Heavy Metal Or Aluminum Complex Of Compounds Having Two -c(=x)- Groups, Wherein X Is Chalcogen, Bonded To The Same Carbon, Or Enols Thereof (e.g., Iron Acetylacetonate, Etc.) Patents (Class 44/362)
  • Patent number: 11802255
    Abstract: Disclosed herein are improved lubricating compositions effective to prevent or reduce low speed pre-ignition in an engine, as well as to prevent or reduce corrosion of engine components. The lubricating compositions include a base oil combined with a calcium chelate complex, optionally in further combination with additional additives.
    Type: Grant
    Filed: March 4, 2020
    Date of Patent: October 31, 2023
    Assignees: CHEVRON ORONITE COMPANY LLC, CHEVRON U.S.A. INC.
    Inventors: Ian G. Elliott, Amir Gamal Maria, Richard Eugene Cherpeck, Theresa Liang Gunawan
  • Patent number: 11066367
    Abstract: Provided are an electron donor that is easy to handle and can be used to carry out a coupling reaction economically and efficiently through simple operations under mild conditions in a short period of time, and a method for synthesizing 4,4?-bipyridine using the electron donor. The electron donor includes a mixture of a dispersion product obtained by dispersing sodium in a dispersion solvent and 1,3-dimethyl-2-imidazolidinone, and this electron donor is used in the method for synthesizing 4,4?-bipyridine.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: July 20, 2021
    Assignee: Kobelco Eco-Solutions Co., Ltd.
    Inventors: Yoshiaki Murakami, Miyuki Fukushima, Kazuhiko Takai, Sobi Asako
  • Patent number: 8870981
    Abstract: An additive composition for a fuel comprises: (i) a metal compound selected from an iron compound, a manganese compound, a calcium compound, a cerium compound and mixtures thereof; (ii) an organic compound selected from a bicyclic monoterpene, substituted bicyclic monoterpene, adamantane, propylene carbonate and mixtures thereof; and (iii) a stabilizer. The additive composition allows fuels which are prone to separation, for example blended fuels or fuels having a high content of asphaltenes, to be used successfully.
    Type: Grant
    Filed: November 14, 2012
    Date of Patent: October 28, 2014
    Assignee: Innospec Limited
    Inventors: Miltiades Papachristos, Ian Malcolm McRobbie, Deepak Kamran
  • Patent number: 8641791
    Abstract: The invention concerns a method for supplying iron, via the fuel, to the particulate trap of a diesel engine exhaust in a form suitable for promoting trap regeneration. The method involves the addition to the fuel of a defined colloid of iron oxide. Combustion of this colloid produces iron-containing compounds, especially iron oxides, which collect in association with carbonaceous particulate matter in the particulate trap, and function to promote the combustion of this matter. The colloid in particular shows a lower level of associated deposit formation on the fuel injectors than the iron additives of the prior art. The method is thus particularly suitable for modern engines showing increased susceptibility to fuel injector deposits. The colloid also shows a balance of properties providing excellent suitability for use as an additive in fuels, and especially in diesel engine on-board dosing devices.
    Type: Grant
    Filed: March 7, 2008
    Date of Patent: February 4, 2014
    Assignee: Infineum International Limited
    Inventor: Russell M. Thompson
  • Patent number: 8287607
    Abstract: A method of improving the combustion of a fuel by adding a catalyst or combustion enhancer at an extremely low concentration, preferably in the range of 1 part catalyst per 200 million parts fuel to 1 part catalyst per 6 trillion parts fuel. The catalyst or combustion enhancer may be selected from a wide range of soluble compounds. The method may comprise the steps of an initial mixing of the catalyst or enhancer with a suitable solvent and then subsequent dilution steps using solvents or fuel. Suitable solvents include water, MTBE, methylketone, methyisobutylketone, butanol, isopropyl alcohol and other hydrophilic/oleophilic compounds.
