Islands-in-sea Multicomponent Strand Or Fiber Material Patents (Class 442/363)
-
Patent number: 10700326Abstract: An insulating (nonconductive) microporous polymeric battery separator comprised of a single layer of enmeshed microfibers and nanofibers is provided. Such a separator accords the ability to attune the porosity and pore size to any desired level through a single nonwoven fabric. Through a proper selection of materials as well as production processes, the resultant battery separator exhibits isotropic strengths, low shrinkage, high wettability levels, and pore sizes related directly to layer thickness. The overall production method is highly efficient and yields a combination of polymeric nanofibers within a polymeric microfiber matrix and/or onto such a substrate through high shear processing that is cost effective as well. The separator, a battery including such a separator, the method of manufacturing such a separator, and the method of utilizing such a separator within a battery device, are all encompassed within this invention.Type: GrantFiled: November 14, 2012Date of Patent: June 30, 2020Assignee: DREAMWEAVER INTERNATIONAL, INC.Inventor: Brian G. Morin
-
Patent number: 9764284Abstract: A batch composition for making a highly porous honeycomb ceramic catalytic filter article, including base inorganic components including a mixture of a nano-zeolite powder, and an inorganic filler, in amounts defined herein; and super additives including: a mixture of at least two pore formers; a binder; and a metal salt, in amounts defined herein. Also disclosed are extruded catalyst filter articles and methods for making the articles.Type: GrantFiled: April 16, 2013Date of Patent: September 19, 2017Assignee: Corning IncorporatedInventors: Yanxia Ann Lu, Steven Bolaji Ogunwumi
-
Patent number: 8980299Abstract: A method of making a biocompatible, implantable medical device, including a vascular closure device is disclosed. The method includes forming a biocompatible polymer into at least one fiber and randomly orienting the at least one fiber into a fibrous structure having at least one interstitial spaces. Polymeric materials may be utilized to fabricate any of these devices. The polymeric materials may include additives such as drugs or other bioactive agents as well as antibacterial agents. In such instances, at least one agent, in therapeutic dosage, is incorporated into at least one of the fibrous structure and the at least one fiber.Type: GrantFiled: October 30, 2008Date of Patent: March 17, 2015Assignee: Cordis CorporationInventors: Vipul Bhupendra Dave, Howard Scalzo, Jerome Fischer
-
Patent number: 8969224Abstract: A sea-island composite fiber has an island component which is ultrafine fibers having a noncircular cross-section, the ultrafine fibers being uniform in the degree of non-circularity and in the diameter of the circumscribed circle. The sea-island composite fiber includes an easily soluble polymer as the sea component and a sparingly soluble polymer as the island component, and the island component has a circumscribed-circle diameter of 10-1,000 nm, a dispersion in circumscribed-circle diameter of 1-20%, a degree of non-circularity of 1.2-5.0, and a dispersion in the degree of non-circularity of 1-10%.Type: GrantFiled: January 26, 2011Date of Patent: March 3, 2015Assignee: Toray Industries, Inc.Inventors: Masato Masuda, Akira Kishiro, Joji Funakoshi, Yoshitsugu Funatsu, Seiji Mizukami
-
Publication number: 20150017411Abstract: A continuous filament spun-laid web includes a plurality of polymer fibers within the web, the web having a first thickness and the web being free of any thermal or mechanical bonding treatment. Activation of the web results in at least one of an increase from the first thickness prior to activation to a second thickness post activation in which the second thickness is at least about two times greater than the first thickness, a decrease in density of the web post activation in relation to a density of the web prior to activation, the web being configured to withstand an elastic elongation from about 10% to about 350% in at least one of a machine direction (MD) of the web and a cross-direction (CD) of the web, and the web having a tensile strength from about 50 gram-force/cm2 to about 5000 gram-force/cm2.Type: ApplicationFiled: July 15, 2014Publication date: January 15, 2015Inventors: Arnold Wilkie, James Brang, Jeffrey Haggard, Angel Antonio De La Hoz
