layer may be separately optimized. One control logic circuit suffices for several memory circuits, reducing cost. Fabrication of 3DS memory involves thinning of the memory circuit to less than 50 ?m in thickness and bonding the circuit to a circuit stack while still in wafer substrate form. Fine-grain high density inter-layer vertical bus connections are used. The 3DS memory manufacturing method enables several performance and physical size efficiencies, and is implemented with established semiconductor processing techniques.Type: GrantFiled: March 17, 2009Date of Patent: January 6, 2015Inventor: Glenn J. Leedy
-
Patent number: 8907499Abstract: A Three-Dimensional Structure (3DS) Memory allows for physical separation of the memory circuits and the control logic circuit onto different layers such that each layer may be separately optimized. One control logic circuit suffices for several memory circuits, reducing cost. Fabrication of 3DS memory involves thinning of the memory circuit to less than 50 microns in thickness and bonding the circuit to a circuit stack while still in wafer substrate form. Fine-grain high density inter-layer vertical bus connections are used. The 3DS memory manufacturing method enables several performance and physical size efficiencies, and is implemented with established semiconductor processing techniques.Type: GrantFiled: January 4, 2013Date of Patent: December 9, 2014Inventor: Glenn J Leedy
-
Patent number: 8895328Abstract: A fabrication method of a light-emitting device comprises providing a growth substrate; forming a protective layer on a first surface of the growth substrate; and forming a first semiconductor layer on a second surface of the growth substrate opposite to the first surface, wherein the coefficient of thermal expansion of the growth substrate is smaller than that of the protective layer and the first semiconductor layer.Type: GrantFiled: April 20, 2012Date of Patent: November 25, 2014Assignee: Epistar CorporationInventors: Sheng Horng Yen, Yung Hsiang Lin, Ying Yong Su, Han Min Wu
-
Patent number: 8865489Abstract: Described herein are printable structures and methods for making, assembling and arranging electronic devices. A number of the methods described herein are useful for assembling electronic devices where one or more device components are embedded in a polymer which is patterned during the embedding process with trenches for electrical interconnects between device components. Some methods described herein are useful for assembling electronic devices by printing methods, such as by dry transfer contact printing methods. Also described herein are GaN light emitting diodes and methods for making and arranging GaN light emitting diodes, for example for display or lighting systems.Type: GrantFiled: May 12, 2010Date of Patent: October 21, 2014Assignee: The Board of Trustees of the University of IllinoisInventors: John A. Rogers, Ralph Nuzzo, Hoon-sik Kim, Eric Brueckner, Sang Il Park, Rak Hwan Kim
-
Patent number: 8859334Abstract: An electronic device manufacturing method includes a cutting step at which a wafer is cut to obtain chips before pattern formation and a polishing step at which cut surfaces of the obtained chips are subjected in one batch to barrel polishing. The method further includes an aligning step at which the polished chips are aligned so that front surfaces thereof face in an upward direction. The method further includes a bonding step at which the cut surfaces of the aligned chips are bonded together with an adhesive to thereby form a chip assembly. The method further includes a pattern forming step at which a circuit pattern is formed on each of the chips of the chip assembly and a melting step at which the adhesive on the chip assembly is melted to thereby separate the chip assembly into chips after pattern formation.Type: GrantFiled: September 18, 2013Date of Patent: October 14, 2014Assignee: Fujitsu LimitedInventors: Hajime Kubota, Masayuki Itoh, Masakazu Kishi
-
Patent number: 8853054Abstract: A method is provided for preparing multilayer semiconductor structures, such as silicon-on-insulator wafers, having reduced warp and bow. Reduced warp multilayer semiconductor structures are prepared by forming a dielectric structure on the exterior surfaces of a bonded pair of a semiconductor device substrate and a semiconductor handle substrate having an intervening dielectric layer therein. Forming a dielectric layer on the exterior surfaces of the bonded pair offsets stresses that may occur within the bulk of the semiconductor handle substrate due to thermal mismatch between the semiconductor material and the intervening dielectric layer as the structure cools from process temperatures to room temperatures.Type: GrantFiled: March 6, 2012Date of Patent: October 7, 2014Assignee: SunEdison Semiconductor LimitedInventors: Guoqiang Zhang, Jeffrey L. Libbert