    Type: Grant
    Filed: February 4, 2009
    Date of Patent: October 16, 2012
    Inventors: Robert Wilfred Carroll, Noel Carroll, William F. Carroll, Michael Carroll
  • Patent number: 8211190
    Abstract: This invention relates to fuel oil, especially middle distillate fuel oil, compositions comprising middle distillate fuel oil and incorporated therein an incorporated therein an additive composition comprising (a) at least one fuel-soluble or fuel-dispersible neutral alkaline earth metal compound and/or at least one fuel-soluble or fuel-dispersible neutral alkali metal compound, and (b) at least one fuel-soluble or fuel-dispersible transition metal compound, characterized in that the fuel oil composition contains at most 0.05 mass % of sulfur, the total metal content derived from (a) and (b) in the fuel oil composition is at most 50 ppm by mass, and the mass proportion of (a) to (b), based on metal content, is in the range of from 1:99 to 99:1.
    Type: Grant
    Filed: April 20, 2005
    Date of Patent: July 3, 2012
    Assignee: Infineum International Limited
    Inventors: Rinaldo Caprotti, Brid Dilworth, Carlo S. Fava, Philip Collier
  • Patent number: 8147568
    Abstract: A diesel fuel composition containing metallic additives that are stabilized against phase separation. The diesel fuel contains a colloidally dispersed or solubilized metal catalyst compound, which can be used for diesel particulate trap regeneration and, as a stabilizer, 5-1,000 ppm (weight) of an oil-soluble or oil-dispersible organic compound having a lipophilic hydrocarbyl chain having attached directly thereto at least two contiguous polar head functional groups, i.e., the functional groups are separated by no more than three carbon atoms. The diesel fuel composition is particularly suitable for use with diesel engines fitted with a particulate trap for emissions control.
    Type: Grant
    Filed: September 1, 2004
    Date of Patent: April 3, 2012
    Assignee: Infineum International Limited
    Inventors: Rinaldo Caprotti, Russell M. Thompson
  • Patent number: 8052958
    Abstract: Provided is a method for manufacturing a metal oxide hollow nanoparticles with excellent properties more easily and simply by a chemical vapor condensation employing metal ?-diketonates as precursors, and a metal oxide hollow nanoparticles manufactured by the method. The method includes: preparing metal ?-diketonate as a precursor; evaporating the metal ?-diketonate at a predetermined temperature higher than a melting point of the metal ?-diketonate; transferring the evaporated metal ?-diketonate into a reaction region; thermally decomposing the transferred gaseous metal ?-diketonate and simultaneously inducing a reaction of the transferred gaseous metal ?-diketonate with oxygen to synthesize the metal oxide hollow nanoparticle; and condensing and collecting the synthesized metal oxide hollow nanoparticles.
    Type: Grant
    Filed: November 29, 2005
    Date of Patent: November 8, 2011
    Assignee: Industry-University Cooperation Foundation Hanyang University
    Inventors: Jai Sung Lee, Chang Woo Lee, Sung Soon Im
  • Publication number: 20090282730
    Abstract: A method of improving the combustion of a fuel by adding a catalyst or combustion enhancer at an extremely low concentration, preferably in the range of 1 part catalyst per 200 million parts fuel to 1 part catalyst per 6 trillion parts fuel. The catalyst or combustion enhancer may be selected from a wide range of soluble compounds. The method may comprise the steps of an initial mixing of the catalyst or enhancer with a suitable solvent and then subsequent dilution steps using solvents or fuel. Suitable solvents include water, MTBE, methylketone, methyisobutylketone, butanol, isopropyl alcohol and other hydrophilic/oleophilic compounds.
    Type: Application
    Filed: February 4, 2009
    Publication date: November 19, 2009
    Inventors: Robert Wilfred Carroll, Noel Carroll, William F. Carroll, Michael Carroll
  • Patent number: 7503944
    Abstract: A method of improving the combustion of a fuel by adding a catalyst or combustion enhancer at an extremely low concentration, preferably in the range of 1 part catalyst per 200 million parts fuel to 1 part catalyst per 6 trillion parts fuel. The catalyst or combustion enhancer may be selected from a wide range of soluble compounds. The method may comprise the steps of an initial mixing of the catalyst or enhancer with a suitable solvent and then subsequent dilution steps using solvents or fuel. Suitable solvents include water, MTBE, methylketone, methylisobutylketone, butanol, isopropyl alcohol and other hydrophilic/oleophilic compounds.