-
Patent number: 8895459Abstract: The present invention relates to a new bicomponent fiber, a nonwoven fabric comprising said new bicomponent fiber and sanitary articles made therefrom. The bicomponent fiber contains a polyethylene-based resin forming at least part of the surface of the fiber longitudinally continuously and is characterized by a Co-monomer Distribution Constant greater than about 45, a recrystallization temperature between 85° C. and 110° C., a tan delta value at 0.1 rad/sec from about 15 to 50, and a complex viscosity at 0.1 rad/second of 1400 Pa·sec or less. The nonwoven fabric comprising the new bicomponent fiber according to the instant invention are not only excellent in softness, but also high in strength, and can be produced in commercial volumes at lower costs due to higher thoughputs and requiring less energy.Type: GrantFiled: January 29, 2013Date of Patent: November 25, 2014Assignee: Trevira GmbHInventors: Jorg Dahringer, Bernd Blech, Werner Stefani, Werner Grasser, Mehmet Demirors, Gert Claåsen
-
Patent number: 8889573Abstract: The present invention relates to a fiber assembly obtained by electrifying a resin in a melted state by application of voltage between a supply-side electrode and a collection-side electrode so as to extend the resin into an ultrafine composite fiber by electrospinning, and accumulating the ultrafine composite fiber, wherein the ultrafine composite fiber includes at least two polymeric components and the ultrafine composite fiber includes at least one type of composite fiber selected from a sea-island structure composite fiber and a core-sheath structure composite fiber as viewed in fiber cross section, at least one selected from an island component and a core component has a volume specific resistance of 1015?·cm or less, and at least one selected from a sea component and a sheath component has a volume specific resistance exceeding 1015?·cm.Type: GrantFiled: September 4, 2009Date of Patent: November 18, 2014Assignees: Daiwabo Holdings Co., Ltd., Daiwabo Polytec Co., Ltd.Inventor: Toshio Kamisasa
-
Patent number: 8883662Abstract: A (semi)grain-finished leather-like sheet composed of an entangled nonwoven fabric of three-dimensionally entangled fiber bundles containing microfine long fibers and an elastic polymer contained in the entangled nonwoven fabric. When dividing the (semi)grain-finished leather-like sheet to five layers with equal thickness, i.e., surface layer, substrate layer 1, substrate layer 2, substrate layer 3 and back layer in this order along the thickness direction, part of the microfine long fibers forming the surface layer and/or the back layer are fuse-bonded to each other and the microfine long fibers forming the intermediate layer are not fuse-bonded. With such a fuse-bonding state of the microfine long fibers, the (semi)grain-finished leather-like sheet combines a low compression resistance and a dense feel each comparable to natural leathers, has a sufficient practical strength, and are excellent in properties which are required according to its use.Type: GrantFiled: March 28, 2008Date of Patent: November 11, 2014Assignee: Kuraray Co., Ltd.Inventors: Jiro Tanaka, Tsuyoshi Yamasaki, Yoshiyuki Ando, Norio Makiyama, Kimio Nakayama
-
Patent number: 8541323Abstract: A splittable conjugate fiber comprising a polyester segment and a polyolefin segment, wherein the splittable conjugate fiber comprises two or more parts of the polyester segment extending from a center of the fiber toward an outer edge of the fiber in a cross-sectional configuration perpendicular to its longitudinal direction, in which at least one of the two or more parts of the polyester segment extending from the center of the fiber toward the outer edge of the fiber is exposed at the outer edge of the fiber and at least one of the two or more parts of the polyester segment extending from the center of the fiber toward the outer edge of the fiber is unexposed at the outer edge of the fiber.Type: GrantFiled: May 23, 2008Date of Patent: September 24, 2013Assignees: ES Fibervisions Co., Ltd., ES Fibervisions Hong Kong Limited, ES Fibervisions LP, ES Fibervisions APSInventors: Yukiharu Shimotsu, Minoru Miyauchi, Kazuyuki Sakamoto
