Including Strand Or Fiber Material Which Is A Monofilament Composed Of Two Or More Polymeric Materials In Physically Distinct Relationship (e.g., Sheath-core, Side-by-side, Islands-in-sea, Fibrils-in-matrix, Etc.) Or Composed Of Physical Blend Of Chemically Different Polymeric Materials Or A Physical Blend Of A Polymeric Material And A Filler Material Patents (Class 442/361)
  • Patent number: 11794983
    Abstract: A thermal insulation article includes a thermally insulating pad shaped to be positioned in a cavity of a rectangular prism shipping container. The pad includes a solid compostable panel formed primarily of starch and/or plant fiber pulp that holds together as a single unit, and a water-proof or water-resistant film forming a pocket enclosing the panel. The panel includes a first section, a second section, and a third section connecting the first section to the second section, the first and second section each having a central portion and two flaps that extend from the central portion beyond the third section, and wherein the panel is foldable into an open box.
    Type: Grant
    Filed: June 13, 2022
    Date of Patent: October 24, 2023
    Assignee: Vericool, Inc.
    Inventor: Darrell Jobe
  • Patent number: 11746192
    Abstract: The present disclosure relates to silicone-coated mineral wool insulation materials, methods for making them using specific coating methods, and methods for using them. One aspect of the disclosure is a method for making a silicone-coated mineral wool, the method comprising: providing a mineral wool comprising a collection of mineral wool fibers; applying to the mineral wool a solvent-borne coating composition comprising a silicone, the silicone of the coating composition having a number-average molecular weight of at least 25 kDa; and allowing the solvent to evaporate to provide silicone-coated mineral wool.
    Type: Grant
    Filed: April 16, 2019
    Date of Patent: September 5, 2023
    Assignee: CertainTeed LLC
    Inventors: Pawan Saxena, Kevin J. Gallagher, John J. Bozek, Kathleen H. Saylor
  • Patent number: 11746441
    Abstract: A method for making nonwoven fabric. The nonwoven fabric can include three-dimensional features that define a microzone comprising a first region and a second region. The first and second regions can have a difference in values for an intensive property. The nonwoven further has a plurality of apertures, wherein at least a portion of the aperture abuts at least one of the first region and the second region of the microzone.
    Type: Grant
    Filed: June 29, 2021
    Date of Patent: September 5, 2023
    Assignee: The Procter & Gamble Company
    Inventors: Arman Ashraf, Kelyn Anne Arora, Paul Thomas Weisman, Nathan Ray Whitely
  • Patent number: 11739451
    Abstract: A nonwoven web comprising a layer of polymeric fibers, wherein, based on the total number of polymeric fibers, at least 10% the polymeric fibers in said layer are coarse fibers having a fiber diameter of 4 ?m or more, and at least 10% of the polymeric fibers in said layer are fine fibers having a fiber diameter of 2 ?m or less. Also described herein is a method for making the nonwoven web, comprising melt-blowing a polymer mixture comprising two immiscible or partially miscible polymers.
    Type: Grant
    Filed: July 15, 2020
    Date of Patent: August 29, 2023
    Assignee: CUMMINS FILTRATION IP, INC.
    Inventors: Kan Wang, William C. Haberkamp
  • Patent number: 11666488
    Abstract: A nonwoven fabric. The nonwoven fabric can include a first surface and a second surface and a visually discernible pattern of three-dimensional features on one of the first or second surface. Each of the three-dimensional features can define a microzone comprising a first region and a second region. The first and second regions can have a difference in values for an intensive property, and wherein in at least one of the microzones the first region exhibits a Contact Angle of greater than 90 degrees, as measured by the Contact Angle Test Method detailed herein.
    Type: Grant
    Filed: July 8, 2021
    Date of Patent: June 6, 2023
    Assignee: The Procter & Gamble Company
    Inventors: Arman Ashraf, Paul Thomas Weisman, Adrien Grenier, Martin Ian James, Stefano Michele Sinigaglia
  • Patent number: 11661689
    Abstract: A nonwoven fabric. The nonwoven fabric can include a first surface and a second surface and a visually discernible pattern of three-dimensional features on one of the first or second surface. Each of the three-dimensional features can define a microzone comprising a first region and a second region. The first and second regions can have a difference in values for an intensive property, and wherein in at least one of the microzones, the first region is hydrophobic and the second region is hydrophilic.