-
Patent number: 8841778Abstract: A Three-Dimensional Structure (3DS) Memory allows for physical separation of the memory circuits and the control logic circuit onto different layers such that each layer may be separately optimized. One control logic circuit suffices for several memory circuits, reducing cost. Fabrication of 3DS memory involves thinning of the memory circuit to less than 50 microns in thickness and bonding the circuit to a circuit stack while still in wafer substrate form. Fine-grain high density inter-layer vertical bus connections are used. The 3DS memory manufacturing method enables several performance and physical size efficiencies, and is implemented with established semiconductor processing techniques.Type: GrantFiled: August 9, 2013Date of Patent: September 23, 2014Inventor: Glenn J Leedy
-
Patent number: 8835282Abstract: A method for forming a multi-material thin film includes providing a multi-material donor substrate comprising single crystal silicon and an overlying film comprising GaN. Energetic particles are introduced through a surface of the multi-material donor substrate to a selected depth within the single crystal silicon. The method includes providing energy to a selected region of the donor substrate to initiate a controlled cleaving action in the donor substrate. Then, a cleaving action is made using a propagating cleave front to free a multi-material film from a remaining portion of the donor substrate, the multi-material film comprising single crystal silicon and the overlying film.Type: GrantFiled: January 16, 2013Date of Patent: September 16, 2014Assignee: Silicon Genesis CorporationInventors: Francois J. Henley, Nathan Cheung
-
Patent number: 8835289Abstract: A wafer and a fabrication method include a base structure including a substrate for fabricating semiconductor devices. The base structure includes a front side where the semiconductor devices are formed and a back side opposite the front side. An integrated layer is formed in the back side of the base structure including impurities configured to alter etch selectivity relative to the base structure such that the integrated layer is selectively removable from the base structure to remove defects incurred during fabrication of the semiconductor devices.Type: GrantFiled: June 12, 2013Date of Patent: September 16, 2014Assignee: International Business Machines CorporationInventors: Jennifer C. Clark, Emily R. Kinser, Ian D. Melville, Candace A. Sullivan
-
Patent number: 8824159Abstract: A Three-Dimensional Structure (3DS) Memory allows for physical separation of the memory circuits and the control logic circuit onto different layers such that each layer may be separately optimized. One control logic circuit suffices for several memory circuits, reducing cost. Fabrication of 3DS memory involves thinning of the memory circuit to less than 50 ?m in thickness and bonding the circuit to a circuit stack while still in wafer substrate form. Fine-grain high density inter-layer vertical bus connections are used. The 3DS memory manufacturing method enables several performance and physical size efficiencies, and is implemented with established semiconductor processing techniques.Type: GrantFiled: March 31, 2009Date of Patent: September 2, 2014Inventor: Glenn J. Leedy
-
Patent number: 8809898Abstract: A method of fabricating semiconductor devices, such as GaN LEDs, on insulating substrates, such as sapphire. Semiconductor layers are produced on the insulating substrate using normal semiconductor processing techniques. Trenches that define the boundaries of the individual devices are then formed through the semiconductor layers and into the insulating substrate, beneficially by using inductive coupled plasma reactive ion etching. The trenches are then filled with an easily removed layer. A metal support structure is then formed on the semiconductor layers (such as by plating or by deposition) and the insulating substrate is removed. Electrical contacts, a passivation layer, and metallic pads are then added to the individual devices, and the individual devices are then diced out.Type: GrantFiled: January 25, 2013Date of Patent: August 19, 2014Assignee: LG Innotek Co., Ltd.Inventors: Jong Lam Lee, Inkwon Jeong, Myung Cheol Yoo
-