-
Patent number: 8501642Abstract: This invention provides compound solutions, emulsions and gels excellent in homogeneous dispersibility and long-term dispersion stability and also excellent in the properties as cosmetics, using disarranged nanofibers not limited in either form or polymer, widely applicable and small in the irregularity of single fiber diameter. This invention also provides a method for producing them. Furthermore, this invention provides synthetic papers composed of fibers, small in pore area and uniform in pore size, using disarranged nanofibers, and also provides a method for producing them. This invention provides compound solutions, emulsions, gels and synthetic papers containing disarranged nanofibers of 1 to 500 nm in number average diameter and 60% or more in the sum Pa of single fiber ratios.Type: GrantFiled: February 16, 2005Date of Patent: August 6, 2013Assignee: Toray Industries, Inc.Inventors: Yoshihiro Naruse, Takeo Matsunase, Takashi Ochi, Kakuji Murakami, Shuichi Nonaka
-
Publication number: 20130165007Abstract: The invention provides methods for the preparation of nonwoven spunbonded fabrics and various materials prepared using such spunbonded fabrics. The method generally comprises extruding multicomponent fibers having an islands in the sea configuration such that upon removal of the sea component, the island components remain as micro- and nanofibers. The method further comprises mechanically entangling the multicomponent fibers to provide a nonwoven spunbonded fabric exhibiting superior strength and durability without the need for thermal bonding.Type: ApplicationFiled: December 18, 2012Publication date: June 27, 2013Applicant: North Carolina State UniversityInventors: Behnam Pourdeyhimi, Nataliya V. Fedorova, Stephen R. Sharp
-
Patent number: 8460790Abstract: The present invention provides an aggregate of nanofibers having less spread of single fiber fineness values that can be used in wide applications without limitation to the shape and the kind of the polymer, and a method for manufacturing the same. The present invention is an aggregate of nanofibers made of a thermoplastic polymer having single fiber fineness by number average in a range from 1×10?7 to 2×10?4 dtex and single fibers of 60% or more in fineness ratio have single fiber fineness in a range from 1×10?7 to 2×10?4 dtex.Type: GrantFiled: October 22, 2003Date of Patent: June 11, 2013Assignee: TORAY Industries, Inc.Inventors: Takashi Ochi, Akira Kishiro, Shuichi Nonaka
-
Patent number: 8444895Abstract: Disclosed are water-dispersible fibers derived from sulfopolyesters having a Tg of at least 25° C. The fibers may contain a single sulfopolyester or a blend of a sulfopolyester with a water-dispersible or water-nondispersible polymer. Also disclosed are multicomponent fibers comprising a water dispersible sulfopolyester having a Tg of at least 57° C. and a water non-dispersible polymer. The multicomponent fibers may be used to produce microdenier fibers. Fibrous articles may be produced from the water-dispersible fibers, multicomponent fibers, and microdenier fibers. The fibrous articles include water-dispersible and microdenier nonwoven webs, fabrics, and multilayered articles such as wipes, gauze, tissue, diapers, panty liners, sanitary napkins, bandages, and surgical dressings. Also disclosed is a process for water-dispersible fibers, nonwoven fabrics, and microdenier webs.Type: GrantFiled: December 13, 2010Date of Patent: May 21, 2013Assignee: Eastman Chemical CompanyInventors: William Alston Haile, Scott Ellery George, Wesley Raymond Hale, Waylon Lewellyn Jenkins
-
