Strand Or Fiber Material Specified As Having Micro Dimensions (i.e., Microfiber) Patents (Class 442/340)
  • Patent number: 10472770
    Abstract: A wet-laid nonwoven having a1) 5-50 wt % matrix fibers and a2) 50-95 wt % at least partially thermally fused binding fibers or b1) 50-80 wt % matrix fibers and b2) 20-50 wt % binders, can be used as a light distributing element.
    Type: Grant
    Filed: March 3, 2015
    Date of Patent: November 12, 2019
    Assignee: CARL FREUDENBERG KG
    Inventors: Rudolf Wagner, Guenter Frey, Klaus Marek, Armin Greiner, Jochen Bialek
  • Patent number: 10363338
    Abstract: A resilient coform nonwoven web that contains a matrix of meltblown fibers and an absorbent material is provided. The meltblown fibers may constitute from 45 wt % to about 99 wt % of the web and the absorbent material may constitute from about 1 wt % to about 55 wt % of the web. The meltblown fibers may be formed from a thermoplastic composition that contains at least one propylene/?-olefin copolymer having a propylene content of from about 60 mole % to about 99.5 mole % and an ?-olefin content of from about 0.5 mole % to about 40 mole %. The copolymer may have a density of from about 0.86 to about 0.90 grams per cubic centimeter and the thermoplastic composition may have a melt flow rate of from about 200 to about 6000 grams per 10 minutes, determined at 230° C. in accordance with ASTM Test Method D1238-E. The coform web may be imparted with a three-dimensional texture by, for example, using a three-dimensional forming surface.
    Type: Grant
    Filed: April 21, 2016
    Date of Patent: July 30, 2019
    Assignee: KIMBERLY-CLARK WORLDWIDE, INC.
    Inventor: David M. Jackson
  • Patent number: 10125297
    Abstract: Methods for producing a dimensionally stable phase change material (PCM), and dimensionally stable PCMs are disclosed. The methods include providing a porous base material, mixing a phase change material having a polar functional group with a substance that increases the polar attraction of the phase change material for the porous base material to form a mixture thereof; and, thereafter, mixing the mixture with the porous base material until a selected saturation of phase change material in the porous base material is reached. The methods may include filtering the porous base material after the selected saturation is reached to form a cake of dimensionally stable PCM and, thereafter, reducing the size of the dimensionally stable PCM to an average mean particle size of about 10 to about 50 ?m, or more preferably 20 to 30 ?m.
    Type: Grant
    Filed: January 19, 2016
    Date of Patent: November 13, 2018
    Assignee: Microtek Laboratories, INC.
    Inventors: Carl M. Lentz, Teresa T. Virgallito, Jerry K. Lawson
  • Patent number: 10052291
    Abstract: The present invention relates to electrospun fibers comprising i) a hydrophilic polymer that is soluble in a first solvent, ii) a bioadhesive substance that is slightly soluble in said first solvent, iii) optionally, a drug substance.
    Type: Grant
    Filed: June 9, 2015
    Date of Patent: August 21, 2018
    Assignee: DERMTREAT APS
    Inventors: Jens Hansen, Lars Hellerung Christiansen
  • Patent number: 9365885
    Abstract: The disclosure provides methods and kits for performing automated high-throughput assays to measure bactericidal activity in samples, such as plasma or sera from vaccinated subjects to evaluate the efficacy of vaccines against bacterial pathogens. The method combines obligatory linear-range data analysis, plate sealing and liquid volume handling for all assay steps to provide an automated, high-throughput measurement of bactericidal activity with favorable inter-assay and inter-operator variability.
    Type: Grant
    Filed: June 16, 2010
    Date of Patent: June 14, 2016
    Inventors: Puiying Annie Mak, George Santos, Jeffrey Eugene Janes, John J. Donnelly
  • Patent number: 9212433
    Abstract: Provided are a polymethylpentene conjugate fiber, which is capable of imparting to a lightweight polymethylpentene fiber an ability to develop a vivid and deep color, and a porous polymethylpentene fiber, which has a lightweight, a high pore diameter uniformity and a high porosity retention ratio against an external force, said polymethylpentene conjugate fiber and said porous polymethylpentene fiber being appropriately usable as a fiber structure for woven knitted goods, non-woven fabrics, yarns, cotton waddings, etc. The polymethylpentene conjugate fiber is characterized by having an island-in-sea structure wherein the sea component comprises a polymethylpentene-based resin and the island component comprises a thermoplastic resin. The porous polymethylpentene fiber, which comprises a polymethylpentene-based resin, is characterized in that the coefficient of variation (CV) of pore diameter at the fiber cross section is 1-50%.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: December 15, 2015
    Assignee: TORAY INDUSTRIES, INC.