Patent number: 8802469Abstract: A method for the separation of multiple dies during semiconductor fabrication is described. On an upper surface of a semiconductor wafer containing multiple dies, metal layers are deposited everywhere except where a block of stop electroplating material exists. The stop electroplating material is obliterated, and a barrier layer is formed above the entire remaining structure. A sacrificial metal element is added above the barrier layer, and then the substrate is removed. After the semiconductor material between the individual dies is eradicated, any desired bonding pads and patterned circuitry are added to the semiconductor surface opposite the sacrificial metal element, a passivation layer is added to this surface, and then the sacrificial metal element is removed. Tape is added to the now exposed barrier layer, the passivation layer is removed, the resulting structure is flipped over, and the tape is expanded to separate the individual dies.Type: GrantFiled: May 17, 2011Date of Patent: August 12, 2014Assignee: SemiLEDS Optoelectronics Co., Ltd.Inventors: Chen-Fu Chu, Trung Tri Doan, Hao-Chun Cheng, Feng-Hsu Fan, Fu-Hsien Wang
-
Patent number: 8802454Abstract: A method for testing TSVs is provided. A plurality of TSVs is formed in a semiconductor substrate. Wiring layers and a first contact array are formed on the front-side of the substrate. The wiring layers couple each of the TSVs to a respective contact of the first contact array. Conductive adhesive is deposited over the first contact array. The conductive adhesive electrically couples contacts of the first contact array. A carrier is bonded to the front-side of the substrate with the conductive adhesive. After bonding the carrier to the substrate, the back-side of the substrate is thinned to expose each of the TSVs on the back-side of the substrate. A second contact array is formed, having a contact coupled to each respective TSV. Conductivity and connections of the TSVs, wiring layers, and contacts are tested by testing for conductivity between contacts of the second contact array.Type: GrantFiled: December 20, 2011Date of Patent: August 12, 2014Assignee: Xilinx, Inc.Inventors: Arifur Rahman, Henley Liu, Cheang-Whang Chang, Myongseob Kim, Dong W. Kim
-
Patent number: 8785297Abstract: A method for encapsulating electronic components, including the steps of: forming, in a first surface of a semiconductor wafer, electronic components; forming, on the first surface, an interconnection stack including conductive tracks and vias separated by an insulating material; forming first and second bonding pads on the interconnection stack; thinning down the wafer, except at least on its contour; filling the thinned-down region with a first resin layer; arranging at least one first chip on the first bonding pads and forming solder bumps on the second bonding pads; depositing a second resin layer covering the first chips and partially covering the solder bumps; bonding an adhesive strip on the first resin layer; and scribing the structure into individual chips.Type: GrantFiled: October 11, 2012Date of Patent: July 22, 2014Assignee: STMicroelectronics (Tours) SASInventors: Marc Feron, Vincent Jarry, Laurent Barreau
-
Patent number: 8778735Abstract: A WLCSP method comprises: depositing a metal bump on bonding pads of chips; forming a first packaging layer at front surface of wafer to cover metal bumps while forming an un-covered ring at the edge of wafer to expose the ends of each scribe line located between two adjacent chips; thinning first packaging layer to expose metal bumps; forming a groove on front surface of first packaging layer along each scribe line by cutting along a straight line extended by two ends of scribe line exposed on front surface of un-covered ring; grinding back surface of wafer to form a recessed space and a support ring at the edge of the wafer; depositing a metal layer at bottom surface of wafer in recessed space; cutting off the edge portion of wafer; and separating individual chips from wafer by cutting through first packaging layer, the wafer and metal layer along groove.Type: GrantFiled: June 29, 2013Date of Patent: July 15, 2014Assignee: Alpha & Omega Semiconductor, Inc.Inventors: Yan Xun Xue, Hamza Yilmaz, Yueh-Se Ho, Jun Lu, Ping Huang, Lei Shi, Lei Duan, Yuping Gong
-