Patent number: 8444896Abstract: Disclosed are water-dispersible fibers derived from sulfopolyesters having a Tg of at least 25° C. The fibers may contain a single sulfopolyester or a blend of a sulfopolyester with a water-dispersible or water-nondispersible polymer. Also disclosed are multicomponent fibers comprising a water dispersible sulfopolyester having a Tg of at least 57° C. and a water non-dispersible polymer. The multicomponent fibers may be used to produce microdenier fibers. Fibrous articles may be produced from the water-dispersible fibers, multicomponent fibers, and microdenier fibers. The fibrous articles include water-dispersible and microdenier nonwoven webs, fabrics, and multilayered articles such as wipes, gauze, tissue, diapers, panty liners, sanitary napkins, bandages, and surgical dressings. Also disclosed is a process for water-dispersible fibers, nonwoven fabrics, and microdenier webs.Type: GrantFiled: December 13, 2010Date of Patent: May 21, 2013Assignee: Eastman Chemical CompanyInventors: William Alston Haile, Scott Ellery George, Wesley Raymond Hale, Waylon Lewellyn Jenkins
-
Patent number: 8435908Abstract: Disclosed are water-dispersible fibers derived from sulfopolyesters having a Tg of at least 25° C. The fibers may contain a single sulfopolyester or a blend of a sulfopolyester with a water-dispersible or water-nondispersible polymer. Also disclosed are multicomponent fibers comprising a water dispersible sulfopolyester having a Tg of at least 57° C. and a water non-dispersible polymer. The multicomponent fibers may be used to produce microdenier fibers. Fibrous articles may be produced from the water-dispersible fibers, multicomponent fibers, and microdenier fibers. The fibrous articles include water-dispersible and microdenier nonwoven webs, fabrics, and multilayered articles such as wipes, gauze, tissue, diapers, panty liners, sanitary napkins, bandages, and surgical dressings. Also disclosed is a process for water-dispersible fibers, nonwoven fabrics, and microdenier webs.Type: GrantFiled: December 13, 2010Date of Patent: May 7, 2013Assignee: Eastman Chemical CompanyInventors: William Alston Haile, Scott Ellery George, Wesley Raymond Hale, Waylon Lewellyn Jenkins
-
Patent number: 8420556Abstract: The subject matter disclosed herein relates generally to fabrics composed of micro-denier fibers wherein said fibers are formed as bicomponent fibrillated fiber. The energy is sufficient for fibrillating as well as entangling (bonding) the fibers. These fabrics can be woven or knitted and made from made from bicomponent islands in the sea fibers and filaments or can be nonwovens and formed by either spunbonding or through the use of bicomponent staple fibers formed into a web by any one of several means and bonded similarly to those used for the spunbonded filament webs.Type: GrantFiled: June 24, 2011Date of Patent: April 16, 2013Assignee: North Carolina State UniversityInventors: Behnam Pourdeyhimi, Nataliya V. Fedorova, Stephen R. Sharp
-
Patent number: 8415263Abstract: A composite material as a sheet material is described, being relatively cheap, most useful as a raw material of a sanitary product or the like, such as underwear, dust-proof mask or dispensable paper diaper, etc., and good in processability, stretchability, gas-permeability, softness, and touch. The composite material is formed by laminating a stretchable layer and a conjugate spunbonded nonwoven fabric including conjugate fibers including a low-melting-point component and a high-melting-point component. The conjugate fibers are partially bonded to each other by thermocompression, wherein each bonded portion has fine folded structures including alternate hill and valley regions in the CD, and the distance between neighboring hills is 100-400 ?m in average. The conjugate spunbonded nonwoven fabric exhibits stretchability through the spread of the fine folded structures, and has, at 5% elongation, a CD-strength of 0.1 N/5 cm or less and an MD/CD strength ratio of 200 or more.Type: GrantFiled: March 30, 2011Date of Patent: April 9, 2013Assignees: JNC Corporation, JNC Fibers CorporationInventors: Toshikatsu Fujiwara, Taiju Terakawa
-