    Type: Grant
    Filed: February 25, 2021
    Date of Patent: May 30, 2023
    Inventors: Arman Ashraf, Paul Thomas Weisman, Adrien Grenier, Martin Ian James, Stefano Michele Sinigaglia
  • Patent number: 11634838
    Abstract: A nonwoven fabric. The nonwoven fabric can include a first surface and a second surface and a visually discernible pattern of three-dimensional features on one of the first or second surface. Each of the three-dimensional features can define a microzone comprising a first region and a second region. The first and second regions can have a difference in values for an intensive property. The nonwoven further has a plurality of apertures, wherein at least a portion of the aperture abuts at least one of the first region and the second region of the microzone.
    Type: Grant
    Filed: September 15, 2021
    Date of Patent: April 25, 2023
    Assignee: The Procter & Gamble Company
    Inventors: Arman Ashraf, Kelyn Anne Arora, Paul Thomas Weisman, Nathan Ray Whitely
  • Patent number: 11612088
    Abstract: The present invention provides an anisotropic, thermal conductive, electromagnetic interference (EMI) shielding composite including a plurality of aligned polymer nanofibers to form a polymer mat or scaffold having a first and second planes of orientation of the polymer nanofibers. The first plane of orientation of the polymer nanofibers has a thermal conductivity substantially the same as or similar to that of the second plane, and the thermal conductivity of the first or second plane of orientation of the polymer nanofibers is at least 2-fold of that of a third plane of orientation of the polymer nanofibers which is about 90 degrees out of the first and second planes of orientation of the polymer nanofibers, respectively, while the electrical resistance of each of the first and second planes is at least 3 orders lower than that of the third plane. A method for preparing the present composite is also provided.
    Type: Grant
    Filed: September 21, 2021
    Date of Patent: March 21, 2023
    Assignee: Nano and Advanced Materials Institute Limited
    Inventors: Chi Ho Kwok, Mei Mei Hsu, Ka I Lee, Chenmin Liu
  • Patent number: 11560658
    Abstract: Soft point bonded nonwoven webs, and methods of making the same, are described that utilize a pattern of small, discrete bond points in a sequent pattern that together form macro-elements. The macro-elements are themselves positioned and aligned within a pattern such that mechanical stretching operations on the point bonded nonwoven webs yields soft and bulky fabrics but with reduced incidence of tearing or rupturing of the individual bond points.
    Type: Grant
    Filed: August 16, 2018
    Date of Patent: January 24, 2023
    Assignee: KIMBERLY-CLARK WORLDWIDE, INC.
    Inventors: Timothy D. Ferguson, David A. Palzewicz, Daniel M. Nussbaum, Tom R. Belau
  • Patent number: 11541627
    Abstract: Disclosed are an embedded co-cured composite material with large-damping and electromagnetic wave absorbing properties and a preparation method and an application thereof, belonging to damping composite materials. The embedded co-cured composite material is formed by interlacing a plurality of electromagnetic wave absorbing prepreg layers and a plurality of electromagnetic wave absorbing damping layers. Each of the electromagnetic wave absorbing prepregs layers includes a fiber cloth, a micro-nano electromagnetic wave absorbing material and a resin. Contents of the micro-nano electromagnetic wave absorbing material in the electromagnetic wave absorbing prepreg layers and the electromagnetic wave absorbing damping layers have a gradient increase or decrease according to a sequence of the electromagnetic wave absorbing prepreg layers. Each of the electromagnetic wave absorbing damping layers includes a viscoelastic damping material and the micro-nano electromagnetic wave absorbing material.
    Type: Grant
    Filed: January 4, 2020
    Date of Patent: January 3, 2023
    Assignee: Qingdao University of Technology
    Inventors: Sen Liang, Xinle Chen, Changsheng Zheng, Lihua Yuan
  • Patent number: 11447902
    Abstract: Nonwoven fabrics are provided that include at least a first nonwoven layer. The first nonwoven layer includes multi-component fibers densely arranged and compacted against one another. The multi-component fibers comprise at least a first component comprising a first polymeric material including a first polyolefin and a second component comprising a second polymeric material including a second polyolefin, in which the first polymeric material is different than the second polymeric material. The first polymeric material, the second polymeric material, or both include a compatibilizer comprising a copolymer having a comonomer content including (i) at least 10% by weight of the compatibilizer of a first monomer corresponding to the first polyolefin and (ii) at least 10% by weight of the compatibilizer of a second monomer corresponding to the second polyolefin.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: September 20, 2022
    Assignee: BERRY GLOBAL, INC.
    Inventors: David Larry Mohr, Ralph A. Moody, III
  • Patent number: 11446185
    Abstract: The present application generally relates to support articles and methods of making and using them. Some embodiments of the support articles of the present disclosure provide compression and/or stabilization to sore joints, tendons, or muscles. In some embodiments, the compression and/or enhanced stabilization is provided, at least in part, by one or more reinforcing portions. In some embodiments, the support articles can easily be applied by a non-trained user and can be worn in many conditions (including, for example, in the shower or during exercise) for up to three days. In some embodiments, the support articles or support articles also have a relatively slim profile and are thus discreet such that they can be worn under clothing without being noticeable. In some embodiments, the support articles eliminate or reduce joint or muscle pain or soreness.
