Side-by-side Multicomponent Strand Or Fiber Material Patents (Class 442/362)
-
Patent number: 11788208Abstract: The invention relates to a spunbonded fabric of endless filaments made of thermoplastic plastic, wherein the endless filaments are designed as multi-component filaments having a core/sheath configuration. The filaments contain at least one lubricant, the lubricant being present exclusively or at least to 90 wt. % in the core component. The mass ratio between the core component and the sheath component is 65:35 to 80:20. The proportion of the lubricant is 250 to 5500 ppm with respect to the total filament.Type: GrantFiled: May 17, 2017Date of Patent: October 17, 2023Assignees: REIFENHAEUSER GMBH & CO. KG MASCHINENFABRIK, FIBERTEX PERSONAL CARE A/SInventors: Morten Rise Hansen, Sebastian Sommer
-
Patent number: 10842682Abstract: A nonwoven fabric layered body, including: an elastic nonwoven fabric; and an extensible spunbond nonwoven fabric that is disposed on at least one surface side of the elastic nonwoven fabric and that has a degree of maximum load elongation of 50% or more in at least one direction, the nonwoven fabric layered body satisfying the following (1) and (2). (1) The elastic nonwoven fabric includes a resin composition containing a specific low-crystalline polypropylene, and an ?-olefin copolymer A containing an ethylene-derived constitutional unit and a propylene-derived constitutional unit, and having a melting point of 100° C. or more and a crystallization degree of 15% or less. (2) The resin composition contains from 5 parts by mass to 50 parts by mass of the ?-olefin copolymer A with respect to 100 parts by mass of the resin composition.Type: GrantFiled: March 9, 2016Date of Patent: November 24, 2020Assignee: MITSUI CHEMICALS, INC.Inventors: Shouichi Takaku, Kenichi Suzuki, Tetsuya Yokoyama, Koichi Shimada
-
Patent number: 8980299Abstract: A method of making a biocompatible, implantable medical device, including a vascular closure device is disclosed. The method includes forming a biocompatible polymer into at least one fiber and randomly orienting the at least one fiber into a fibrous structure having at least one interstitial spaces. Polymeric materials may be utilized to fabricate any of these devices. The polymeric materials may include additives such as drugs or other bioactive agents as well as antibacterial agents. In such instances, at least one agent, in therapeutic dosage, is incorporated into at least one of the fibrous structure and the at least one fiber.Type: GrantFiled: October 30, 2008Date of Patent: March 17, 2015Assignee: Cordis CorporationInventors: Vipul Bhupendra Dave, Howard Scalzo, Jerome Fischer
-
Publication number: 20150017411Abstract: A continuous filament spun-laid web includes a plurality of polymer fibers within the web, the web having a first thickness and the web being free of any thermal or mechanical bonding treatment. Activation of the web results in at least one of an increase from the first thickness prior to activation to a second thickness post activation in which the second thickness is at least about two times greater than the first thickness, a decrease in density of the web post activation in relation to a density of the web prior to activation, the web being configured to withstand an elastic elongation from about 10% to about 350% in at least one of a machine direction (MD) of the web and a cross-direction (CD) of the web, and the web having a tensile strength from about 50 gram-force/cm2 to about 5000 gram-force/cm2.Type: ApplicationFiled: July 15, 2014Publication date: January 15, 2015Inventors: Arnold Wilkie, James Brang, Jeffrey Haggard, Angel Antonio De La Hoz
-
Patent number: 8895459Abstract: The present invention relates to a new bicomponent fiber, a nonwoven fabric comprising said new bicomponent fiber and sanitary articles made therefrom. The bicomponent fiber contains a polyethylene-based resin forming at least part of the surface of the fiber longitudinally continuously and is characterized by a Co-monomer Distribution Constant greater than about 45, a recrystallization temperature between 85° C. and 110° C., a tan delta value at 0.1 rad/sec from about 15 to 50, and a complex viscosity at 0.1 rad/second of 1400 Pa·sec or less. The nonwoven fabric comprising the new bicomponent fiber according to the instant invention are not only excellent in softness, but also high in strength, and can be produced in commercial volumes at lower costs due to higher thoughputs and requiring less energy.Type: GrantFiled: January 29, 2013Date of Patent: November 25, 2014Assignee: Trevira GmbHInventors: Jorg Dahringer, Bernd Blech, Werner Stefani, Werner Grasser, Mehmet Demirors, Gert Claåsen
-
Patent number: 8889573Abstract: The present invention relates to a fiber assembly obtained by electrifying a resin in a melted state by application of voltage between a supply-side electrode and a collection-side electrode so as to extend the resin into an ultrafine composite fiber by electrospinning, and accumulating the ultrafine composite fiber, wherein the ultrafine composite fiber includes at least two polymeric components and the ultrafine composite fiber includes at least one type of composite fiber selected from a sea-island structure composite fiber and a core-sheath structure composite fiber as viewed in fiber cross section, at least one selected from an island component and a core component has a volume specific resistance of 1015?·cm or less, and at least one selected from a sea component and a sheath component has a volume specific resistance exceeding 1015?·cm.Type: GrantFiled: September 4, 2009Date of Patent: November 18, 2014Assignees: Daiwabo Holdings Co., Ltd., Daiwabo Polytec Co., Ltd.Inventor: Toshio Kamisasa
-