Patent number: 8748315Abstract: The present disclosure relates to a method of forming a back-side illuminated CMOS image sensor (BSI CIS). In some embodiments, the method comprises forming a plurality of photodetectors within a front-side of a semiconductor substrate. An implant is performed on the back-side of the semiconductor substrate to form an implantation region having a doping concentration that is greater in the center than at the edges of the semiconductor substrate. The back-side of the workpiece is then exposed to an etchant, having an etch rate that is inversely proportional to the doping concentration, which thins the semiconductor substrate to a thickness that allows for light to pass through the back-side of the substrate to the plurality of photodetectors. By implanting the substrate prior to etching, the etching rate is made uniform over the back-side of the substrate improving total thickness variation between the photodetectors and the back-side of the substrate.Type: GrantFiled: February 15, 2012Date of Patent: June 10, 2014Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: En-Ting Lee, Kun-El Chen, Yu-Sheng Wang, Chien-Chung Chen, Huai-Tei Yang
-
Patent number: 8716108Abstract: A method of manufacture of an integrated circuit packaging system includes: providing a circuit substrate having an active side opposite to an inactive portion; attaching a nonconductive cover to the active side; forming a separation-gap partially cutting into the nonconductive cover and the circuit substrate to a kerf depth; attaching a back-grinding tape to the nonconductive cover; removing a portion of the inactive portion; and exposing the nonconductive cover by removing the back-grinding tape.Type: GrantFiled: March 21, 2012Date of Patent: May 6, 2014Assignee: Stats Chippac Ltd.Inventors: Hun Teak Lee, DaeWook Yang, Yeongbeom Ko
-
Patent number: 8709915Abstract: A method of manufacturing a semiconductor device comprises: forming a protective film so as to cover at least a side edge of a substrate; forming a trench, which is annular in shape when viewed oppositely to a first principal surface of the substrate, on the first principal surface by etching using a photoresist pattern; and forming an insulating film so as to fill the trench, to form an insulating ring.Type: GrantFiled: July 23, 2012Date of Patent: April 29, 2014Inventor: Takeo Tsukamoto
-
Patent number: 8679887Abstract: A method for manufacturing a micro-electro-mechanical device, which has supporting parts and operative parts, includes providing a first semiconductor wafer, having a first layer of semiconductor material and a second layer of semiconductor material arranged on top of the first layer, forming first supporting parts and first operative parts of the device in the second layer, forming temporary anchors in the first layer, and bonding the first wafer to a second wafer, with the second layer facing the second wafer. After bonding the first wafer and the second wafer together, second supporting parts and second operative parts of said device are formed in the first layer. The temporary anchors are removed from the first layer to free the operative parts formed therein.Type: GrantFiled: April 26, 2012Date of Patent: March 25, 2014Assignee: STMicroelectronics S.r.l.Inventors: Simone Sassolini, Mauro Marchi, Marco Del Sarto, Lorenzo Baldo
-
Patent number: 8679944Abstract: The invention provides a method of trimming a structure that includes a first wafer bonded to a second wafer, with the first wafer having a chamfered edge. The method includes a first trimming step carried out over a first depth that includes at least the thickness of the first wafer and over a first width determined from the edge of the first wafer. A second trimming step is then carried out over a second depth that includes at least the thickness of the first wafer and over a second width that is less than the first width.Type: GrantFiled: July 31, 2009Date of Patent: March 25, 2014Assignee: SoitecInventors: Marcel Broekaart, Marion Migette, Sébastien Molinari, Eric Neyret
-
Patent number: 8673740Abstract: A method is for formation of an electrically conducting through-via within a first semiconductor support having a front face and comprising a silicon substrate. The method may include forming of a first insulating layer on top of the front face of the first semiconductor support, fabricating a handle including, within an additional rigid semiconductor support having an intermediate semiconductor layer, and forming on either side of the intermediate semiconductor layer of a porous region and of an additional insulating layer. The method may also include direct bonding of the first insulating layer and of the additional insulating layer, and thinning of the silicon substrate of the first semiconductor support so as to form a back face opposite to the front face.Type: GrantFiled: September 14, 2012Date of Patent: March 18, 2014Assignee: STMicroelectronics (Crolles 2) SASInventors: Julien Cuzzocrea, Laurent-Luc Chapelon