Patent number: 8389426Abstract: The present invention relates to a new bicomponent fiber, a nonwoven fabric comprising said new bicomponent fiber and sanitary articles made therefrom. The bicomponent fiber contains a polyethylene-based resin forming at least part of the surface of the fiber longitudinally continuously and is characterized by a Co-monomer Distribution Constant greater than about 45, a recrystallization temperature between 85° C. and 110° C., a tan delta value at 0.1 rad/sec from about 15 to 50, and a complex viscosity at 0.1 rad/second of 1400 Pa.sec or less. The nonwoven fabric comprising the new bicomponent fiber according to the instant invention are not only excellent in softness, but also high in strength, and can be produced in commercial volumes at lower costs due to higher thoughputs and requiring less energy.Type: GrantFiled: January 4, 2010Date of Patent: March 5, 2013Assignee: Trevira GmbHInventors: Jörg Dahringer, Bernd Blech, Werner Stefani, Werner Grasser, Mehmet Demirors, Gert Claasen
-
Patent number: 8314041Abstract: Disclosed are multicomponent fibers derived from a blend of a sulfopolyester with a water non-dispersible polymer wherein the as-spun denier is less than about 6 and wherein the water dispersible sulfopolyester exhibits a melt viscosity of less than 12,000 poise measured at 240° C. at a strain rate of 1 rad/sec, and wherein the sulfopolyester comprising less than about 25 mole % of residues of at least one sulfomonomer, based on the total moles of diacid or diol residues. The multicomponent fiber is capable of being drawn at a relatively high fiber speed, particularly at least about 2000 m/min, and may be used to produce microdenier fibers. Fibrous articles may be produced from the multicomponent fibers and microdenier fibers. Also disclosed is a process for multicomponent fibers, nonwoven fabrics, and microdenier webs.Type: GrantFiled: December 22, 2010Date of Patent: November 20, 2012Assignee: Eastman Chemical CompanyInventors: Rakesh Kumar Gupta, Scott Ellery George, Daniel William Klosiewicz, Kab Sik Seo, Coralie McKenna Fleenor, Allen Lynn Crain
-
Patent number: 8273451Abstract: Disclosed are multicomponent fibers derived from a blend of a sulfopolyester with a water non-dispersible polymer wherein the as-spun denier is less than about 6 and wherein the water dispersible sulfopolyester exhibits a melt viscosity of less than 12,000 poise measured at 240° C. at a strain rate of 1 rad/sec, and wherein the sulfopolyester comprising less than about 25 mole % of residues of at least one sulfomonomer, based on the total moles of diacid or diol residues. The multicomponent fiber is capable of being drawn at a relatively high fiber speed, particularly at least about 2000 m/min, and may be used to produce microdenier fibers. Fibrous articles may be produced from the multicomponent fibers and microdenier fibers. Also disclosed is a process for multicomponent fibers, nonwoven fabrics, and microdenier webs.Type: GrantFiled: December 22, 2010Date of Patent: September 25, 2012Assignee: Eastman Chemical CompanyInventors: Rakesh Kumar Gupta, Scott Ellery George, Daniel William Klosiewicz, Kab Sik Seo, Coralie McKenna Fleenor, Allen Lynn Crain
-
Publication number: 20120238173Abstract: The present invention discloses environmentally degradable multicomponent fibers. The configuration of the multicomponent fibers may be side-by-side, sheath-core, segmented pie, islands-in-the-sea, or any combination of configurations. Each component of the fiber will comprise destructurized starch and/or a biodegradable thermoplastic polymer. The present invention is also directed to nonwoven webs and disposable articles comprising the environmentally degradable multicomponent fibers. The nonwoven webs may also contain other synthetic or natural fibers blended with the multicomponent fibers of the present invention.Type: ApplicationFiled: June 4, 2012Publication date: September 20, 2012Inventors: Eric Bryan Bond, Jean-Philippe Marie Autran, Larry Neil MacKey, Isao Noda, Hugh Joseph O'Donnell
-