Publication number: 20140272318Abstract: The present invention generally relates to composites and articles made from nonwoven structures. One aspect of the invention is generally directed to nonwoven structures which are heated and/or pressed to form a substantially rigid article. In some cases, the nonwoven structure may be heated to temperatures greater than the glass transition temperature but less than the melting temperature of a polymer within the nonwoven structure. Such articles may exhibit creep of the polymer around other fibers in the nonwoven structure, but without any evidence of melting and/or flow. In addition, in some embodiments, such articles may have relatively large void volumes, or exhibit properties such as low flammability, smoke resistance, or acoustic insulation. Other aspects of the present invention are generally directed to systems and methods for making such articles, methods of use of such articles, kits comprising such articles, etc.Type: ApplicationFiled: March 15, 2013Publication date: September 18, 2014Applicant: National Nonwovens Inc.Inventors: Mark Gregory Lawrence, Conrad Anthony D'Elia, Anthony Joseph Centofanti, Paul Anthony Viveiros
-
Publication number: 20130316607Abstract: There is provided a nonwoven fabric laminate that is capable of being disinfection-treated with e.g., electron beam and is excellent in tensile strength, barrier properties, low-temperature sealability, and softness. The present invention provides a nonwoven fabric laminate obtained by laminating a spunbonded nonwoven fabric on at least one surface of a melt-blown nonwoven fabric (A), the melt-blown nonwoven fabric (A) including fibers of an ethylene-based polymer resin composition of an ethylene-based polymer (a) and an ethylene-based polymer wax (b), the spunbonded nonwoven fabric including a conjugate fiber formed from a polyester (x) and an ethylene-based polymer (y) such that at least part of the fiber surface is the ethylene-based polymer (y).Type: ApplicationFiled: February 15, 2012Publication date: November 28, 2013Applicant: Mitsui Chemicals, Inc.Inventors: Taro Ichikawa, Kuniaki Kawabe
-
Patent number: 8563449Abstract: A non-woven material and method of formation thereof is provided to form a substantially flat or planar self supporting core of an inorganic base fiber and an organic binding fiber preferably using an air-laid forming head. In certain preferred embodiments, the organic base fiber has a fiber strength with a break load of about 10 grams or less and an elongation of about 20 percent or less. Preferably, the organic binding fiber has a binding component and a structural component within unitary fiber filaments. In one aspect, the structural component of the organic binding fiber has a composition effective to provide a strength thereof so that the non-woven material can be manually cut with minimal effort. In such form, the non-woven material is suitable to function as an acoustic ceiling tile.Type: GrantFiled: April 3, 2008Date of Patent: October 22, 2013Assignee: USG Interiors, LLCInventors: Donald Mueller, Weixin Song, Bangji Cao
-
Patent number: 8557374Abstract: Disclosed are multicomponent fibers derived from a blend of a sulfopolyester with a water non-dispersible polymer wherein the as-spun denier is less than about 6 and wherein the water dispersible sulfopolyester exhibits a melt viscosity of less than 12,000 poise measured at 240° C. at a strain rate of 1 rad/sec, and wherein the sulfopolyester comprising less than about 25 mole % of residues of at least one sulfomonomer, based on the total moles of diacid or diol residues. The multicomponent fiber is capable of being drawn at a relatively high fiber speed, particularly at least about 2000 m/min, and may be used to produce microdenier fibers. Fibrous articles may be produced from the multicomponent fibers and microdenier fibers. Also disclosed is a process for multicomponent fibers, nonwoven fabrics, and microdenier webs.Type: GrantFiled: December 22, 2010Date of Patent: October 15, 2013Assignee: Eastman Chemical CompanyInventors: Rakesh Kumar Gupta, Scott Ellery George, Daniel William Klosiewicz, Kab Sik Seo, Coralie McKenna Fleenor, Allen Lynn Crain
-
Patent number: 8541323Abstract: A splittable conjugate fiber comprising a polyester segment and a polyolefin segment, wherein the splittable conjugate fiber comprises two or more parts of the polyester segment extending from a center of the fiber toward an outer edge of the fiber in a cross-sectional configuration perpendicular to its longitudinal direction, in which at least one of the two or more parts of the polyester segment extending from the center of the fiber toward the outer edge of the fiber is exposed at the outer edge of the fiber and at least one of the two or more parts of the polyester segment extending from the center of the fiber toward the outer edge of the fiber is unexposed at the outer edge of the fiber.Type: GrantFiled: May 23, 2008Date of Patent: September 24, 2013Assignees: ES Fibervisions Co., Ltd., ES Fibervisions Hong Kong Limited, ES Fibervisions LP, ES Fibervisions APSInventors: Yukiharu Shimotsu, Minoru Miyauchi, Kazuyuki Sakamoto
-
Patent number: 8501646Abstract: A non-woven fabric laminate that is excellent in strechability, flexibility, and bulkiness, and that is less sticky and is suitable for a mechanical fastening female material. The non-woven fabric laminate includes a mixed fiber spunbonded non-woven fabric and a non-woven fabric comprising a crimped fiber that is laminated on at least one face of the mixed fiber spunbonded non-woven fabric, which includes a continuous fiber of a thermoplastic elastomer (A) in the range of 10 to 90% by weight and a continuous fiber of a thermoplastic resin (B) in the range of 90 to 10% by weight (where (A)+(B)=100% by weight). The non-woven fabric laminate can be suitably used for a sanitary material and other materials. More specifically, there can be mentioned for instance an absorbent article such as a disposable diaper and a menstrual sanitary product as a sanitary material.Type: GrantFiled: February 27, 2008Date of Patent: August 6, 2013Assignee: Mitsui Chemicals, Inc.Inventors: Shigeyuki Motomura, Kenichi Suzuki, Kazuhiko Masuda, Hisashi Morimoto, Naosuke Kunimoto
-