    Inventors: Hidekazu Kano, Shogo Hamanaka, Yoshitaka Aranishi
  • Patent number: 9180395
    Abstract: Compositions of porous thin films and methods of making are provided. The methods involve self-assembly of a cyclic peptide in the presence of a block copolymer.
    Type: Grant
    Filed: November 20, 2010
    Date of Patent: November 10, 2015
    Assignee: The Regents of the University of California
    Inventor: Ting Xu
  • Patent number: 9073061
    Abstract: Composite filter media which are highly resistant to thermal degradation and retain filter efficiency and extended lifetime in high temperature environments are disclosed. Methods of making the filter media are also disclosed. A composite filter media for removal of particles from a gas stream includes a layer of a porous polymeric membrane, the layer having an upstream side and a downstream side relative to the direction of the gas stream; and at least one layer of an electrostatic microfiber web containing an antioxidant in an amount ranging from about 0.1% to about 10% by weight; the at least one layer of microfiber web disposed on the upstream side of the porous polymeric membrane layer.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: July 7, 2015
    Assignee: W. L. Gore & Associates, Inc.
    Inventors: James Theodore Goldbach, Wai Sing Poon
  • Publication number: 20150147930
    Abstract: An article of manufacture and a method of manufacturing a soft batt insulation material. The article of manufacture comprises fibers having crimps and surface features such as scales that provide a batt structure which is resiliently compressible. Fiber treatments provide fire, pest, fungus, and mold resistance. The treatments can be to the surface or to the internal structure of the fiber. The insulation batts are comprised of one or more layers of intermeshed fibers. The fibers can be wool or other protein based hair. The batts can include a restrainment structure that limits that expansion of the batts.
    Type: Application
    Filed: January 30, 2015
    Publication date: May 28, 2015
    Inventors: Priscilla BURGESS, Joe J. Pozzi
  • Publication number: 20150111019
    Abstract: The present invention is directed toward an electret nanofibrous web comprising a single source randomly intermingled fiber network with a range of fiber diameters that yields improved mechanical strength.
    Type: Application
    Filed: October 21, 2014
    Publication date: April 23, 2015
    Inventors: TAO HUANG, Gelnn Creighton Catlin, Jay J. Croft, Thomas Patrick Daly, Zachary R. Dilworth, Thomas William Harding, Vindhya Mishra, Carl Saquing, Wai-Shing Yung
  • Patent number: 8969224
    Abstract: A sea-island composite fiber has an island component which is ultrafine fibers having a noncircular cross-section, the ultrafine fibers being uniform in the degree of non-circularity and in the diameter of the circumscribed circle. The sea-island composite fiber includes an easily soluble polymer as the sea component and a sparingly soluble polymer as the island component, and the island component has a circumscribed-circle diameter of 10-1,000 nm, a dispersion in circumscribed-circle diameter of 1-20%, a degree of non-circularity of 1.2-5.0, and a dispersion in the degree of non-circularity of 1-10%.
    Type: Grant
    Filed: January 26, 2011
    Date of Patent: March 3, 2015
    Assignee: Toray Industries, Inc.
    Inventors: Masato Masuda, Akira Kishiro, Joji Funakoshi, Yoshitsugu Funatsu, Seiji Mizukami
  • Patent number: 8962501
    Abstract: Nonwoven web products containing sub-micron fibers, and more specifically nonwoven web products having sub-micron fibers formed by fibrillation of polymer films, and nonwoven materials and articles incorporating them, and methods of producing these products.
    Type: Grant
    Filed: March 7, 2011
    Date of Patent: February 24, 2015
    Assignee: Polymer Group, Inc.
    Inventors: Michael H. Johnson, Timothy Krause, Michael W. Hayes, Rajeev Chhabra, Savas Aydore, Olaf Erik Alexander Isele, Han Xu
  • Publication number: 20150030797
    Abstract: Provided is an adhesive tape including: a substrate; and an adhesive layer laminated on one surface or both surfaces of the substrate, wherein one or both of the substrate and the adhesive layer are produced in a nano-web form in which fiber strands are captured by a spinning method. Thus, the adhesive tape can be made thin, and an adhesive strength can be improved. In addition, the adhesive tape can be precisely attached on a corrugated surface. When the adhesive tape attached between components is separated from the components, the adhesive layers can be prevented from remaining on the surfaces of the components.