-
Patent number: 8669166Abstract: One illustrative method disclosed herein includes forming a plurality of die above a crystalline semiconducting substrate, irradiating and cooling an edge region of the substrate to form an amorphous region in the edge region of the substrate and, after forming the amorphous region, performing at least one process operation to reduce the thickness of the substrate.Type: GrantFiled: August 15, 2012Date of Patent: March 11, 2014Assignee: GLOBALFOUNDRIES Inc.Inventors: Rahul Agarwal, Ramakanth Alapati, Jon Greenwood
-
Patent number: 8669179Abstract: A through-wafer interconnect for imager, memory and other integrated circuit applications is disclosed, thereby eliminating the need for wire bonding, making devices incorporating such interconnects stackable and enabling wafer level packaging for imager devices. Further, a smaller and more reliable die package is achieved and circuit parasitics (e.g., L and R) are reduced due to the reduced signal path lengths.Type: GrantFiled: July 11, 2013Date of Patent: March 11, 2014Assignee: Micron Technology, Inc.Inventors: Salman Akram, Charles M. Watkins, William M. Hiatt, David R. Hembree, James M. Wark, Warren M. Farnworth, Mark E. Tuttle, Sidney B. Rigg, Steven D. Oliver, Kyle K. Kirby, Alan G. Wood, Lu Velicky
-
Patent number: 8664028Abstract: (a) On a growth substrate, a void-containing layer that is made of a group III nitride compound semiconductor and contains voids is formed. (b) On the void-containing layer, an n-type layer that is made of an n-type group III nitride compound semiconductor and serves to close the voids is formed. (c) On the n-type layer, an active layer made of a group III nitride compound semiconductor is formed. (d) On the active layer, a p-type layer made of a p-type group III nitride compound semiconductor is formed. (e) A support substrate is bonded above the p-type layer. (f) The growth substrate is peeled off at the boundary where the voids are produced. In the above step (a) or (b), the supply of at least part of the materials that form the layer is decreased, while heating, before the voids are closed.Type: GrantFiled: March 9, 2012Date of Patent: March 4, 2014Assignee: Stanley Electric Co., Ltd.Inventors: Yasuyuki Shibata, Ji-Hao Liang
-
Patent number: 8664084Abstract: A method for making a thin-film element includes epitaxially growing a first crystalline layer on a second crystalline layer of a support where the second crystalline layer is a material different from the first crystalline layer, the first crystalline layer having a thickness less than a critical thickness. A dielectric layer is formed on a side of the first crystalline layer opposite to the support to form a donor structure. The donor structure is assembled with a receiver layer and the support is removed.Type: GrantFiled: September 25, 2006Date of Patent: March 4, 2014Assignee: Commissariat a l'Energie AtomiqueInventors: Chrystel Deguet, Laurent Clavelier
-
Patent number: 8637380Abstract: According to one embodiment, a method of manufacturing a semiconductor device including forming a metal film on aback surface of a glass substrate which supports a semiconductor substrate on a front surface thereof; forming a metal oxide film by oxidizing the whole or at least a portion of the metal film from the front surface; forming protective film, such as silicon nitride, on the metal oxide film; holding the front surface of the protective film with an electrostatic chuck; and forming a via for electrical connection in the semiconductor substrate while the front surface of the protective film is in contact with by the electrostatic chuck; then using a laser to delaminate the glass substrate from the semiconductor substrate.Type: GrantFiled: September 7, 2012Date of Patent: January 28, 2014Assignee: Kabushiki Kaisha ToshibaInventors: Atsuko Sakata, Kazuyuki Higashi, Akiko Nomachi, Takeshi Ishizaki
-
Patent number: 8558330Abstract: A micromechanical systems (MEMs) pressure sensor includes a semiconductor substrate having a deep well located within a first surface and a cavity located within a second, opposing surface. The semiconductor substrate has a first doping type. The deep well has a second doping type, with a gradient doping profile, thereby forming a PN junction within the substrate. The cavity forms a diaphragm, which is a substrate section that is thinner than the surrounding substrate sections, that comprises the deep well. One or more pizeoresistor elements are located within the deep well. The piezoresistors are sensitive to deformations, such as bending, in the diaphragm caused by changes in the pressure of the cavity.Type: GrantFiled: July 5, 2012Date of Patent: October 15, 2013Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Shao-Chi Yu, Hong-Seng Shue