Patent number: 8501317Abstract: Cloth, in which air permeability is variable by energization, includes: a fibrous object composed of composite fibers, each of the composite fibers including: an electrical-conductive polymeric material; and a material different from the electrical-conductive polymeric material, the different material being directly stacked on the electrical-conductive polymeric material; and electrodes which are attached to the fibrous object, and energize the electrical-conductive polymeric material. Each of the composite fibers has a structure in which the material different from the electrical-conductive polymeric material is stacked on at least a part of a surface of the electrical-conductive polymeric material, or a structure in which either one of the electrical-conductive polymeric material and the material different from the electrical-conductive polymeric material penetrates the other material in a longitudinal direction.Type: GrantFiled: March 13, 2007Date of Patent: August 6, 2013Assignee: Nissan Motor Co., Ltd.Inventor: Hiroaki Miura
-
Patent number: 8444896Abstract: Disclosed are water-dispersible fibers derived from sulfopolyesters having a Tg of at least 25° C. The fibers may contain a single sulfopolyester or a blend of a sulfopolyester with a water-dispersible or water-nondispersible polymer. Also disclosed are multicomponent fibers comprising a water dispersible sulfopolyester having a Tg of at least 57° C. and a water non-dispersible polymer. The multicomponent fibers may be used to produce microdenier fibers. Fibrous articles may be produced from the water-dispersible fibers, multicomponent fibers, and microdenier fibers. The fibrous articles include water-dispersible and microdenier nonwoven webs, fabrics, and multilayered articles such as wipes, gauze, tissue, diapers, panty liners, sanitary napkins, bandages, and surgical dressings. Also disclosed is a process for water-dispersible fibers, nonwoven fabrics, and microdenier webs.Type: GrantFiled: December 13, 2010Date of Patent: May 21, 2013Assignee: Eastman Chemical CompanyInventors: William Alston Haile, Scott Ellery George, Wesley Raymond Hale, Waylon Lewellyn Jenkins
-
Patent number: 8444895Abstract: Disclosed are water-dispersible fibers derived from sulfopolyesters having a Tg of at least 25° C. The fibers may contain a single sulfopolyester or a blend of a sulfopolyester with a water-dispersible or water-nondispersible polymer. Also disclosed are multicomponent fibers comprising a water dispersible sulfopolyester having a Tg of at least 57° C. and a water non-dispersible polymer. The multicomponent fibers may be used to produce microdenier fibers. Fibrous articles may be produced from the water-dispersible fibers, multicomponent fibers, and microdenier fibers. The fibrous articles include water-dispersible and microdenier nonwoven webs, fabrics, and multilayered articles such as wipes, gauze, tissue, diapers, panty liners, sanitary napkins, bandages, and surgical dressings. Also disclosed is a process for water-dispersible fibers, nonwoven fabrics, and microdenier webs.Type: GrantFiled: December 13, 2010Date of Patent: May 21, 2013Assignee: Eastman Chemical CompanyInventors: William Alston Haile, Scott Ellery George, Wesley Raymond Hale, Waylon Lewellyn Jenkins
-
Patent number: 8435908Abstract: Disclosed are water-dispersible fibers derived from sulfopolyesters having a Tg of at least 25° C. The fibers may contain a single sulfopolyester or a blend of a sulfopolyester with a water-dispersible or water-nondispersible polymer. Also disclosed are multicomponent fibers comprising a water dispersible sulfopolyester having a Tg of at least 57° C. and a water non-dispersible polymer. The multicomponent fibers may be used to produce microdenier fibers. Fibrous articles may be produced from the water-dispersible fibers, multicomponent fibers, and microdenier fibers. The fibrous articles include water-dispersible and microdenier nonwoven webs, fabrics, and multilayered articles such as wipes, gauze, tissue, diapers, panty liners, sanitary napkins, bandages, and surgical dressings. Also disclosed is a process for water-dispersible fibers, nonwoven fabrics, and microdenier webs.Type: GrantFiled: December 13, 2010Date of Patent: May 7, 2013Assignee: Eastman Chemical CompanyInventors: William Alston Haile, Scott Ellery George, Wesley Raymond Hale, Waylon Lewellyn Jenkins
-
Patent number: 8415263Abstract: A composite material as a sheet material is described, being relatively cheap, most useful as a raw material of a sanitary product or the like, such as underwear, dust-proof mask or dispensable paper diaper, etc., and good in processability, stretchability, gas-permeability, softness, and touch. The composite material is formed by laminating a stretchable layer and a conjugate spunbonded nonwoven fabric including conjugate fibers including a low-melting-point component and a high-melting-point component. The conjugate fibers are partially bonded to each other by thermocompression, wherein each bonded portion has fine folded structures including alternate hill and valley regions in the CD, and the distance between neighboring hills is 100-400 ?m in average. The conjugate spunbonded nonwoven fabric exhibits stretchability through the spread of the fine folded structures, and has, at 5% elongation, a CD-strength of 0.1 N/5 cm or less and an MD/CD strength ratio of 200 or more.Type: GrantFiled: March 30, 2011Date of Patent: April 9, 2013Assignees: JNC Corporation, JNC Fibers CorporationInventors: Toshikatsu Fujiwara, Taiju Terakawa
-
Patent number: 8389426Abstract: The present invention relates to a new bicomponent fiber, a nonwoven fabric comprising said new bicomponent fiber and sanitary articles made therefrom. The bicomponent fiber contains a polyethylene-based resin forming at least part of the surface of the fiber longitudinally continuously and is characterized by a Co-monomer Distribution Constant greater than about 45, a recrystallization temperature between 85° C. and 110° C., a tan delta value at 0.1 rad/sec from about 15 to 50, and a complex viscosity at 0.1 rad/second of 1400 Pa.sec or less. The nonwoven fabric comprising the new bicomponent fiber according to the instant invention are not only excellent in softness, but also high in strength, and can be produced in commercial volumes at lower costs due to higher thoughputs and requiring less energy.Type: GrantFiled: January 4, 2010Date of Patent: March 5, 2013Assignee: Trevira GmbHInventors: Jörg Dahringer, Bernd Blech, Werner Stefani, Werner Grasser, Mehmet Demirors, Gert Claasen