    Type: Application
    Filed: February 22, 2013
    Publication date: January 29, 2015
    Inventors: In Yong Seo, Seung Hoon Lee, Yong Sik Jung, Yun Mi So
  • Patent number: 8921244
    Abstract: Hydroxyl polymer fiber fibrous structures and processes for making same are provided. More particularly, hydroxyl polymer fiber fibrous structures comprising a non-naturally occurring hydroxyl polymer fiber wherein the fibrous structure exhibits a total pore volume of pores in the range of greater than 20 ?m to 500 ?m of greater than 3.75 mm3/mg of dry fibrous structure mass, and/or fibrous structures comprising a hydroxyl polymer fiber and a solid additive are provided.
    Type: Grant
    Filed: August 16, 2006
    Date of Patent: December 30, 2014
    Assignee: The Procter & Gamble Company
    Inventors: David William Cabell, David Warren Loebker, Paul Dennis Trokhan
  • Patent number: 8906815
    Abstract: The disclosure relates to composite nonwoven fibrous webs including a population of sub-micrometer fibers having a median diameter less than one micrometer (?m), and a population of microfibers having a median diameter of at least 1 ?m. At least, one of the fiber populations is oriented, and each composite nonwoven fibrous web has a thickness and exhibits a Solidity of less than 10%. The disclosure also relates to methods of making composite nonwoven fibrous webs, and articles including composite nonwoven fibrous webs made according to the methods. In exemplary applications, the articles may be used as gas filtration articles, liquid filtration articles, sound absorption articles, surface cleaning articles, cellular growth support articles, drug delivery articles, personal hygiene articles, or wound dressing articles.
    Type: Grant
    Filed: December 15, 2008
    Date of Patent: December 9, 2014
    Assignee: 3M Innovative Properties Company
    Inventors: Eric M. Moore, Michael R. Berrigan
  • Publication number: 20140356574
    Abstract: Fabrics made for apparel, tents, sleeping bags and the like, in various composites, constructed such that a combination of substrate layers and insulation layers is configured to provide improved thermal insulation. The fabric composites are constructed to form a radiant barrier against heat loss via radiation and via conduction from a body.
    Type: Application
    Filed: June 2, 2014
    Publication date: December 4, 2014
    Inventors: Brian John Conolly, Thomas Kenneth Hussey
  • Patent number: 8895458
    Abstract: An abrasive cloth which comprises an article in a sheet form having, in at least a part thereof, nanofibers comprising a thermoplastic polymer and having a number average single fiber fineness of 1×10?8 to 2×10?4 dtex wherein the sum of single fiber fineness percentages (which is defined in the specification) of a single fiber fineness of 1×10?8 to 2×10?4 dtex is the range of 60% or more, and exhibits a stress at 10% elongation in a longitudinal direction of 5 to 200 N/cm-width; and a method for preparing a nanofiber structure, which comprises providing a nanofiber dispersion having a dispersant and, dispersed therein, nanofibers comprising a thermoplastic polymer and having a number average diameter of 1 to 500 nm, attaching the dispersion to a support, and then removing said dispersant. The above abrasive cloth is excellent in texturing characteristics, and the above method allows the preparation of a nanofiber structure wherein nanofibers form a composite with the support.
    Type: Grant
    Filed: April 20, 2005
    Date of Patent: November 25, 2014
    Assignee: Toray Industries, Inc.
    Inventors: Shuichi Nonaka, Yoshihiro Naruse, Takashi Ochi, Takeo Matsunase
  • Patent number: 8889572
    Abstract: A gradient nanofiber non-woven contains a plurality of nanofibers where at least 70% of the nanofibers are bonded to other nanofibers. The nanofibers each have a surface and a center and contain a bulk polymer and a third component. The majority by weight at the surface of the nanofiber is the third component and the majority by weight at the center of the nanofiber is the bulk polymer and there is a concentration gradient from most concentrated to least from the surface of the nanofiber to the center of the nanofiber. The process for forming a gradient nanofiber non-woven is also disclosed.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: November 18, 2014
    Assignee: Milliken & Company
    Inventors: Walter A. Scrivens, Hao Zhou
  • Patent number: 8883304
    Abstract: A synthetic fiber including core and sheath is provided. The sheath covers the core and includes a plurality of segment portions and a plurality of sacrificial portions. The plurality of sacrificial portions are connected to the plurality of segment portions, where the plurality of segment portions and the plurality of sacrificial portions are arranged alternately to each other on an outer surface of the core, and the material of the plurality of segment portions is different with that of the plurality of sacrificial portions.