    Type: Grant
    Filed: November 8, 2002
    Date of Patent: March 17, 2009
    Inventors: Robert W. Carroll, Noel Carroll, William F. Carroll, Michael Carroll
  • Patent number: 7306634
    Abstract: A fuel additive iron salt composition effective in improving the operation of diesel engine particulate traps when added to a diesel fuel so as to provide 1-25 ppm iron in the fuel which comprises an oil soluble or oil dispersible neutral or overbased iron salt of an acidic organic compound, 50-99 mole % of the total iron present in the composition being in the ferric form, the balance being the ferrous form.
    Type: Grant
    Filed: May 19, 2003
    Date of Patent: December 11, 2007
    Assignee: Infineum International Limited
    Inventors: Rinaldo Caprotti, Robert J. Pilling
  • Patent number: 7300477
    Abstract: A combustion additive is used for protecting and improving the operation of diesel fuel combustion systems. The additive contains one or more iron-containing compounds. The additive can be added to the fuel prior to introduction into a combustion chamber or to the exhaust after the combustion chamber. The additive will then enhance the operation of diesel fuel combustions systems by improving, for example, exhaust aftertreatment performance.
    Type: Grant
    Filed: August 14, 2003
    Date of Patent: November 27, 2007
    Assignee: Afton Chemical Corporation
    Inventors: Timothy J. Brennan, Scott D. Schwab
  • Patent number: 7288506
    Abstract: Aluminum carboxylate drag reducing agents are described herein. These materials are useful to reduce drag in hydrocarbon fluids and multiphase fluids of hydrocarbon(s) and water. No injection probes or other special equipment is expected to be required to introduce the drag reducing agent into the liquid stream. The drag reducing additives of the invention are not subject to shear degradation and do not cause undesirable changes in the emulsion or fluid quality of the fluid being treated, or undesirable foaming. In one non-limiting embodiment, an aluminum monocarboxylate is reacted with at least one carboxylic acid in situ. In another non-limiting embodiment, the aluminum carboxylate is introduced as a dispersion in a solvent such as paraffin oil. The drag reducing additives include aluminum dicarboxylates such as aluminum dioctoate, aluminum distearate, aluminum octoateoleate, aluminum octoatestearate, aluminum stearateoleate, hydroxyaluminum bis(2-ethylhexanoate) and mixtures thereof.
    Type: Grant
    Filed: November 24, 2003
    Date of Patent: October 30, 2007
    Assignee: Baker Hughes Incorporated
    Inventors: Vladimir Jovancicevic, Samuel Campbell, Sunder Ramachandran, Paul Hammonds, Steven J. Weghorn
  • Patent number: 7063729
    Abstract: A low-emissions diesel fuel comprises fungible aviation kerosene grade 55, 50–300 ppm detergent, 25–500 ppm lubricity additive and a bimetallic, fuel soluble platinum and cerium fuel borne catalyst (e.g., 0.1–2.0 ppm platinum COD and 5–20 ppm cerium oleate). The fuel can be used as is or in the form of an emulsion. A method of reducing the emissions of pollutants from a diesel engine, comprising running the engine on a fuel as defined. Retarding engine timing can further reduce NOx and the use of a diesel particulate filter and/or diesel oxidation catalyst can provide further reductions in carbon monoxide, unburned hydrocarbons and particulates.
    Type: Grant
    Filed: November 8, 2002
    Date of Patent: June 20, 2006
    Assignee: Clean Diesel Technologies, Inc.