-
Publication number: 20120329352Abstract: The invention provides a method of producing an air-through nonwoven fabric comprising the steps of: forming a web comprising composite fibers comprising a first polylactic acid and a second polylactic acid having a lower melting point than the melting point of the first polylactic acid; a step of exposing the web to a first air-through treatment in the temperature range of the following temperature T1: glass transition temperature of second polylactic acid<T1<melting point of second polylactic acid; and a step of exposing the web that has been exposed to the first air-through treatment, to a second air-through treatment in the temperature range of the following temperature T2: melting point of second polylactic acid?5° C.?T2?melting point of second polylactic acid+15° C., to produce an air-through nonwoven fabric, wherein the degree of crystallinity of the air-through nonwoven fabric is in the range of 44% to 68%.Type: ApplicationFiled: February 9, 2011Publication date: December 27, 2012Applicant: UNICHARM CORPORATIONInventors: Masaki Yoshida, Satoshi Mizutani, Takayoshi Konishi, Hiroko Nozumi
-
Patent number: 8314041Abstract: Disclosed are multicomponent fibers derived from a blend of a sulfopolyester with a water non-dispersible polymer wherein the as-spun denier is less than about 6 and wherein the water dispersible sulfopolyester exhibits a melt viscosity of less than 12,000 poise measured at 240° C. at a strain rate of 1 rad/sec, and wherein the sulfopolyester comprising less than about 25 mole % of residues of at least one sulfomonomer, based on the total moles of diacid or diol residues. The multicomponent fiber is capable of being drawn at a relatively high fiber speed, particularly at least about 2000 m/min, and may be used to produce microdenier fibers. Fibrous articles may be produced from the multicomponent fibers and microdenier fibers. Also disclosed is a process for multicomponent fibers, nonwoven fabrics, and microdenier webs.Type: GrantFiled: December 22, 2010Date of Patent: November 20, 2012Assignee: Eastman Chemical CompanyInventors: Rakesh Kumar Gupta, Scott Ellery George, Daniel William Klosiewicz, Kab Sik Seo, Coralie McKenna Fleenor, Allen Lynn Crain
-
Publication number: 20120238173Abstract: The present invention discloses environmentally degradable multicomponent fibers. The configuration of the multicomponent fibers may be side-by-side, sheath-core, segmented pie, islands-in-the-sea, or any combination of configurations. Each component of the fiber will comprise destructurized starch and/or a biodegradable thermoplastic polymer. The present invention is also directed to nonwoven webs and disposable articles comprising the environmentally degradable multicomponent fibers. The nonwoven webs may also contain other synthetic or natural fibers blended with the multicomponent fibers of the present invention.Type: ApplicationFiled: June 4, 2012Publication date: September 20, 2012Inventors: Eric Bryan Bond, Jean-Philippe Marie Autran, Larry Neil MacKey, Isao Noda, Hugh Joseph O'Donnell
-
Patent number: 8252706Abstract: A method for preparing stretchable bonded nonwoven fabrics which involves forming a substantially nonbonded nonwoven web of multiple-component continuous filaments or staple fibers which are capable of developing three-dimensional spiral crimp, activating the spiral crimp by heating substantially nonbonded web under free shrinkage conditions during which the nonwoven remains substantially nonbonded, followed by bonding the crimped nonwoven web using an array of discrete mechanical, chemical, or thermal bonds. Nonwoven fabrics prepared according to the method of the current invention have an improved combination of stretch-recovery properties, textile hand and drape compared to multiple-component nonwoven fabrics known in the art.Type: GrantFiled: March 1, 2006Date of Patent: August 28, 2012Assignee: INVISTA North America S.àr.l.Inventors: Dimitri P. Zafiroglu, Geoffrey D. Hietpas, Debora Flanagan Massouda, Thomas Michael Ford, Patricia A. Ford, legal representative
-
Patent number: 8247335Abstract: Disclosed are water-dispersible fibers derived from sulfopolyesters having a Tg of at least 25° C. The fibers may contain a single sulfopolyester or a blend of a sulfopolyester with a water-dispersible or water-nondispersible polymer. Also disclosed are multicomponent fibers comprising a water dispersible sulfopolyester having a Tg of at least 57° C. and a water non-dispersible polymer. The multicomponent fibers may be used to produce microdenier fibers. Fibrous articles may be produced from the water-dispersible fibers, multicomponent fibers, and microdenier fibers. The fibrous articles include water-dispersible and microdenier nonwoven webs, fabrics, and multilayered articles such as wipes, gauze, tissue, diapers, panty liners, sanitary napkins, bandages, and surgical dressings. Also disclosed is a process for water-dispersible fibers, nonwoven fabrics, and microdenier webs.Type: GrantFiled: December 13, 2010Date of Patent: August 21, 2012Assignee: Eastman Chemical CompanyInventors: William Alston Haile, Scott Ellery George, Wesley Raymond Hale, Waylon Lewellyn Jenkins
-