    Type: Grant
    Filed: November 4, 2009
    Date of Patent: November 11, 2014
    Assignee: Taiwan Textile Research Institute
    Inventors: Chao-Huei Liu, Ruey-Loung Chern
  • Patent number: 8883662
    Abstract: A (semi)grain-finished leather-like sheet composed of an entangled nonwoven fabric of three-dimensionally entangled fiber bundles containing microfine long fibers and an elastic polymer contained in the entangled nonwoven fabric. When dividing the (semi)grain-finished leather-like sheet to five layers with equal thickness, i.e., surface layer, substrate layer 1, substrate layer 2, substrate layer 3 and back layer in this order along the thickness direction, part of the microfine long fibers forming the surface layer and/or the back layer are fuse-bonded to each other and the microfine long fibers forming the intermediate layer are not fuse-bonded. With such a fuse-bonding state of the microfine long fibers, the (semi)grain-finished leather-like sheet combines a low compression resistance and a dense feel each comparable to natural leathers, has a sufficient practical strength, and are excellent in properties which are required according to its use.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: November 11, 2014
    Assignee: Kuraray Co., Ltd.
    Inventors: Jiro Tanaka, Tsuyoshi Yamasaki, Yoshiyuki Ando, Norio Makiyama, Kimio Nakayama
  • Patent number: 8809213
    Abstract: A textile applicator for application of a sanitizing and/or disinfecting solution to a surface. The applicator incorporates a plurality of direct spun polyester microfiber yarns to define a textile surface which does not bind or inactivate quaternary ammonium compounds, chlorine-based or peracetic and/or other peroxygen based sanitizing and/or disinfecting agents. Thus, the sanitizing and/or disinfecting agent is readily released to the surface being treated without any requirement of pre-loading surface binding sites or applying a charge-modifying surface treatment.
    Type: Grant
    Filed: February 14, 2012
    Date of Patent: August 19, 2014
    Assignee: Tietex International, Ltd
    Inventors: Martin Wildeman, David R. Harry, Jr., Michelis Hardegree, Lori S. Sears
  • Patent number: 8803115
    Abstract: The present invention relates to a coated microfibrous web, a process for producing the same, use thereof as a covering of a radiation protection material as well as a radiation protection device. The coated microfibrous web comprises: (i) a microfibrous web impregnated with a fluoropolymer; and (ii) a layer comprising polyurethane, which is present only on one side of the microfibrous web.
    Type: Grant
    Filed: August 10, 2010
    Date of Patent: August 12, 2014
    Assignee: Mavig GmbH
    Inventors: Thomas Leucht, Barbara Ballsieper
  • Patent number: 8785195
    Abstract: A microfiber showing improved mechanical strength, which comprises a micro gel fiber consisting of collagen gel or the like covered with high strength hydrogel such as alginate gel.
    Type: Grant
    Filed: October 12, 2010
    Date of Patent: July 22, 2014
    Assignee: The University of Tokyo
    Inventors: Shoji Takeuchi, Hiroaki Onoe, Yukiko Matsunaga, Daisuke Kiriya, Riho Gojo, Midori Negishi
  • Patent number: 8759235
    Abstract: A new orthopedic prayer mat proposed, whereas the new orthopedic prayer mat has a multiple layered structure. The top layer is made from microfiber which is antimicrobial, anti-molding, water-resistant, anti-dust and heat-resistant. The bottom layer is an anti-slip layer to prevent the user from physical injury in any situation while using the mat, and a soft polyurethane layer and an anti-fatigue layer or a hard polyurethane layer are arranged between the top microfiber layer and the bottom anti-slip layer in order to absorb pressure pressure and providing support, and the soft and hard polyurethane layer are combined at an angle to adjust the ratio of the weight-absorption and bearing to form the orthopedic prayer mat. Further the angle between the layers is tailored for users according to user's weight, height, body structure type and healthy conditions.
    Type: Grant
    Filed: May 10, 2011
    Date of Patent: June 24, 2014
    Inventor: Nader Sabry
  • Patent number: 8753438
    Abstract: The assemblies of the invention can comprise a fine fiber layer having dispersed within the fine fiber layer an active particulate material. Fluid that flows through the assemblies of the invention can have any material dispersed or dissolved in the fluid react with, be absorbed by, or adsorbed onto, the active particulate within the nanofiber layer. The structures of the invention can act simply as reactive, absorptive, or adsorptive layers with no filtration properties, or the structures of the invention can be assembled into filters that can filter particulate from a mobile fluid while simultaneously reacting, absorbing, or adsorbing materials from the mobile fluid.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: June 17, 2014
    Assignee: Donaldson Company, Inc.
    Inventors: Andrew J. Dallas, William Lefei Ding, Jon D. Joriman, Dustin Zastera, James R. Giertz, Veli E. Kalayci, Hoo Y. Chung
  • Publication number: 20140134378
    Abstract: The present disclosure encompasses three-dimensional articles comprising flexible-composite materials and methods of manufacturing said three-dimensional articles. More particularly, the present system relates to methods for manufacturing seamless three-dimensional-shaped articles usable for such finished products as airbags/inflatable structures, bags, shoes, and similar three-dimensional products. A preferred manufacturing process combines composite molding methods with specific precursor materials to form fiber-reinforced continuous shaped articles that are flexible and collapsible.