-
Patent number: 8546244Abstract: A method includes the steps of: (a) fixing a front surface of a wafer (semiconductor wafer) having the front surface, a plurality of chip regions formed on the front surface, a dicing region formed between the chip regions, and a rear surface opposite to the front surface to the supporting member; (b) in a state of having the wafer fixed to the supporting member, grinding the rear surface of the wafer to expose the rear surface; (c) in a state of having the wafer fixed to the supporting member, dividing the wafer into the chip regions; (d) etching side surfaces of the chip regions to remove crushed layers formed in the step (c) on the side surfaces and obtain a plurality of semiconductor chips. After the steps (e) and (d), the plurality of divided chip regions are peeled off from the supporting member to obtain a plurality of semiconductor chips.Type: GrantFiled: January 9, 2012Date of Patent: October 1, 2013Assignee: Renesas Electronics CorporationInventors: Yoshiyuki Abe, Chuichi Miyazaki, Toshihide Uematsu, Haruo Shimamoto
-
Patent number: 8536445Abstract: A method of forming a multijunction solar cell comprising an upper subcell, a middle subcell, and a lower subcell comprising providing first substrate for the epitaxial growth of semiconductor material; forming a first solar subcell on said substrate having a first band gap; forming a second solar subcell over said first subcell having a second band gap smaller than said first band gap; and forming a grading interlayer over said second subcell having a third band gap larger than said second band gap forming a third solar subcell having a fourth band gap smaller than said second band gap such that said third subcell is lattice mismatched with respect to said second subcell.Type: GrantFiled: June 2, 2006Date of Patent: September 17, 2013Assignee: Emcore Solar Power, Inc.Inventors: Arthur Cornfeld, Mark A. Stan
-
Patent number: 8530256Abstract: (a) Forming on a growth substrate a void-containing layer that is made of a group III nitride compound semiconductor and contains voids. (b) Forming on the void-containing layer an n-type layer that is made of an n-type group III nitride compound semiconductor and serves to close the voids. (c) Forming on the n-type layer an active layer made of a group III nitride compound semiconductor. (d) Forming on the active layer a p-type layer made of a p-type group III nitride compound semiconductor. (e) Bonding a support substrate above the p-type layer. (f) Peeling off the growth substrate at the boundary where the void are produced. (g) Planarizing the n-type layer. Step (b) comprises (b1) forming part of the n-type layer under conditions where horizontal growth is relatively weak and (b2) forming the remaining part of the n-type layer under conditions where horizontal growth is relatively strong.Type: GrantFiled: March 9, 2012Date of Patent: September 10, 2013Assignee: Stanley Electric Co., Ltd.Inventors: Yasuyuki Shibata, Ji-Hao Liang, Takako Chinone
-
Patent number: 8524537Abstract: A semiconductor device has a build-up interconnect structure formed over an active surface of a semiconductor wafer containing a plurality of semiconductor die separated by a saw street. An insulating layer is formed over the interconnect structure. Bumps are formed over the interconnect structure. A protective coating material is deposited over the insulating layer and saw street. A lamination tape is applied over the coating material. A portion of a back surface of the semiconductor wafer is removed. A mounting tape is applied over the back surface. The lamination tape is removed while leaving the coating material over the insulating layer and saw street. A first channel is formed through the saw street extending partially through the semiconductor wafer. The coating material is removed after forming the first channel. A second channel is formed through the saw street and the mounting tape is removed to singulate the semiconductor wafer.Type: GrantFiled: April 30, 2010Date of Patent: September 3, 2013Assignee: STATS ChipPAC, Ltd.Inventors: JaEun Yun, HunTeak Lee, SeungYong Chai, WonJun Ko
-