Patent number: 8227362Abstract: Disclosed are water-dispersible fibers derived from sulfopolyesters having a Tg of at least 25° C. The fibers may contain a single sulfopolyester or a blend of a sulfopolyester with a water-dispersible or water-nondispersible polymer. Also disclosed are multicomponent fibers comprising a water dispersible sulfopolyester having a Tg of at least 57° C. and a water non-dispersible polymer. The multicomponent fibers may be used to produce microdenier fibers. Fibrous articles may be produced from the water-dispersible fibers, multicomponent fibers, and microdenier fibers. The fibrous articles include water-dispersible and microdenier nonwoven webs, fabrics, and multilayered articles such as wipes, gauze, tissue, diapers, panty liners, sanitary napkins, bandages, and surgical dressings. Also disclosed is a process for water-dispersible fibers, nonwoven fabrics, and microdenier webs.Type: GrantFiled: December 13, 2010Date of Patent: July 24, 2012Assignee: Eastman Chemical CompanyInventors: William Alston Haile, Scott Ellery George, Wesley Raymond Hale, Waylon Lewellyn Jenkins
-
Patent number: 8216953Abstract: Disclosed are water-dispersible fibers derived from sulfopolyesters having a Tg of at least 25° C. The fibers may contain a single sulfopolyester or a blend of a sulfopolyester with a water-dispersible or water-nondispersible polymer. Also disclosed are multicomponent fibers comprising a water dispersible sulfopolyester having a Tg of at least 57° C. and a water non-dispersible polymer. The multicomponent fibers may be used to produce microdenier fibers. Fibrous articles may be produced from the water-dispersible fibers, multicomponent fibers, and microdenier fibers. The fibrous articles include water-dispersible and microdenier nonwoven webs, fabrics, and multilayered articles such as wipes, gauze, tissue, diapers, panty liners, sanitary napkins, bandages, and surgical dressings. Also disclosed is a process for water-dispersible fibers, nonwoven fabrics, and microdenier webs.Type: GrantFiled: December 13, 2010Date of Patent: July 10, 2012Assignee: Eastman Chemical CompanyInventors: William Alston Haile, Scott Ellery George, Wesley Raymond Hale, Waylon Lewellyn Jenkins
-
Patent number: 8178199Abstract: A water non-dispersible polymer microfiber is provided comprising at least one water non-dispersible polymer wherein the water non-dispersible polymer microfiber has an equivalent diameter of less than 5 microns and length of less than 25 millimeters. A process for producing water non-dispersible polymer microfibers is also provided, the process comprising: a) cutting a multicomponent fiber into cut multicomponent fibers; b) contacting a fiber-containing feedstock with water to produce a fiber mix slurry; wherein the fiber-containing feedstock comprises cut multicomponent fibers; c) heating the fiber mix slurry to produce a heated fiber mix slurry; d) optionally, mixing the fiber mix slurry in a shearing zone; e) removing at least a portion of the sulfopolyester from the multicomponent fiber to produce a slurry mixture comprising a sulfopolyester dispersion and water non-dispersible polymer microfibers; and f) separating the water non-dispersible polymer microfibers from the slurry mixture.Type: GrantFiled: March 22, 2011Date of Patent: May 15, 2012Assignee: Eastman Chemical CompanyInventors: Rakesh Kumar Gupta, Melvin Glenn Mitchell, Daniel William Klosiewicz
-
Patent number: 8148279Abstract: The invention provides durable nonwoven fabrics comprising staple fibers. Methods of preparing durable nonwoven fabrics based on staple fibers are also provided. The methods can include the steps of at least one of needle punching and hydroentangling. The durable nonwoven fabric can be subjected to additional bonding techniques, such as resin bonding and/or thermal bonding. The durable nonwoven fabrics of the invention provide improved durability over conventional nonwoven fabrics. Further advantages of the inventive nonwoven fabrics include maintaining the smooth surface qualities of the fabric and desirable feel of the fabric even with the enhanced durability. The inventive nonwoven fabrics can also be subjected to additional post-processing techniques that conventional nonwoven fabrics would otherwise be unable to withstand. Further, inks and/or dyes can more readily become adhered to the smooth nature of the surfaces of the inventive durable nonwoven fabrics.Type: GrantFiled: April 9, 2009Date of Patent: April 3, 2012Assignee: North Carolina State UniversityInventors: Nagendra Anantharamaiah, Behnam Pourdeyhimi
-
Publication number: 20110230111Abstract: Polymer fibers having therein at least one infrared attenuating agent is provided. The infrared attenuating agent is at least substantially evenly distributed throughout the polymeric material forming the polymer fibers. In exemplary embodiments, the infrared attenuating agents have a thickness in at least one dimension of less than about 100 nanometers. Alternatively, the polymer fibers are bicomponent fibers formed of a core and a sheath substantially surrounding the core and the infrared attenuating agent is at least substantially evenly distributed throughout the sheath. The modified polymer fibers may be used to form insulation products that utilize less polymer material and subsequently reduce manufacturing costs. The insulation products formed with the modified polymers have improved thermal properties compared to insulation products formed of only non-modified polymer fibers. Additionally, the insulation product is compatible with bio-based binders.Type: ApplicationFiled: March 19, 2010Publication date: September 22, 2011Inventors: Charles R. Weir, Harry A. Alter, Yadollah Delaviz, Jeffrey A. Tilton
-
Patent number: 8021996Abstract: The present invention provides a nonwoven web prepared from multicomponent fibers which are partially split. The partially split multicomponent fibers have at least one component of the multicomponent fiber separated from the remaining components of the multicomponent fiber along a first section of the longitudinal length of the multicomponent fibers. Along a second section of the longitudinal length of the multicomponent fibers the components of the multicomponent fibers remain together as a unitary fiber structure. In addition, part of the second section of the multicomponent fibers is bonded to part of a second section of an adjacent multicomponent fiber.Type: GrantFiled: December 23, 2008Date of Patent: September 20, 2011Assignee: Kimberly-Clark Worldwide, Inc.Inventors: Susan Kathleen Walser, Leon Eugene Chambers, Jr., Reginald Smith, Nancy J. Zimmerman, Kiran K. Reddy, Nina Frazier, David Myers