    Type: Application
    Filed: November 9, 2013
    Publication date: May 15, 2014
    Applicant: Cubic Tech Corporation
    Inventors: Roland Joseph Downs, Christopher Michael Adams, Jon Michael Holweger
  • Patent number: 8709118
    Abstract: Disclosed are improved polymer materials. Also disclosed are fine fiber materials that can be made from the improved polymeric materials in the form of microfiber and nanofiber structures. The microfiber and nanofiber structures can be used in a variety of useful applications including the formation of filter materials.
    Type: Grant
    Filed: January 10, 2013
    Date of Patent: April 29, 2014
    Assignee: Donaldson Company, Inc.
    Inventors: Hoo Y. Chung, John R. B. Hall, Mark A. Gogins, Douglas G. Crofoot, Thomas M. Weik
  • Publication number: 20140106120
    Abstract: Sheet-like composite element comprising a) at least one layer of a textile web or a non-woven based on microfibers with a fineness of at most 1 dtex, b) at least one layer made of a pressure dampening materials, and c) at least one layer of a polymeric material, the coefficient of friction of which on a given surface exceeds the coefficient of friction of layer a) on the same surface and measured under identical conditions by at least 30%.
    Type: Application
    Filed: April 13, 2012
    Publication date: April 17, 2014
    Applicant: PLS SOLUTIONS GMBH
    Inventor: Patrick Slavicek
  • Patent number: 8697587
    Abstract: A nonwoven web of fibers that have a number average diameter of less than 1 micron. The web can have a Poisson Ratio of less than about 0.8, a solidity of at least about 20%, a basis weight of at least about 1 gsm, and a thickness of at least 1 micrometer.
    Type: Grant
    Filed: July 1, 2009
    Date of Patent: April 15, 2014
    Assignee: E I du Pont de Nemours and Company
    Inventors: Pankaj Arora, Guanghui Chen, Simon Frisk, David Keith Graham, Jr., Robert Anthony Marin, Hageun Suh
  • Patent number: 8658548
    Abstract: One embodiment of the present invention is a nonwoven fabric comprising a support web and a fibrous barrier web, having a hydrohead of at least about 145 cm and a Frazier permeability of at least about 0.3 m3/m2-min.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: February 25, 2014
    Assignee: E I du Pont de Nemours and Company
    Inventor: Michael Allen Bryner
  • Publication number: 20130273801
    Abstract: A non-woven web, comprising one or more polymeric fibers, wherein the number-average fiber diameter distribution of said one or more polymeric fibers conforms to a Johnson unbounded distribution. Non-woven webs comprising such polymeric fibers are rendered with mean-flow pore size and porosity desirable for specific filtration applications such as hepafiltration.
    Type: Application
    Filed: June 12, 2013
    Publication date: October 17, 2013
    Inventor: PATRICK HENRY YOUNG
  • Patent number: 8513147
    Abstract: A water non-dispersible polymer microfiber is provided comprising at least one water non-dispersible polymer wherein the water non-dispersible polymer microfiber has an equivalent diameter of less than 5 microns and length of less than 25 millimeters. A process for producing water non-dispersible polymer microfibers is also provided, the process comprising: a) cutting a multicomponent fiber into cut multicomponent fibers; b) contacting a fiber-containing feedstock with water to produce a fiber mix slurry; wherein the fiber-containing feedstock comprises cut multicomponent fibers; c) heating the fiber mix slurry to produce a heated fiber mix slurry; d) optionally, mixing the fiber mix slurry in a shearing zone; e) removing at least a portion of the sulfopolyester from the multicomponent fiber to produce a slurry mixture comprising a sulfopolyester dispersion and water non-dispersible polymer microfibers; and f) separating the water non-dispersible polymer microfibers from the slurry mixture.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: August 20, 2013
    Assignee: Eastman Chemical Company
    Inventors: Rakesh Kumar Gupta, Daniel William Klosiewicz, Melvin Glenn Mitchell
  • Patent number: 8445391
    Abstract: A leather-like sheet composed of a microfine-fiber entangled body made of bundles of microfine fibers and an elastic polymer impregnated therein. The bundles of microfine fibers are composed of microfine monofibers having an average cross-sectional area of 0.1 to 30 ?m2 and have an average cross-sectional area of 40 to 400 ?m2. The bundles of microfine fibers exist in a density of 600 to 4000/mm2 on a cross section taken along the thickness direction of the microfine-fiber entangled body. The elastic polymer contains 30 to 100% by mass of a polymer of ethylenically unsaturated monomer. The polymer of ethylenically unsaturated monomer is composed of a soft component having a glass transition temperature (Tg) of less than ?5° C., a crosslinkable component, and optionally a hard component having a glass transition temperature (Tg) of higher than 50° C. and another component. The polymer of ethylenically unsaturated monomer is bonded to the microfine fibers in the bundles of microfine fibers.