Patent number: 8252706Abstract: A method for preparing stretchable bonded nonwoven fabrics which involves forming a substantially nonbonded nonwoven web of multiple-component continuous filaments or staple fibers which are capable of developing three-dimensional spiral crimp, activating the spiral crimp by heating substantially nonbonded web under free shrinkage conditions during which the nonwoven remains substantially nonbonded, followed by bonding the crimped nonwoven web using an array of discrete mechanical, chemical, or thermal bonds. Nonwoven fabrics prepared according to the method of the current invention have an improved combination of stretch-recovery properties, textile hand and drape compared to multiple-component nonwoven fabrics known in the art.Type: GrantFiled: March 1, 2006Date of Patent: August 28, 2012Assignee: INVISTA North America S.àr.l.Inventors: Dimitri P. Zafiroglu, Geoffrey D. Hietpas, Debora Flanagan Massouda, Thomas Michael Ford, Patricia A. Ford, legal representative
-
Patent number: 8247335Abstract: Disclosed are water-dispersible fibers derived from sulfopolyesters having a Tg of at least 25° C. The fibers may contain a single sulfopolyester or a blend of a sulfopolyester with a water-dispersible or water-nondispersible polymer. Also disclosed are multicomponent fibers comprising a water dispersible sulfopolyester having a Tg of at least 57° C. and a water non-dispersible polymer. The multicomponent fibers may be used to produce microdenier fibers. Fibrous articles may be produced from the water-dispersible fibers, multicomponent fibers, and microdenier fibers. The fibrous articles include water-dispersible and microdenier nonwoven webs, fabrics, and multilayered articles such as wipes, gauze, tissue, diapers, panty liners, sanitary napkins, bandages, and surgical dressings. Also disclosed is a process for water-dispersible fibers, nonwoven fabrics, and microdenier webs.Type: GrantFiled: December 13, 2010Date of Patent: August 21, 2012Assignee: Eastman Chemical CompanyInventors: William Alston Haile, Scott Ellery George, Wesley Raymond Hale, Waylon Lewellyn Jenkins
-
Patent number: 8227362Abstract: Disclosed are water-dispersible fibers derived from sulfopolyesters having a Tg of at least 25° C. The fibers may contain a single sulfopolyester or a blend of a sulfopolyester with a water-dispersible or water-nondispersible polymer. Also disclosed are multicomponent fibers comprising a water dispersible sulfopolyester having a Tg of at least 57° C. and a water non-dispersible polymer. The multicomponent fibers may be used to produce microdenier fibers. Fibrous articles may be produced from the water-dispersible fibers, multicomponent fibers, and microdenier fibers. The fibrous articles include water-dispersible and microdenier nonwoven webs, fabrics, and multilayered articles such as wipes, gauze, tissue, diapers, panty liners, sanitary napkins, bandages, and surgical dressings. Also disclosed is a process for water-dispersible fibers, nonwoven fabrics, and microdenier webs.Type: GrantFiled: December 13, 2010Date of Patent: July 24, 2012Assignee: Eastman Chemical CompanyInventors: William Alston Haile, Scott Ellery George, Wesley Raymond Hale, Waylon Lewellyn Jenkins
-
Patent number: 8216953Abstract: Disclosed are water-dispersible fibers derived from sulfopolyesters having a Tg of at least 25° C. The fibers may contain a single sulfopolyester or a blend of a sulfopolyester with a water-dispersible or water-nondispersible polymer. Also disclosed are multicomponent fibers comprising a water dispersible sulfopolyester having a Tg of at least 57° C. and a water non-dispersible polymer. The multicomponent fibers may be used to produce microdenier fibers. Fibrous articles may be produced from the water-dispersible fibers, multicomponent fibers, and microdenier fibers. The fibrous articles include water-dispersible and microdenier nonwoven webs, fabrics, and multilayered articles such as wipes, gauze, tissue, diapers, panty liners, sanitary napkins, bandages, and surgical dressings. Also disclosed is a process for water-dispersible fibers, nonwoven fabrics, and microdenier webs.Type: GrantFiled: December 13, 2010Date of Patent: July 10, 2012Assignee: Eastman Chemical CompanyInventors: William Alston Haile, Scott Ellery George, Wesley Raymond Hale, Waylon Lewellyn Jenkins