Patent number: 8518797Abstract: The method includes steps of adding first ions to a predetermined depth from a main surface of a semiconductor substrate by irradiation of the semiconductor substrate with a planar, linear, or rectangular ion beam, so that a separation layer is formed; adding second ions to part of the separation layer formed in the semiconductor substrate; disposing the main surface of the semiconductor substrate and a main surface of a base substrate to face each other in order to bond a surface of an insulating film and the base substrate; and cleaving the semiconductor substrate using the separation layer as a cleavage plane, so that a single crystal semiconductor layer is formed over the base substrate. The mass number of the second ions is the same as or larger than that of the first ions.Type: GrantFiled: September 18, 2008Date of Patent: August 27, 2013Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Hideto Ohnuma, Shunpei Yamazaki
-
Patent number: 8507362Abstract: A process of forming ultra thin wafers having an edge support ring is disclosed. The process provides an edge support ring having an angled inner wall compatible with spin etch processes.Type: GrantFiled: May 24, 2011Date of Patent: August 13, 2013Assignee: Alpha and Omega Semiconductor IncorporatedInventors: Tao Feng, Sung-Shan Tai
-
Patent number: 8507367Abstract: A method of fabricating semiconductor devices is disclosed. The method comprises providing a substrate with a plurality of epitaxial layers mounted on the substrate and separating the substrate from the plurality of epitaxial layers while the plurality of epitaxial layers is intact. This preserves the electrical, optical, and mechanical properties of the plurality of epitaxial layers.Type: GrantFiled: July 3, 2008Date of Patent: August 13, 2013Assignee: Tinggi Technologies Pte Ltd.Inventors: Xuejun Kang, Shu Yuan, Jenny Lam, Shiming Lin
-
Patent number: 8486814Abstract: A wafer and a fabrication method include a base structure including a substrate for fabricating semiconductor devices. The base structure includes a front side where the semiconductor devices are formed and a back side opposite the front side. An integrated layer is formed in the back side of the base structure including impurities configured to alter etch selectivity relative to the base structure such that the integrated layer is selectively removable from the base structure to remove defects incurred during fabrication of the semiconductor devices.Type: GrantFiled: July 21, 2011Date of Patent: July 16, 2013Assignee: International Business Machines CorporationInventors: Jennifer C. Clark, Emily R. Kinser, Ian D. Melville, Candace A. Sullivan
-
Patent number: 8486805Abstract: A through-silicon via and a method for forming the same are provided. The method includes: providing a semiconductor substrate, the semiconductor substrate including an upper surface and an opposite lower surface; etching the upper surface of the semiconductor substrate to form an opening; filling the opening with a conductive material to form a first nail; etching the lower surface of the semiconductor substrate to form a recess, such that the first nail is exposed at a bottom of the recess; filling the recess with a conductive material that can be etched, and etching the conductive material that can be etched to form a second nail, such that the second nail is vertically connected with the first nail; and filling a gap between the second nail and the semiconductor substrate and a gap between the second nail and an adjacent second nail with a dielectric layer. Then invention can improve the reliability of through-silicon vias and avoid voids.Type: GrantFiled: April 11, 2011Date of Patent: July 16, 2013Assignee: Institute of Microelectronics, Chinese Academy of SciencesInventors: Chao Zhao, Dapeng Chen, Wen Ou
-
Patent number: 8471374Abstract: An integrated circuit package system includes a first integrated circuit die having die pads only adjacent a single edge of the first integrated circuit die, forming first L-shaped leadfingers adjacent the single edge, connecting the die pads and the first L-shaped leadfingers, and encapsulating the die pads and portions of the first L-shaped leadfingers to form a first package.Type: GrantFiled: February 21, 2007Date of Patent: June 25, 2013Assignee: Stats Chippac Ltd.Inventors: Young Cheol Kim, Koo Hong Lee, Jae Hak Yee
-