-
Patent number: 8007904Abstract: A multicomponent fiber having a metal phobic component and a metal philic component that allows for the selective distribution of metal across the surface of the fiber is disclosed. The inventive multicomponent fibers may be used in fabrics and other products manufactured therefrom for economically imparting at least one of an antistatic quality, antimicrobial and antifungal efficacy, and ultraviolet and/or electromagnetic radiation shielding.Type: GrantFiled: January 12, 2009Date of Patent: August 30, 2011Assignee: Fiber Innovation Technology, Inc.Inventor: Jeffrey S. Dugan
-
Patent number: 7998384Abstract: A spunbond nonwoven fabric useful as a topsheet is produced from polypropylene filaments including a high level of reclaimed polypropylene, while maintaining a product quality, including superior formation, comparable to that obtained when using 100 percent virgin polymer. The spunbond nonwoven fabric is made with multicomponent filaments having at least two different polymer components occupying different areas within the filament cross section, and wherein one of the polymer components comprises reclaimed polypropylene recovered from previously spun polypropylene fiber or webs comprised of previously spun polypropylene fiber. In a specific embodiment, the filaments are sheath-core bicomponent filaments and the reclaimed polypropylene is present in the core component. The core of the bicomponent filament can be comprised of up to 100% reclaimed polypropylene.Type: GrantFiled: August 2, 2001Date of Patent: August 16, 2011Assignee: Fiberweb Simpsonville, Inc.Inventors: Jay Darrell Gillespie, Daniel Deying Kong, Robert C. Alexander
-
Patent number: 7994079Abstract: The present invention discloses a disposable meltblown scrubbing product for use in household cleaning or personal care applications and an abrasive aggregate fiber which may be utilized in the scrubbing product. The meltblown web is formed primarily of polymeric fibers in a disordered or random distribution as is typical of fibers deposited in meltblown processes so as to form an open, porous structure. The aggregate fibers of the present invention generally are formed of two or more separate abrasive polymer fibers or strands which are adhered together along at least about 5 mm of the fiber length. The abrasive fibers of the meltblown web are generally greater than about 15 microns in diameter.Type: GrantFiled: December 17, 2002Date of Patent: August 9, 2011Assignee: Kimberly-Clark Worldwide, Inc.Inventors: Fung-Jou Chen, Jeffrey D. Lindsay, Julie Bednarz, Peiguang Zhou
-
Patent number: 7989062Abstract: A biodegradable nonwoven web comprising substantially continuous multicomponent filaments is provided. The filaments comprise a first component and a second component. The first component contains at least one high-melting point aliphatic polyester having a melting point of from about 160° C. to about 250° C. and the second component contains at least one low-melting point aliphatic polyester. The melting point of the low-melting point aliphatic polyester is at least about 30° C. less than the melting point of the high-melting point aliphatic polyester. The low-melting point aliphatic polyester has a number average molecular weight of from about 30,000 to about 120,000 Daltons, a glass transition temperature of less than about 25° C., and an apparent viscosity of from about 50 to about 215 Pascal-seconds, as determined at a temperature of 160° C. and a shear rate of 1000 sec?1.Type: GrantFiled: April 7, 2006Date of Patent: August 2, 2011Assignee: Kimberly-Clark Worldwide, Inc.Inventors: Jayant Chakravarty, Vasily Topolkaraev, John Herbert Conrad, Stephen Avedis Baratian, Jared L. Martin
-
Patent number: 7972692Abstract: A multicomponent fiber that contains a high-melting aliphatic polyester and a low-melting aliphatic polyester is provided. The multicomponent fibers are substantially biodegradable, yet readily processed into nonwoven structures that exhibit effective fibrous mechanical properties.Type: GrantFiled: December 15, 2005Date of Patent: July 5, 2011Assignee: Kimberly-Clark Worldwide, Inc.Inventors: Jayant Chakravarty, Vasily Topolkaraev, Gregory J. Wideman
-
Patent number: 7968481Abstract: A heat fusible conjugate fiber produced by high-speed melt spinning is disclosed. The conjugate fiber is composed of a first resin component having an orientation index of 40% or higher and a second resin component having a lower melting or softening point than the melting point of the first resin component and an orientation index of 25% or lower. The second resin component is present on at least part of the surface of the fiber in a lengthwise continuous configuration. The conjugate fiber preferably has a heat shrinkage of 0.5% or less at a temperature higher than the melting or softening point of the second resin component by 10° C.Type: GrantFiled: December 19, 2003Date of Patent: June 28, 2011Assignee: KAO CorporationInventors: Manabu Matsui, Takeshi Kikutani
-
Publication number: 20110142909Abstract: Disclosed are water-dispersible fibers derived from sulfopolyesters having a Tg of at least 25° C. The fibers may contain a single sulfopolyester or a blend of a sulfopolyester with a water-dispersible or water-nondispersible polymer. Also disclosed are multicomponent fibers comprising a water dispersible sulfopolyester having a Tg of at least 57° C. and a water non-dispersible polymer. The multicomponent fibers may be used to produce microdenier fibers. Fibrous articles may be produced from the water-dispersible fibers, multicomponent fibers, and microdenier fibers. The fibrous articles include water-dispersible and microdenier nonwoven webs, fabrics, and multilayered articles such as wipes, gauze, tissue, diapers, panty liners, sanitary napkins, bandages, and surgical dressings. Also disclosed is a process for water-dispersible fibers, nonwoven fabrics, and microdenier webs.Type: ApplicationFiled: December 13, 2010Publication date: June 16, 2011Applicant: EASTMAN CHEMICAL COMPANYInventors: William Alston Haile, Scott Ellery George, Wesley Raymond Hale, Waylon Lewellyn Jenkins