    Type: Grant
    Filed: November 28, 2017
    Date of Patent: September 20, 2022
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Diane L. Emslander, Dominic J. Julian, Jeffrey O. Emslander, Jacob D. Young
  • Patent number: 11441033
    Abstract: The present invention provides a sheet-like material having soft texture, durability capable of withstanding practical use, and abrasion resistance. The sheet-like material of the present invention is a sheet-like material containing a nonwoven fabric composed of an ultrafine fiber having an average single fiber diameter 0.
    Type: Grant
    Filed: February 6, 2018
    Date of Patent: September 13, 2022
    Assignee: TORAY INDUSTRIES, INC.
    Inventors: Ryuji Shikuri, Makoto Nishimura, Yukihiro Matsuzaki, Satoshi Yanagisawa
  • Patent number: 11408098
    Abstract: The present invention relates to methods of producing polymer fibers and polymer fiber products and materials recovery from these processes. It is an object of this invention to produce polymer fibers and products that include these fibers using selective dissolution of multicomponent fiber and to recover the dissolved polymer and solvent for subsequent use.
    Type: Grant
    Filed: February 3, 2020
    Date of Patent: August 9, 2022
    Assignee: GLOBAL MATERIALS DEVELOPMENT, LLC
    Inventor: Peter W. Gallo
  • Patent number: 11161969
    Abstract: Embodiments of the present disclosure are directed ethylene/alpha-olefin interpolymer compositions including a polyethylene and an alpha-olefin comonomer, where the polyethylene is from 70 wt % to 100 wt % of the interpolymer composition based on a total weight of the interpolymer composition and the interpolymer composition is characterized by a Comonomer Distribution Constant (CDC) in a range of from 100 to 500, a vinyl unsaturation of less than 0.15 vinyls per one thousand total carbon atoms present in the interpolymer composition, a zero shear viscosity ratio (ZSVR) in a range from 1.5 to 5, a density in a range of from 0.903 to 0.950 g/cm3, a melt index (I2) in a range of from 0.1 to 15 g/10 minutes, a molecular weight distribution (Mw/Mn) in a range of from 1.8 to 4.5, and a separation index of from 0.50 to 1.10.
    Type: Grant
    Filed: December 6, 2017
    Date of Patent: November 2, 2021
    Assignee: Dow Global Technologies LLC
    Inventors: Mehmet Demirors, Brayden E. Glad, Rongjuan Cong
  • Patent number: 11154803
    Abstract: The present invention provides an electret fiber sheet having superior recovery of airflow volume by heat treatment and having high air permeability. The electret fiber sheet of the present invention is a nonwoven fabric formed from long fibers that are formed from a thermoplastic resin and have an average single fiber diameter of 0.1 to 8.0 ?m, wherein a bulk density of the nonwoven fabric is 0.05 to 0.30 g/cm3 and the long fibers contain a crystal nucleating agent at 0.005 to 1.0% by mass.
    Type: Grant
    Filed: December 4, 2017
    Date of Patent: October 26, 2021
    Assignee: TORAY INDUSTRIES, INC.
    Inventors: Sachio Inaba, Yuji Iyama, Takuji Kobayashi
  • Patent number: 11155063
    Abstract: An object of the present invention is to provide a stretchable structure that has stretchability together with high stress relaxation properties, and provides fit feeling with less tightening by recovering slowly after stretching. The object is achieved by a stretchable structure having the following characteristics: a tensile permanent set (PS10M) of 1% or more and 50% or less, wherein the tensile permanent set (PS10M) is a value obtained 10 minutes after 150% elongation at a tension rate of 200 mm/minute in accordance with JIS K7127, and a ratio PS1M/PS10M of 1.10 or more, wherein the PS10M is the tensile permanent set obtained 10 minutes after the elongation and the PS1M is the tensile permanent set obtained 1 minute after the elongation.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: October 26, 2021
    Assignee: MITSUI CHEMICALS, INC.
    Inventors: Takayuki Uekusa, Yoshisada Tamo
  • Patent number: 10759935
    Abstract: Provided is a molded body of a resin composition, which has improved easy wiping-off properties and scratch resistance. This resin composition contains (1) a thermoplastic resin and (2) a fluorine-containing copolymer; and the fluorine-containing copolymer (2) is a copolymer which comprises (a) a repeating unit formed from a fluorine-containing monomer represented by formula CH2?C(—X)—C(?O)—Y—Z—Rf, and (b) a repeating unit formed from a non-fluorine monomer having a hydrocarbon group with 14 or more carbon atoms, and which has a weight average molecular weight of 2,500-20,000.