    Inventors: James M. Valentine, Barry N. Sprague, Jeremy D. Peter-Hoblyn
  • Publication number: 20040172876
    Abstract: Delivery of metallic combustion catalysts to internal combustion engines and other combustion devices is improved by dosing units that have the ability to effect the slow and positive supply of metallic additives, including platinum and/or cerium containing catalyst compositions, to fuel. The invention provides additive dosing materials and methods for simply and effectively supplying catalytic metal fuel additives to fuel in suitable low concentrations as are effective. The dosing units can be used with devices made to contact diesel fuel. In one approach, a catalytic metal additive concentrate (CMAC) is prepared in normally solid, semisolid or viscous form. The CMAC will preferably be encapsulated with a solid polymer. The encapsulation can be accomplished by embedding or dispersing the CMAC in a suitable polymer. If desired, the CMAC can be dispersed in one polymer and then the resulting composite can be embedded in the same or a different polymer.
    Type: Application
    Filed: March 21, 2003
    Publication date: September 9, 2004
    Inventors: Barry N. Sprague, James M. Valentine
  • Publication number: 20040118032
    Abstract: The present invention relates to the reduction or inhibition of corrosion in an atmospheric burner unit by adding to a combustion system an effective amount of manganese, or a manganese precursor source, or derivative. The system may further include a catalyst package that may be composed of one or more individual organometallic compounds of Li, Na, K, Mg, Ca, Sr, Ba, Mo, Fe, Co, Pt, Ce, and combinations, mixtures or precursors thereof. The manganese component of the catalyst package of the present invention reduces or eliminates the poisoning of the combustion system, whereby improved combustion and reduced emissions result. In addition, this invention inhibits both high- and low-temperature corrosion that occurs on the hot surfaces of burner furnace walls and tubes, and on cooler surfaces of the burner unit exhaust stack.
    Type: Application
    Filed: December 18, 2002
    Publication date: June 24, 2004
    Inventors: Allen A. Aradi, Michael Wayne Adams, Stephen Alan Factor
  • Publication number: 20040035045
    Abstract: A fuels additive metallic salt composition effective in improving the operation of diesel engine particulate traps when added to a diesel fuel so as to provide 1-25 ppm metal in the fuel which comprises an oil soluble or oil dispersible overbased metal salt of an acidic organic compound, said salt composition containing 5-85 wt. % of a stoichiometric excess of metal over that required to neutralize the anionic portion of the salt, the metal being selected from the group consisting of Ca, Fe, Mg, Sr, Na, Ti, Zr, Mn, Zn and Ce.
    Type: Application
    Filed: May 19, 2003
    Publication date: February 26, 2004
    Inventors: Rinaldo Caprotti, Robert J. Pilling
  • Patent number: 6652608
    Abstract: A fuel composition of the present invention exhibits minimized hydrolysis and increased fuel stability, even after extended storage at 65° F. for 6-9 months. The composition, which is preferably not strongly alkaline (3.0 to 10.5), is more preferably weakly alkaline to mildly acidic (4.5 to 8.5) and most preferably slightly acidic (6.3 to 6.8), includes a lower dialkyl carbonate, a combustion improving amount of at least one high heating combustible compound containing at least one element selected from the group consisting of aluminum, boron, bromine, bismuth, beryllium, calcium, cesium, chromium, cobalt, copper, francium, gallium, germanium, iodine, iron, indium, lithium, magnesium, manganese, molybdenum, nickel, niobium, nitrogen, phosphorus, potassium, palladium, rubidium, sodium, tin, zinc, praseodymium, rhenium, silicon, vanadium, or mixture, and a hydrocarbon base fuel.
    Type: Grant
    Filed: December 8, 1997
    Date of Patent: November 25, 2003
    Inventor: William C. Orr
  • Publication number: 20030192232
    Abstract: A catalyst and method for improving combustion efficiency in boilers, engines, and other equipment by adding to fossil and other fuels a fuel additive that contains an oil-soluble iron compound and an over-based magnesium compound and for which the median particle size of the additive is less than about 0.01 micrometers.
    Type: Application
    Filed: April 28, 2003
    Publication date: October 16, 2003
    Inventor: Walter R. May
  • Patent number: 6488725
    Abstract: The present invention relates to the use of fuel additives in the regeneration of particulate filter traps, e.g. diesel particulate filter traps. The invention further relates to fuel additives suitable for use in such a process.