-
Publication number: 20110142896Abstract: Disclosed are water-dispersible fibers derived from sulfopolyesters having a Tg of at least 25° C. The fibers may contain a single sulfopolyester or a blend of a sulfopolyester with a water-dispersible or water-nondispersible polymer. Also disclosed are multicomponent fibers comprising a water dispersible sulfopolyester having a Tg of at least 57° C. and a water non-dispersible polymer. The multicomponent fibers may be used to produce microdenier fibers. Fibrous articles may be produced from the water-dispersible fibers, multicomponent fibers, and microdenier fibers. The fibrous articles include water-dispersible and microdenier nonwoven webs, fabrics, and multilayered articles such as wipes, gauze, tissue, diapers, panty liners, sanitary napkins, bandages, and surgical dressings. Also disclosed is a process for water-dispersible fibers, nonwoven fabrics, and microdenier webs.Type: ApplicationFiled: December 13, 2010Publication date: June 16, 2011Applicant: EASTMAN CHEMICAL COMPANYInventors: William Alston Haile, Scott Ellery George, Wesley Raymond Hale, Waylon Lewellyn Jenkins
-
Publication number: 20110091513Abstract: Disclosed are multicomponent fibers derived from a blend of a sulfopolyester with a water non-dispersible polymer wherein the as-spun denier is less than about 6 and wherein the water dispersible sulfopolyester exhibits a melt viscosity of less than 12,000 poise measured at 240° C. at a strain rate of 1 rad/sec, and wherein the sulfopolyester comprising less than about 25 mole % of residues of at least one sulfomonomer, based on the total moles of diacid or diol residues. The multicomponent fiber is capable of being drawn at a relatively high fiber speed, particularly at least about 2000 m/min, and may be used to produce microdenier fibers. Fibrous articles may be produced from the multicomponent fibers and microdenier fibers. Also disclosed is a process for multicomponent fibers, nonwoven fabrics, and microdenier webs.Type: ApplicationFiled: December 22, 2010Publication date: April 21, 2011Applicant: EASTMAN CHEMICAL COMPANYInventors: Rakesh Kumar Gupta, Scott Ellery George, Daniel William Klosiewicz, Kab Sik Seo, Coralie McKenna Fleenor, Allen Lynn Crain
-
Patent number: 7838449Abstract: A dryer sheet substrate is provided having improved loft and reduced fuzz wherein the substrate comprises relatively low denier bicomponent fibers. The bicomponent fibers may comprise two or more polymers having different melting temperatures, with the relatively lower melting temperature polymer making up at least a portion of the outer surface of the fiber. Upon heating to a sufficient temperature, the lower melting temperature fibers may soften and melt, providing bonding at crossover points of the fibers in the laid web. The web indicates advantageous characteristics with respect to thickness (loft), fuzz factor and ability to absorb a fabric treating composition.Type: GrantFiled: May 29, 2008Date of Patent: November 23, 2010Assignee: Freudenberg Spunweb CompanyInventors: Samuel Keith Black, Terezie Zapletalova, John McNabb, Jeffrey Stine
-
Patent number: 7829485Abstract: An integral composite fiber is formed by integrally joining a stretchable fiber and unstretchable fibers. The stretchable fiber has longitudinally extending first exposed surfaces that are circumferentially spaced from each other. The unstretchable fibers has longitudinally extending second exposed surfaces each disposed between a circumferentially adjacent pair of the first exposed surfaces. One of the first exposed surfaces has a larger surface area than the other or others of the first exposed surfaces. Said other or each of the others of the first exposed surfaces has a surface area ratio of less than 0.8 with respect to the surface area of said one of the first exposed surfaces.Type: GrantFiled: July 6, 2007Date of Patent: November 9, 2010Assignee: Suetomi Engineering Co.Inventor: Masamichi Mikura
-
Patent number: 7820568Abstract: A leather-like sheet excellent in repulsive feeling is provided by a leather-like sheet substantially including a fibrous material which is a leather-like sheet in which a staple fiber nonwoven fabric (A) in which ultra-fine fibers of an average single fiber fineness of 0.0001 to 0.5 dtex and an average fiber length of 1 to 10 cm are entangled with each other and a woven or knitted fabric (B) including a conjugate fiber in which two or more polyesters are disposed in side-by-side or eccentric sheath-core relationship are laminated.Type: GrantFiled: August 1, 2005Date of Patent: October 26, 2010Assignee: Toray Industries, Inc.Inventors: Tomoyuki Horiguchi, Kentaro Kajiwara, Satoru Shimoyama
-
Patent number: 7807593Abstract: In one embodiment the invention is an article comprising at least two layers, a first or low crystallinity layer comprising a low crystallinity polymer and a second or high crystallinity layer comprising a high crystallinity polymer. The high crystallinity polymer has a melting point as determined by differential scanning calorimetry (DSC) that is about the same or within less than 25 C of the melting point of the low crystallinity polymer. The article is elongated at a temperature below the melting point of the low crystallinity polymer in at least one direction to an elongation of at least about 50% of its original length or width, to form a pre-stretched article. Preferably, the high crystallinity layer is capable of undergoing plastic deformation upon the elongation.Type: GrantFiled: October 24, 2006Date of Patent: October 5, 2010Assignee: Dow Global Technologies Inc.Inventors: Rajen M. Patel, Andy Chang
-
Patent number: 7737060Abstract: According to an aspect of the present invention, medical devices are provided that contain at least one multi-component polymeric fiber. The multi-component polymeric fiber further contains at least two components of differing composition.Type: GrantFiled: March 31, 2006Date of Patent: June 15, 2010Assignee: Boston Scientific Scimed, Inc.Inventors: Frederick H. Strickler, Barron Tenney