Patent number: 8466039Abstract: A method of cleaving a substrate is disclosed. A species, such as hydrogen or helium, is implanted into a substrate to form a layer of microbubbles. The substrate is then annealed a pressure greater than atmosphere. This annealing may be performed in the presence of the species that was implanted. This diffuses the species into the substrate. The substrate is then cleaved along the layer of microbubbles. Other steps to form an oxide layer or to bond to a handle also may be included.Type: GrantFiled: February 17, 2012Date of Patent: June 18, 2013Assignee: Varian Semiconductor Equipment Associates, Inc.Inventors: Deepak A. Ramappa, Julian G. Blake
-
Patent number: 8465992Abstract: A method of manufacturing a flexible display device is provided. The method includes: preparing a first flexible substrate on which a display unit is formed; forming an encapsulation unit including a base substrate, a second flexible substrate formed on the base substrate, and a barrier layer formed on the second flexible substrate; combining the encapsulation unit with the display unit; and separating the base substrate from the second flexible substrate by using a difference between a coefficient of thermal expansion of the base substrate and a coefficient of thermal expansion of the second flexible substrate, by applying a heated solution between the base substrate and the second flexible substrate. The flexible display device is easily manufactured since the base substrate and the second flexible substrate, which have different coefficients of thermal expansion and are coupled to each other, are separable from each other by applying the heated solution.Type: GrantFiled: September 23, 2011Date of Patent: June 18, 2013Assignee: Samsung Display Co., Ltd.Inventors: Seung-Hun Kim, Hoon-Kee Min, Dong-Un Jin, Sang-Joon Seo, Sung-Guk An, Young-Gu Kim, Hyung-Sik Kim, Young-Ji Kim
-
Patent number: 8450184Abstract: Manufacturing a thin film direct bandgap semiconductor active solar cell device comprises providing a source substrate having a surface and disposing on the surface a stress layer having a stress layer surface area in contact with and bonded to the surface of the source substrate. Operatively associating a handle foil with the stress layer and applying force to the handle foil separates the stress layer from the source substrate, and leaves a portion of the source substrate on the stress layer surface substantially corresponding to the area in contact with the surface of the source substrate. The portion is less thick than the source layer. The stress layer thickness is below that which results in spontaneous spalling of the source substrate. The source substrate may comprise an inorganic single crystal or polycrystalline material such as Si, Ge, GaAs, SiC, sapphire, or GaN. The stress layer may comprise a flexible material.Type: GrantFiled: May 24, 2012Date of Patent: May 28, 2013Assignee: International Business Machines CorporationInventors: Stephen W. Bedell, Keith E. Fogel, Paul A. Lauro, Devendra Sadana
-
Patent number: 8420505Abstract: A process to thin semiconductor wafers to less than 50 microns employs a dissolvable photoresist or polyimide or other glue material to hold a thick carrier plate such as a perforated glass to the top surface of a thick processed wafer and to grind or otherwise remove the bulk of the wafer from its rear surface, leaving only the preprocessed top surface, which may include semiconductor device diffusions and electrodes. A thick metal such as copper or a more brittle copper alloy is then conductively secured to the ground back surface and the glue is dissolved and the carrier plate is removed. The wafer is then cleaned and diced into plural devices such as MOSFETs; integrated circuits and the like.Type: GrantFiled: March 26, 2007Date of Patent: April 16, 2013Assignee: International Rectifier CorporationInventor: Igor Bol
-
Patent number: 8415208Abstract: The present invention provides a peeling off method without giving damage to the peeled off layer, and aims at being capable of peeling off not only a peeled off layer having a small area but also a peeled off layer having a large area over the entire surface at excellent yield ratio. The metal layer or nitride layer 11 is provided on the substrate, and further, the oxide layer 12 being contact with the foregoing metal layer or nitride layer 11 is provided, and furthermore, if the lamination film formation or the heat processing of 500° C. or more in temperature is carried out, it can be easily and clearly separated in the layer or on the interface with the oxide layer 12 by the physical means.Type: GrantFiled: July 15, 2002Date of Patent: April 9, 2013Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Toru Takayama, Junya Maruyama, Mayumi Mizukami, Shunpei Yamazaki