    Type: Grant
    Filed: March 6, 2017
    Date of Patent: September 1, 2020
    Assignee: DAIKIN INDUSTRIES, LTD.
    Inventors: Kazuki Sakami, Eiji Masuda, Kazuya Kawahara
  • Patent number: 9611568
    Abstract: It is an object of the present invention to obtain crimped conjugated fibers having excellent crimp properties. The present invention provides a crimped conjugated fiber having a crimpable cross-sectional configuration, wherein a cross section of the fiber includes at least two portions: a portion (a) and a portion (b); the portion (a) includes an olefin polymer (A) and the portion (b) includes an olefin polymer (B); the olefin polymer (A) differs from the olefin polymer (B) in at least any one of Mz/Mw, melting point and MFR; and a specific fatty acid amide is added to the olefin polymer (A) and/or the olefin polymer (B). The present invention also provides a non-woven fabric including said crimped conjugated fiber.
    Type: Grant
    Filed: May 10, 2012
    Date of Patent: April 4, 2017
    Assignee: MITSUI CHEMICALS, INC.
    Inventors: Yoshihisa Kawakami, Kenichi Suzuki, Yoshihiko Tomita
  • Patent number: 9138741
    Abstract: Filter pipette tip with a small tube with a relatively large aperture at one end for attaching to a pipette, a relatively small aperture at the other end for the passage of liquid and a through-channel between the large aperture and the small aperture and a porous filter arranged in the through-channel, filling up a portion of the through-channel and comprising at least two layers arranged in series in the direction of the through-channel of which a fine-pore layer has a pore size of a maximum of approximately 20 ?m and a coarse-pore layer a pore size of approximately 20 to 50 ?m, the two layers having different pore sizes.
    Type: Grant
    Filed: February 29, 2012
    Date of Patent: September 22, 2015
    Assignee: Eppendorf AG
    Inventors: Christian Ziegmann, Thomas Reimann
  • Publication number: 20150147929
    Abstract: Compositions of biobased polymer blends of polymers of polybutylene succinate (PBS) or polybutylene-adipate-terephthalate (PBAT) and a polyhydroxyalkanoate copolymer are described. In certain embodiments, the copolymer is a multiphase copolymer blend having one phase a glass transition temperature of about ?5° C. to about ?50° C. Methods of making the compositions of the invention are also described. The invention also includes articles, films and laminates comprising the compositions.
    Type: Application
    Filed: June 5, 2013
    Publication date: May 28, 2015
    Inventors: Rajendra K. Krishnaswamy, Johan van Walsem, Oliver P. Peoples, Yossef Shabtai, Allen R. Padwa
  • Publication number: 20150132556
    Abstract: The present invention includes a moldable, flame retardant acoustical fiber system including a nonwoven, moldable layer of a blend of fibers, with a flame retardant coating applied on both top and bottom sides of the moldable layer. The system also includes a spun bond nonwoven black surface adhered to the flame retardant coating on one side of the nonwoven layer. The moldable, flame retardant acoustical fiber system is configured to meet the UL 94 V-0 flame test standard.
    Type: Application
    Filed: July 12, 2012
    Publication date: May 14, 2015
    Inventor: Barry Wyerman
  • Publication number: 20150126091
    Abstract: Non-woven fabrics are made in a spun-melt process, in which a PLA resin blend is melt-spun into filaments, which are pneumatically drawn and then deposited onto a surface to produce the fabric. The PLA resin includes 1-25% of certain aliphatic or aliphatic-aromatic polyesters that have a number average molecular weight from 4,000 to 70,000 g/mol.
    Type: Application
    Filed: April 26, 2013
    Publication date: May 7, 2015
    Inventors: Chad H. Kamann, Robert A. Green, Jed Richard Randall, Donavon Kirschbaum, James R. Valentine
  • Patent number: 8993010
    Abstract: An insect repellent compound that includes naturally occurring oil that emits an odor which repels insects is described. The compound is not harmful to animals, to humans or to the environment. The compound may be incorporated into materials such as yarn that is woven to form a mesh. The material may be used for making an animal mask, for screen doors and other applications. A method of making the compound and incorporating it into materials and products is described.
    Type: Grant
    Filed: April 23, 2010
    Date of Patent: March 31, 2015
    Assignee: Animal Supplies International, Inc.