-
Publication number: 20100104841Abstract: A separator pad that is shape-retaining, tear-resistant, non-porous, and non-toxic, for use in separating vertically stacked groups of containers, can be made from a calendered nonwoven sheet having one or more layers of synthetic bicomponent fibers having a first polymeric component and a second polymeric component that are arranged longitudinally along the fiber wherein the first polymeric component occupies at least a portion of the surface of the fiber, the first polymeric component has a lower melting or softening temperature than the second polymeric component and the first component is melted or softened in order to flow and fill any voids between the portion of the fibers containing the unmelted or unsoftened second polymer component.Type: ApplicationFiled: October 27, 2008Publication date: April 29, 2010Applicant: E. I. DU PONT DE NEMOURS AND COMPANYInventor: Robert Howe Peterson
-
Patent number: 7696111Abstract: The inventive cosmetic pad (2) exhibiting an improved effectiveness thereof for make-up removal contains or consists of discontinuous synthetic micro staple fibers whose length is equal to or greater than 7 mm.Type: GrantFiled: July 21, 2006Date of Patent: April 13, 2010Assignee: Paul Hartmann AGInventors: Rainer Mangold, Angela Römpp, Jana Michelmann
-
Patent number: 7642208Abstract: A composite polymeric material is provided that may be used to construct an abrasion resistant layer or sheet such as an abrasion resistant meltblown layer. Desirably, the composite polymeric material comprises blends of syndiotactic and isotactic polypropylene with ferroelectric materials. The composite polymeric material is particularly useful for constructing a filter media comprising an abrasion resistant fine fiber layer such as a nonwoven layer. The composite polymeric material of the present invention also allows for electret treatment to improve its filtration characteristics.Type: GrantFiled: December 14, 2006Date of Patent: January 5, 2010Assignee: Kimberly-Clark Worldwide, Inc.Inventors: Jeffrey Lawrence McManus, David Grant Midkiff
-
Patent number: 7619132Abstract: A multilayer film includes a plastic layer and an elastomeric layer. The plastic layer can contain a co-polyester of terepthalic acid, adipic acid and butanediol, and the elastomeric layer can contain a polyurethane elastomer. The plastic layer and/or the elastomeric layer can contain filler particles, and may be present as a bilayer laminate. The plastic layer and a filled elastomeric layer can also be combined with an unfilled elastomeric layer to form a tri-layer laminate. The multilayer films can provide breathable films with improved degradability, stretchability and recoverability, and tactile feel.Type: GrantFiled: December 30, 2004Date of Patent: November 17, 2009Assignee: Kimberly-Clark Worldwide, Inc.Inventors: Vasily A. Topolkaraev, Patrick Martin Downey
-
Publication number: 20090117804Abstract: The invention describes a velour needle-punched nonwoven material, which is produced by placing an optionally pre-strengthened nonwoven material on a brush-like stitch base and needling of the nonwoven on this stitch base. The velour needle-punched nonwoven material according to the invention is characterized in that the nonwoven material comprises a spun-bound nonwoven with filaments, wherein the filaments comprise multicomponent filaments with at least one component with a high melting point and at least one thermally activatable component with a low melting point. The velour needle-punched nonwoven material according to the invention not only has excellent mechanical properties, it is also particularly compatible with the environment and health and therefore suited for applications as a textile lining not only in the private field, but particularly in the public domain.Type: ApplicationFiled: September 19, 2008Publication date: May 7, 2009Applicant: CARL FREUDENBERG KGInventors: Ararad EMIRZE, Martin BUECHSEL, Jan-Peter ZILG, Ulrike MAASS, Jeffrey STINE
-
Patent number: 7523531Abstract: The invention relates to a fabric for a machine for producing and/or further processing a material web, in particular a fibrous web, having a carrier structure and a fiber batt, the fiber batt comprising fibers which, in order to form elongated fiber segments, can be split substantially along their longitudinal extent, at least in some sections, and/or which are split substantially along their longitudinal extent, at least in some sections, forming elongated fiber segments. Furthermore, the invention relates to a process for producing the fabric and to a method for conditioning the fabric in the machine for producing the material web.Type: GrantFiled: May 9, 2006Date of Patent: April 28, 2009Assignee: Voith Patent GmbHInventors: Matthias Schmitt, Hubert Walkenhaus
-
Publication number: 20090029620Abstract: Cloth, in which air permeability is variable by energization, includes: a fibrous object composed of composite fibers, each of the composite fibers including: an electrical-conductive polymeric material; and a material different from the electrical-conductive polymeric material, the different material being directly stacked on the electrical-conductive polymeric material; and electrodes which are attached to the fibrous object, and energize the electrical-conductive polymeric material. Each of the composite fibers has a structure in which the material different from the electrical-conductive polymeric material is stacked on at least a part of a surface of the electrical-conductive polymeric material, or a structure in which either one of the electrical-conductive polymeric material and the material different from the electrical-conductive polymeric material penetrates the other material in a longitudinal direction.Type: ApplicationFiled: March 13, 2007Publication date: January 29, 2009Inventor: Hiroaki Miura