    Type: Grant
    Filed: September 28, 2006
    Date of Patent: May 21, 2013
    Assignee: Kuraray Co., Ltd.
    Inventors: Kimio Nakayama, Tsuyoshi Yamasaki, Nobuo Takaoka, Jiro Tanaka
  • Patent number: 8410006
    Abstract: The present invention is directed to a high surface area fibers and an improved filter composite media made from the same. More specifically, the composite media preferably comprises a winged-fiber layer having high surface area fibers for increased absorption and strength and a meltblown layer for additional filtration. In one preferred embodiment the high surface area fibers have a middle region with a plurality of projections that define a plurality of channels, which increases the surface area of the fiber. In one preferred embodiment, the high surface area fiber has a specific surface area of about 140,000 cm2/g or higher and a denier of about 1.0 to about 2.0. The high surface area fiber of the present invention is made using a bicomponent extrusion process using a thermoplastic polymer and a dissolvable sheath.
    Type: Grant
    Filed: June 12, 2007
    Date of Patent: April 2, 2013
    Inventors: Walter Chappas, Behnam Pourdeyhimi
  • Patent number: 8383529
    Abstract: Disclosed is a cellulose nonwoven fabric containing cellulose fibers having a maximum fiber diameter of not more than 1500 nm and a crystallinity determined by solid state NMR techniques of not less than 60%. The porosity of the cellulose nonwoven fabric is not less than 40% and not more than 99%.
    Type: Grant
    Filed: June 30, 2005
    Date of Patent: February 26, 2013
    Assignee: Asahi Kasei Kabushiki Kaisha
    Inventors: Hirofumi Ono, Mikihiko Nakamura, Minoru Hayashi
  • Patent number: 8372764
    Abstract: A highly transparent fiber composite material is provided that can be manufactured through a simplified process using reduced amounts of raw materials and that has high flexibility and low thermal expansivity and retains good functionality of the fiber material. The fiber composite material includes: a fiber assembly having an average fiber diameter of 4 to 200 nm and a 50 ?m-thick visible light transmittance of 3% or more; and a coating layer that coats and smoothes the surface of the fiber assembly, wherein the fiber composite material has a 50 ?m-thick visible light transmittance of 60% or more. With this fiber assembly, the scattering of light caused by the irregularities on the surface can be suppressed by coating the surface with the coating layer to smooth the surface, whereby a highly transparent fiber composite material can be obtained.
    Type: Grant
    Filed: July 12, 2007
    Date of Patent: February 12, 2013
    Assignee: Rohm Co., Ltd.
    Inventors: Hiroyuki Yano, Masaya Nogi, Kentaro Abe, Shinsuke Ifuku, Noriyuki Shimoji, Yoshiaki Oku, Suguru Okuyama
  • Patent number: 8367570
    Abstract: The present invention is generally directed to a liquid entrapping device having the capacity to absorb liquids. More particularly, the present invention is directed to a liquid entrapping device comprising an absorbent component, hydrophilic elastomeric fibrous component in fluid communication therewith, and optionally an adhesive component. The present invention is also directed to a liquid entrapping device having the capacity to absorb liquids while maintaining a suitable degree of mechanical strength. Furthermore, the present invention is generally directed to methods for making and using the foregoing devices and materials.
    Type: Grant
    Filed: May 16, 2006
    Date of Patent: February 5, 2013
    Assignee: The University of Akron
    Inventors: Darrell H. Reneker, Daniel J. Smith
  • Patent number: 8366797
    Abstract: Disclosed are improved polymer materials. Also disclosed are fine fiber materials that can be made from the improved polymeric materials in the form of microfiber and nanofiber structures. The microfiber and nanofiber structures can be used in a variety of useful applications including the formation of filter materials.
    Type: Grant
    Filed: August 17, 2011
    Date of Patent: February 5, 2013
    Assignee: Donaldson Company, Inc.
    Inventors: Hoo Y. Chung, John R. B. Hall, Mark A. Gogins, Douglas G. Crofoot, Thomas M. Weik
  • Patent number: 8343612
    Abstract: An absorbent fiber web has a base layer of cellulose fibers and an external layer that is connected at least across areas thereof with the base layer. The external layer is a nonwoven of nano fibers. The base layer and the nonwoven are connected to one another across areas thereof without a binder.