    Inventor: Coito Joseph
  • Patent number: 8980299
    Abstract: A method of making a biocompatible, implantable medical device, including a vascular closure device is disclosed. The method includes forming a biocompatible polymer into at least one fiber and randomly orienting the at least one fiber into a fibrous structure having at least one interstitial spaces. Polymeric materials may be utilized to fabricate any of these devices. The polymeric materials may include additives such as drugs or other bioactive agents as well as antibacterial agents. In such instances, at least one agent, in therapeutic dosage, is incorporated into at least one of the fibrous structure and the at least one fiber.
    Type: Grant
    Filed: October 30, 2008
    Date of Patent: March 17, 2015
    Assignee: Cordis Corporation
    Inventors: Vipul Bhupendra Dave, Howard Scalzo, Jerome Fischer
  • Publication number: 20150044926
    Abstract: The invention concerns a hygiene product comprising at least one layer of a nonwoven wherein the nonwoven layer comprises man-made cellulosic fibers wherein the layer or the layers has or have a rewet value of equal to or less than 30% and a liquid strike through time of equal to or less than 6 seconds for the use in disposable hygiene products, such as diapers, feminine pads and incontinence products or in wet wipes like toilet wipes, facial wipes, cosmetic wipes, baby wipes and sanitary wipes for cleaning and disinfection.
    Type: Application
    Filed: February 22, 2013
    Publication date: February 12, 2015
    Inventors: Shayda Rahbaran, Bianca Schachtner
  • Publication number: 20150017866
    Abstract: A bi-component fiber (1), in particular for the production of spunbond fabrics (4), with a first component (2) and a second component (3), whereby the first component (2) has a first polymer as an integral part and the second component has a second polymer as an integral part. It is provided that the difference between the melt-flow indices of the first component (2) and the second component (3) is less than or equal to 25 g/10 minutes and that the melt-flow indices of the first component (2) and the second component (3) in each case are less than or equal to 50 g/10 minutes.
    Type: Application
    Filed: July 15, 2014
    Publication date: January 15, 2015
    Inventors: Jörn Schröer, Daniel Placke
  • Publication number: 20150017865
    Abstract: A bi-component fiber (1), in particular for the production of spunbond fabrics (4), with a first component (2) and a second component (3), whereby the first component (2) has a first polymer as an integral part and the second component has a second polymer as an integral part. The first component (2) has an additive, and the second component (3) has a percentage by weight of the additive that is smaller than that in the first component (2).
    Type: Application
    Filed: July 15, 2014
    Publication date: January 15, 2015
    Inventors: Jörn Schröer, Daniel Placke
  • Publication number: 20150017864
    Abstract: A bi-component fiber (1), in particular for the production of spunbond fabrics (4), has a first component (2) and a second component (3), whereby the first component (2) has a first polymer as an integral part and the second component has a second polymer as an integral part. It is provided that the difference between the melting points of the first component (2) and the second component (3) is less than or equal to 8° C.
    Type: Application
    Filed: July 15, 2014
    Publication date: January 15, 2015
    Applicant: Ewald Dörken AG
    Inventors: Jörn Schröer, Daniel Placke
  • Patent number: 8932697
    Abstract: A composite material assembly (1) comprises a) a surface enhancing layer (5) comprising at least one layer of fibers, having a length to width aspect ratio of more than 5:1 and b) a structural layer (7) comprising at least one reinforcing fiber and at least one polymeric matrix.
    Type: Grant
    Filed: July 11, 2007
    Date of Patent: January 13, 2015
    Assignee: Hexcel Composites Limited
    Inventors: Armin Heidrich, Mark Whiter, David Tilbrook
  • Patent number: 8916262
    Abstract: The invention provides composite components, structures and method for producing composite components. A composite component has a negative effect Poisson's ratio and comprises a first component and a second component. The first component and the second component extend longitudinally relative to an axis, the first component being provided around the second component through one or more turns which are spaced longitudinally relative to the axis. A variation in the tensile load on the first component causes the radial position of the second component relative to the axis to vary.
    Type: Grant
    Filed: May 18, 2009
    Date of Patent: December 23, 2014
    Assignee: Dow Corning Corporation
    Inventors: Patrick Barry Hook, Kenneth E. Evans, Jonathan Paul Hannington, Claire Hartmann-Thompson, Timothy Rex Bunce
  • Publication number: 20140357144
    Abstract: Fibers having two or more alternating polymer layers are formed by co-extrusion followed by electroprocessing. The fibers can be used as a non-woven mat or other substrate for a variety of applications. Delamination of the fibers using ultrasonication yields separated, micro and nanolayer, fiber ribbons which may also be used a non-woven mat or other substrate.