    Type: Grant
    Filed: June 30, 2000
    Date of Patent: December 3, 2002
    Assignee: The Associated Octel Company Limited
    Inventors: Matthew William Vincent, Paul Joseph Richards, Stephen Leonard Cook
  • Publication number: 20010001354
    Abstract: Gasoline engines equipped with three-way catalysts emit less NOx, hydrocarbons and carbon monoxide when operated on fuels containing a bimetallic catalyst comprising rhodium acetylacetonate and a fuel-soluble platinum compound such as diphenyl cyclooctadiene platinum(II) or platinum acetyl acetonate. The total metals in the additive will be dosed at a concentration of less than about 2 ppm (milligrams of metal to liter of gasoline) based on the amount of gasoline burned in the engine. Preferred dosages will be from about 0.15 to about 1.5 ppm, with a ratio of platinum to rhodium of from about 3:1 to about 15:1.
    Type: Application
    Filed: January 8, 2001
    Publication date: May 24, 2001
    Inventors: Jeremy D. Peter-Hoblyn, James M. Valentine, Barry N. Sprague
  • Patent number: 6056792
    Abstract: A process of improving the oxidation of carbonaceous products derived from the combustion of fuel and improving combustion of a fuel is described. The process comprises adding to the fuel before combustion thereof a composition comprising at least an organo-metallic complex of a Group I or Group II metal characterized in that the concentration of the complex in the fuel before combustion is 30 ppm or less.
    Type: Grant
    Filed: February 13, 1998
    Date of Patent: May 2, 2000
    Assignee: The Associated Octel Company Limited
    Inventors: Donald Barr, Stephen L. Cook, Paul J. Richards, Maurice W. Rush
  • Patent number: 5593464
    Abstract: The emission of particulates and unburnt hydrocarbons in the exhaust gas emissions from liquid hydrocarbon fuels, especially diesel fuels and fuel oils is reduced by incorporating into the fuel an effective amount of an oil-soluble alkali, alkaline earth or rare earth complex of the formula:M(R).sub.m.nLwherein M is the metal cation of valency m, R is the residue of an organic compound RH containing an active hydrocarbon atom, preferably a beta-diketone, n is an integer usually 1, 2, 3 or 4, and L is an organic donor ligand molecule, i.e., a Lewis base.
    Type: Grant
    Filed: May 17, 1995
    Date of Patent: January 14, 1997
    Assignee: The Associated Octel Company Limited
    Inventors: Stephen L. Cook, Maurice W. Rush, Paul J. Richards, Donald Barr
  • Patent number: 5376154
    Abstract: This invention relates to low-sulfur diesel fuels which are useful with diesel engines equipped with exhaust system particulate traps. These fuels contain an effective amount of an organometallic complex to lower the ignition temperature of exhaust particles collected in the trap. The sulfur content of these diesel fuels is no more than about 0.1% by weight, preferably no more than about 0.05% by weight. The organometallic complex is soluble or stably dispersible in the diesel fuel and is derived from (i) an organic compound containing at least two functional groups attached to a hydrocarbon linkage, and (ii) a metal reactant capable of forming a complex with the organic compound (i), the metal being any metal capable of reducing the ignition temperature of the exhaust particles. The functional groups include .dbd.X, --XR, --NR.sub.2, --NO.sub.2, .dbd.NR, .dbd.NXR, .dbd.N--R*--XR, ##STR1## --CN, --N.dbd.NR and --N.dbd.CR.sub.
    Type: Grant
    Filed: September 3, 1991
    Date of Patent: December 27, 1994
    Assignee: The Lubrizol Corporation
    Inventors: Daniel T. Daly, Paul E. Adams, Nai Z. Huang, Scott T. Jolley, Frederick W. Koch, Christopher J. Kolp, Stephen H. Stoldt, Reed H. Walsh, Richard A. Denis, Dennis M. Dishong