    Type: Grant
    Filed: May 22, 2009
    Date of Patent: January 1, 2013
    Assignee: McAirlaid's Vliesstoffe GmbH & Co. KG
    Inventors: Jens Söder, Andreas Schmidt
  • Patent number: 8318618
    Abstract: A mat having a highly uniform porosity distribution is produced by consolidating 15 or more layers of melt blown webs (or the like) having different orientations. Control over the porosity is provided by using webs that exhibit a narrow, unimodal distribution of fiber diameters over the bulk of its distribution, such as in the top 80%. A compliance of the mats can be chosen by selecting a number and orientation of the webs. It is thus possible to produce mats that are good candidates for vascular grafts, for example. The uniformity of the porosity within the range of 6 ?m to 30 ?m permits seeding of the vascular graft with endothelial and smooth muscle cells. The mats have the demonstrated ability to retain, and support growth of, smooth muscle cells and endothelial cells.
    Type: Grant
    Filed: May 21, 2008
    Date of Patent: November 27, 2012
    Assignee: National Research Council of Canada
    Inventors: Abdellah Ajji, Marie Moreno, Martin Bureau
  • Publication number: 20120251597
    Abstract: Various fibrous articles incorporating a water non-dispersible short-cut polymer microfiber are provided. The water non-dispersible short-cut polymer microfibers can be incorporated into a number of different fibrous articles including personal care products, medical care products, automotive products, household products, personal recreational products, specialty papers, paper products, and building and landscaping materials. In addition, the water non-dispersible short-cut polymer microfibers can be incorporated into nonwoven webs, thermobonded webs, hydroentangled webs, multilayer nonwovens, laminates, composites, wet-laid webs, dry-laid webs, laminates, composites, wet laps, woven articles, fabrics and geotextiles. These various end products can incorporate the water non-dispersible short-cut polymer microfibers in varying amounts based on the desired end use.
    Type: Application
    Filed: January 18, 2012
    Publication date: October 4, 2012
    Applicant: EASTMAN CHEMICAL COMPANY
    Inventors: Rakesh Kumar Gupta, Daniel William Klosiewicz, Melvin Glenn Mitchell, Mark Dwight Clark, Chris Delbert Anderson
  • Publication number: 20120238169
    Abstract: An insulation package and method of formation including a functional layer, a breathable water repellant insulating layer, and a highly breathable microporous membrane layer having a network of pores. The functional fabric, the highly breathable insulating layer and the microporous membrane layer are laminated to one another to form a waterproof breathable insulated fabric.
    Type: Application
    Filed: May 29, 2012
    Publication date: September 20, 2012
    Inventors: Vanessa MASON, Joseph Rumiesz
  • Patent number: 8263506
    Abstract: Cellulose filtration products comprising nonwoven lyocell fiber webs in which the fibers have a diameter of from 3 to 12 microns, the largest pore diameter of less than about 300 microns and a mean flow pore diameter of less than about 150 microns are disclosed. Multilayer nonwoven lyocell fiber webs are also disclosed which have lower mean flow pore diameters and lower pore sizes.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: September 11, 2012
    Assignee: Weyerhaeuser NR Company
    Inventor: Mengkui Luo
  • Publication number: 20120219464
    Abstract: There is provided an inorganic fiber formed article in which the thickness and the surface density can be easily controlled and which has excellent workability and handleability and prevents the deterioration of the work environment when the inorganic fiber formed article is processed for applications, e.g., a heat insulator or a mat. The inorganic fiber formed article includes a mat-like aggregate of inorganic fibers, the inorganic fiber formed article being subjected to needling treatment. The needling density of a surface of the mat exceeds 50 punches/cm2. One or more of requirements (1) to (3) described below is satisfied. (1) The ratio of the number NA of fiber bundles to the number NB of fiber bundles, i.e., NA/NB, is 0.5 or less, the fiber bundles extending in the thickness direction and being observed in regions with a predetermined width W of section A in the longitudinal direction and section B in the transverse direction.
    Type: Application
    Filed: November 4, 2010
    Publication date: August 30, 2012
    Applicant: MITSUBISHI PLASTICS. INC.
    Inventors: Toshiaki Sasaki, Tomoyuki Kobayashi, Hisashi Aoyagi
  • Patent number: 8246730
    Abstract: The assemblies of the invention can comprise a fine fiber layer having dispersed within the fine fiber layer an active particulate material. Fluid that flows through the assemblies of the invention can have any material dispersed or dissolved in the fluid react with, be absorbed by, or adsorbed onto, the active particulate within the nanofiber layer. The structures of the invention can act simply as reactive, absorptive, or adsorptive layers with no filtration properties, or the structures of the invention can be assembled into filters that can filter particulate from a mobile fluid while simultaneously reacting, absorbing, or adsorbing materials from the mobile fluid.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: August 21, 2012
    Assignee: Donaldson Company, Inc.