    Type: Application
    Filed: December 14, 2012
    Publication date: December 4, 2014
    Inventors: Eugene G. Joseph, Naresh Budhavaram, Roop Mahajan
  • Patent number: 8895459
    Abstract: The present invention relates to a new bicomponent fiber, a nonwoven fabric comprising said new bicomponent fiber and sanitary articles made therefrom. The bicomponent fiber contains a polyethylene-based resin forming at least part of the surface of the fiber longitudinally continuously and is characterized by a Co-monomer Distribution Constant greater than about 45, a recrystallization temperature between 85° C. and 110° C., a tan delta value at 0.1 rad/sec from about 15 to 50, and a complex viscosity at 0.1 rad/second of 1400 Pa·sec or less. The nonwoven fabric comprising the new bicomponent fiber according to the instant invention are not only excellent in softness, but also high in strength, and can be produced in commercial volumes at lower costs due to higher thoughputs and requiring less energy.
    Type: Grant
    Filed: January 29, 2013
    Date of Patent: November 25, 2014
    Assignee: Trevira GmbH
    Inventors: Jorg Dahringer, Bernd Blech, Werner Stefani, Werner Grasser, Mehmet Demirors, Gert Claåsen
  • Patent number: 8889573
    Abstract: The present invention relates to a fiber assembly obtained by electrifying a resin in a melted state by application of voltage between a supply-side electrode and a collection-side electrode so as to extend the resin into an ultrafine composite fiber by electrospinning, and accumulating the ultrafine composite fiber, wherein the ultrafine composite fiber includes at least two polymeric components and the ultrafine composite fiber includes at least one type of composite fiber selected from a sea-island structure composite fiber and a core-sheath structure composite fiber as viewed in fiber cross section, at least one selected from an island component and a core component has a volume specific resistance of 1015?·cm or less, and at least one selected from a sea component and a sheath component has a volume specific resistance exceeding 1015?·cm.
    Type: Grant
    Filed: September 4, 2009
    Date of Patent: November 18, 2014
    Assignees: Daiwabo Holdings Co., Ltd., Daiwabo Polytec Co., Ltd.
    Inventor: Toshio Kamisasa
  • Publication number: 20140308868
    Abstract: A multicomponent fiber having an exposed outer surface with the fiber having at least a first component of polyarylene sulfide polymer; and at least a second component of a thermoplastic polymer free of polyarylene sulfide polymer, wherein said thermoplastic polymer forms the entire exposed surface of the multicomponent fiber and is a copolymer of norbornene with polyethylene.
    Type: Application
    Filed: April 10, 2013
    Publication date: October 16, 2014
    Applicant: E I DU PONT DE NEMOURS AND COMPANY
    Inventors: RAKESH R. NAMBIAR, Harry Vaughn Samuelson
  • Publication number: 20140272362
    Abstract: The present invention provides multicomponent thermoplastic fibers that are biodegradable and that are capable of forming strong bonds in air bonding processes. In various embodiments, the multicomponent fibers can include a first polymer component that includes a first aliphatic polyester, and a second polymer component also including an aliphatic polyester, wherein the first polymer component comprises at least a portion of an exposed surface of the multicomponent fiber. The first polymer component can be a fully amorphous polylactic acid and the second polymer component can be a semicrystalline polylactic acid. The multicomponent fiber can have cross-sectional area comprising the first polymer component and the second polymer component in about a 1:1 ratio, wherein the first polymer component and the second polymer component are configured in a sheath/core arrangement.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 18, 2014
    Applicant: Fiber Innovation Technology, Inc.
    Inventors: Jeffrey S. Dugan, Frank Harris, Michael Hodge
  • Publication number: 20140248816
    Abstract: The instant invention provides bi-component fibers and fabrics made therefrom. The bi-component fiber according to the present invention comprises: (a) from 5 to 95 percent by weight of a first component comprising at least one or more first polymers, based on the total weight of the bi-component fiber; (b) from 5 to 95 percent by weight of a second component comprising at least an ethylene-based polymer composition, based on the total weight of the bicomponent fiber, wherein said ethylene-based polymer composition comprises; (i) less than or equal to 100 percent by weight of the units derived from ethylene; and (ii) less than 30 percent by weight of units derived from one or more ?-olefin comonomers; wherein said ethylene-based polymer composition is characterized by having a Comonomer Distribution Constant in the range of from greater than from 100 to 400, a vinyl unsaturation of less than 0.
    Type: Application
    Filed: October 4, 2012
    Publication date: September 4, 2014
    Applicant: DOW GLOBAL TECHNOLOGIES LLC
    Inventors: Barbara Bonavoglia, Gert J. Claasen, Jacquelyn A. Degroot, Selim Bensason
  • Publication number: 20140242309
    Abstract: A non-woven mono-component, mono-constituent poly lactic acid (PLA) web is disclosed. The web material is useful for production of tea bags and other infusion beverages. The nonwoven network of PLA fibers in mono-component, mono-constituent configuration provides infusion properties, strength and weight properties that surpass current beverage bags and pouches because of its unique composition and structure.
    Type: Application
    Filed: January 2, 2014
    Publication date: August 28, 2014
    Inventors: Stephen W. Foss, Jean-Marie Turra
  • Publication number: 20140234597
    Abstract: The invention is directed to coextruded tapes, films, yarns and the likes of polylactic acid (PLA) and methods of preparation thereof. The present invention is directed to an extruded tape, film or yarn comprising a first phase, in particular a first layer, based on PLA and a second phase, in particular a second layer, also based on PLA, but having different sealing properties, wherein the peak melt temperature or seal initiation temperature of the second layer is lower than the peak melt temperature and/or the melt seal initiation temperature of the first layer, or wherein the Vicat softening point of the second layer is lower than the Vicat softening point of the first layer.
    Type: Application
    Filed: August 10, 2012
    Publication date: August 21, 2014
    Applicant: LANKHORST PURE COMPOSITES B.V.
    Inventors: Femke De Loos, Fernando Eblagon
  • Patent number: 8796164
    Abstract: Composite materials having favorable acoustic and vibration damping properties, while maintaining or improving other composite mechanical properties, include an interleaf layer comprising at least two different nonwoven materials in a specific sequence such that a gradient is formed in the z direction upon curing or an interleaf with a compositional gradient within its structure such that a resin interpenetration gradient is achieved upon curing. Composite materials that contain multilayered nonwoven interleaves are useful, for example, in structures found in aircrafts, such as fuselage skins, stringers and frames. Also contemplated are methods of making the composite material and the structures and aircrafts that contain the composite material.
    Type: Grant
    Filed: December 9, 2011
    Date of Patent: August 5, 2014
    Assignee: Cytec Technology Corp.
    Inventors: Carmelo Luca Restuccia, Emiliano Frulloni
  • Publication number: 20140186563
    Abstract: A polyester or polyester copolymer based composition, such as a polylactic acid based composition, is provided herein. The polyester or polyester copolymer based composition may include a plasticizer, such as an ether based, an ester based, and/or an ether-ester based plasticizer.
    Type: Application
    Filed: December 24, 2013
    Publication date: July 3, 2014
    Applicants: UNIVERSITY OF MASSACHUSETTS, SAINT-GOBAIN PERFORMANCE PLASTICS CORPORATION
    Inventors: Shaw Ling Hsu, Sahas Rathi, Edward Bryan Coughlin, Thomas J. McCarthy, Charles S. Golub, Gerald H. Ling, Michael J. Tzivanis
  • Patent number: 8764904
    Abstract: The present invention relates to a fiber having starch and a high polymer, and a web employing such a fiber.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: July 1, 2014
    Assignee: The Procter & Gamble Company
    Inventors: Valerie Ann Bailey, Larry Neil Mackey, Paul Dennis Trokhan
  • Publication number: 20140072788
    Abstract: Disclosed are highly extensible bonded webs or multilayered sheets containing these. These products can be processed in a ring-roll process without damage. The bonded webs or multilayered sheets can be used, for example in the manufacture of diapers.
    Type: Application
    Filed: September 19, 2013
    Publication date: March 13, 2014
    Inventors: Thomas Burkhart, Walter D. Daniels, Helmut Hartl, Jonathan A. Lu, Deying Kong, David Dudley Newkirk, Robert H. Turner, Lisa Reynolds, Tonny Debeer
  • Patent number: 8663799
    Abstract: The present invention relates to fibers and nonwovens made from plasticized polyolefin compositions comprising a polyolefin, a non-functionalized hydrocarbon plasticizer and a slip agent.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: March 4, 2014
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Chon Yie Lin, Bryan Robert Chapman, Chia Yung Cheng, William Michael Ferry, Michael Brian Kelly, Bruce Robert Lundmark, Wen Li
  • Patent number: 8657115
    Abstract: An arrangement having a plurality of moistened cosmetic pads based on nonwovens which are piled into a closable packaging container in order to distribute to the final consumer and to prevent evaporation. The pads have, on average, a moisture content of at least 200% of the dry weight thereof in the arrangement, the pads have a fiber structure made of staple fibers, are individually moistened and have a homogeneous moisture content such that the difference of the average moisture content of the pads which are arranged in the upper and in the lower quarter of the stack is, at a maximum, 30% of the average moisture content of all of the pads.