    Inventors: Andrew J. Dallas, William Lefei Ding, Jon D. Joriman, Dustin Zastera, James R. Giertz, Veli Kalayci, Hoo Y. Chung
  • Patent number: 8240484
    Abstract: Herein are disclosed high loft spunbonded webs that are substantially free of crimped fibers and gap-formed fibers. The webs exhibit a solidity of from less than 8.0% to about 4.0% and a ratio of Effective Fiber Diameter to Actual Fiber Diameter of at least 1.40. Also disclosed are methods of making such webs.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: August 14, 2012
    Assignee: 3M Innovative Properties Company
    Inventors: Andrew R. Fox, John D. Stelter, Michael R. Berrigan, Jonathan M Lise
  • Patent number: 8211218
    Abstract: The assemblies of the invention can comprise a fine fiber layer having dispersed within the fine fiber layer an active particulate material. Fluid that flows through the assemblies of the invention can have any material dispersed or dissolved in the fluid react with, be absorbed by, or adsorbed onto, the active particulate within the nanofiber layer. The structures of the invention can act simply as reactive, absorptive, or adsorptive layers with no filtration properties, or the structures of the invention can be assembled into filters that can filter particulate from a mobile fluid while simultaneously reacting, absorbing, or adsorbing materials from the mobile fluid.
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: July 3, 2012
    Assignee: Donaldson Company, Inc.
    Inventors: Andrew J. Dallas, William Lefei Ding, Jon D. Joriman, Dustin Zastera, James R. Giertz, Veli E. Kalayci, Hoo Y. Chung
  • Patent number: 8178199
    Abstract: A water non-dispersible polymer microfiber is provided comprising at least one water non-dispersible polymer wherein the water non-dispersible polymer microfiber has an equivalent diameter of less than 5 microns and length of less than 25 millimeters. A process for producing water non-dispersible polymer microfibers is also provided, the process comprising: a) cutting a multicomponent fiber into cut multicomponent fibers; b) contacting a fiber-containing feedstock with water to produce a fiber mix slurry; wherein the fiber-containing feedstock comprises cut multicomponent fibers; c) heating the fiber mix slurry to produce a heated fiber mix slurry; d) optionally, mixing the fiber mix slurry in a shearing zone; e) removing at least a portion of the sulfopolyester from the multicomponent fiber to produce a slurry mixture comprising a sulfopolyester dispersion and water non-dispersible polymer microfibers; and f) separating the water non-dispersible polymer microfibers from the slurry mixture.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: May 15, 2012
    Assignee: Eastman Chemical Company
    Inventors: Rakesh Kumar Gupta, Melvin Glenn Mitchell, Daniel William Klosiewicz
  • Publication number: 20120115386
    Abstract: A method of manufacturing nano-fiber non-woven fabrics is provided. The method comprises preparing a polyurethane solution by dissolving polyurethane in an organic solvent, producing an electrospinning solution by adding far infrared ray emitting particles, antibacterial inorganic particles, and deodorization inorganic particles to the polyurethane solution, and electrospinning the electrospinning solution to form the nano-fiber non-woven fabric. The far infrared ray emitting particles may be obtained by adding a metal oxide to ceramics and sintering the metal oxide-added ceramics. The antibacterial inorganic particles may be obtained by impregnating a zirconium-based carrier with silver ions.
    Type: Application
    Filed: March 30, 2011
    Publication date: May 10, 2012
    Applicants: HYUNDAI MOTOR COMPANY, Soongsil University Research Consortium techno-Park, KIA MOTORS CORPORATION
    Inventors: Phil Jung Jeong, Seung Soo Ryu, Jun Mo Ku, Hee Jun Jeong, Joo Yong Kim, Min Ki Choi, Jung Yeol Kim
  • Patent number: 8173559
    Abstract: The present invention provides nonwoven webs comprising multicomponent nanocomposite fibers that enable the nonwoven webs to possess high extensibility. The multicomponent nanocomposite fibers comprise two or more components. Each component comprises a polymer composition and at least one component comprises a nanoparticles composition. The nonwoven webs comprising the multicomponent nanocomposite fibers have an average elongation at peak load which is greater than the average elongation at peak load of comparable nonwoven webs without nanocomposite fibers.
    Type: Grant
    Filed: November 30, 2006
    Date of Patent: May 8, 2012
    Assignee: The Procter & Gamble Company
    Inventors: Dimitris Ioannis Collias, Norman Scott Broyles, Eric Bryan Bond