    Type: Grant
    Filed: January 10, 2006
    Date of Patent: February 25, 2014
    Assignee: Paul Hartmann AG
    Inventors: Angela Roempp, Jana Michelmann, Rainer Mangold
  • Publication number: 20130316607
    Abstract: There is provided a nonwoven fabric laminate that is capable of being disinfection-treated with e.g., electron beam and is excellent in tensile strength, barrier properties, low-temperature sealability, and softness. The present invention provides a nonwoven fabric laminate obtained by laminating a spunbonded nonwoven fabric on at least one surface of a melt-blown nonwoven fabric (A), the melt-blown nonwoven fabric (A) including fibers of an ethylene-based polymer resin composition of an ethylene-based polymer (a) and an ethylene-based polymer wax (b), the spunbonded nonwoven fabric including a conjugate fiber formed from a polyester (x) and an ethylene-based polymer (y) such that at least part of the fiber surface is the ethylene-based polymer (y).
    Type: Application
    Filed: February 15, 2012
    Publication date: November 28, 2013
    Applicant: Mitsui Chemicals, Inc.
    Inventors: Taro Ichikawa, Kuniaki Kawabe
  • Patent number: 8563449
    Abstract: A non-woven material and method of formation thereof is provided to form a substantially flat or planar self supporting core of an inorganic base fiber and an organic binding fiber preferably using an air-laid forming head. In certain preferred embodiments, the organic base fiber has a fiber strength with a break load of about 10 grams or less and an elongation of about 20 percent or less. Preferably, the organic binding fiber has a binding component and a structural component within unitary fiber filaments. In one aspect, the structural component of the organic binding fiber has a composition effective to provide a strength thereof so that the non-woven material can be manually cut with minimal effort. In such form, the non-woven material is suitable to function as an acoustic ceiling tile.
    Type: Grant
    Filed: April 3, 2008
    Date of Patent: October 22, 2013
    Assignee: USG Interiors, LLC
    Inventors: Donald Mueller, Weixin Song, Bangji Cao
  • Patent number: 8557374
    Abstract: Disclosed are multicomponent fibers derived from a blend of a sulfopolyester with a water non-dispersible polymer wherein the as-spun denier is less than about 6 and wherein the water dispersible sulfopolyester exhibits a melt viscosity of less than 12,000 poise measured at 240° C. at a strain rate of 1 rad/sec, and wherein the sulfopolyester comprising less than about 25 mole % of residues of at least one sulfomonomer, based on the total moles of diacid or diol residues. The multicomponent fiber is capable of being drawn at a relatively high fiber speed, particularly at least about 2000 m/min, and may be used to produce microdenier fibers. Fibrous articles may be produced from the multicomponent fibers and microdenier fibers. Also disclosed is a process for multicomponent fibers, nonwoven fabrics, and microdenier webs.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: October 15, 2013
    Assignee: Eastman Chemical Company
    Inventors: Rakesh Kumar Gupta, Scott Ellery George, Daniel William Klosiewicz, Kab Sik Seo, Coralie McKenna Fleenor, Allen Lynn Crain
  • Publication number: 20130252500
    Abstract: A non-woven fabric composite containing coir fibers and a method for producing such composites. The non-woven fabric composite is comprised of coir fibers, which are large diameter, lignin-rich fibers, with a high viscous flow temperature and a high degradation temperature combined with fibers made of a thermoplastic polymer with a lower viscous flow temperature such as polypropylene (“PP”), polyethylene (“PE”), polylactic acid (“PLA”), and polyester (“PET”) or mixtures thereof. A hot-pressed non-woven fabric composite material prepared from the non-woven fabric composite.
    Type: Application
    Filed: May 20, 2013
    Publication date: September 26, 2013
    Applicant: BAYLOR UNIVERSITY
    Inventors: Walter BRADLEY, David Stanton GREER
  • Patent number: 8541323
    Abstract: A splittable conjugate fiber comprising a polyester segment and a polyolefin segment, wherein the splittable conjugate fiber comprises two or more parts of the polyester segment extending from a center of the fiber toward an outer edge of the fiber in a cross-sectional configuration perpendicular to its longitudinal direction, in which at least one of the two or more parts of the polyester segment extending from the center of the fiber toward the outer edge of the fiber is exposed at the outer edge of the fiber and at least one of the two or more parts of the polyester segment extending from the center of the fiber toward the outer edge of the fiber is unexposed at the outer edge of the fiber.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: September 24, 2013
    Assignees: ES Fibervisions Co., Ltd., ES Fibervisions Hong Kong Limited, ES Fibervisions LP, ES Fibervisions APS
    Inventors: Yukiharu Shimotsu, Minoru Miyauchi, Kazuyuki Sakamoto