-
Patent number: 8178199Abstract: A water non-dispersible polymer microfiber is provided comprising at least one water non-dispersible polymer wherein the water non-dispersible polymer microfiber has an equivalent diameter of less than 5 microns and length of less than 25 millimeters. A process for producing water non-dispersible polymer microfibers is also provided, the process comprising: a) cutting a multicomponent fiber into cut multicomponent fibers; b) contacting a fiber-containing feedstock with water to produce a fiber mix slurry; wherein the fiber-containing feedstock comprises cut multicomponent fibers; c) heating the fiber mix slurry to produce a heated fiber mix slurry; d) optionally, mixing the fiber mix slurry in a shearing zone; e) removing at least a portion of the sulfopolyester from the multicomponent fiber to produce a slurry mixture comprising a sulfopolyester dispersion and water non-dispersible polymer microfibers; and f) separating the water non-dispersible polymer microfibers from the slurry mixture.Type: GrantFiled: March 22, 2011Date of Patent: May 15, 2012Assignee: Eastman Chemical CompanyInventors: Rakesh Kumar Gupta, Melvin Glenn Mitchell, Daniel William Klosiewicz
-
Patent number: 8148279Abstract: The invention provides durable nonwoven fabrics comprising staple fibers. Methods of preparing durable nonwoven fabrics based on staple fibers are also provided. The methods can include the steps of at least one of needle punching and hydroentangling. The durable nonwoven fabric can be subjected to additional bonding techniques, such as resin bonding and/or thermal bonding. The durable nonwoven fabrics of the invention provide improved durability over conventional nonwoven fabrics. Further advantages of the inventive nonwoven fabrics include maintaining the smooth surface qualities of the fabric and desirable feel of the fabric even with the enhanced durability. The inventive nonwoven fabrics can also be subjected to additional post-processing techniques that conventional nonwoven fabrics would otherwise be unable to withstand. Further, inks and/or dyes can more readily become adhered to the smooth nature of the surfaces of the inventive durable nonwoven fabrics.Type: GrantFiled: April 9, 2009Date of Patent: April 3, 2012Assignee: North Carolina State UniversityInventors: Nagendra Anantharamaiah, Behnam Pourdeyhimi
-
Publication number: 20120058163Abstract: Disclosed are water-dispersible fibers derived from sulfopolyesters having a Tg of at least 25° C. The fibers may contain a single sulfopolyester or a blend of a sulfopolyester with a water-dispersible or water-nondispersible polymer. Also disclosed are multicomponent fibers comprising a water dispersible sulfopolyester having a Tg of at least 57° C. and a water non-dispersible polymer. The multicomponent fibers may be used to produce microdenier fibers. Fibrous articles may be produced from the water-dispersible fibers, multicomponent fibers, and microdenier fibers. The fibrous articles include water-dispersible and microdenier nonwoven webs, fabrics, and multilayered articles such as wipes, gauze, tissue, diapers, panty liners, sanitary napkins, bandages, and surgical dressings. Also disclosed is a process for water-dispersible fibers, nonwoven fabrics, and microdenier webs.Type: ApplicationFiled: December 13, 2010Publication date: March 8, 2012Applicant: EASTMAN CHEMICAL COMPANYInventors: William Alston Haile, Scott Ellery George, Wesley Raymond Hale, Waylon Lewellyn Jenkins
-
Publication number: 20110318986Abstract: The invention provides methods for the preparation of nonwoven spunbonded fabrics and various materials prepared using such spunbonded fabrics. The method generally comprises extruding multicomponent fibers having an islands in the sea configuration such that upon removal of the sea component, the island components remain as micro- and nanofibers. The method further comprises mechanically entangling the multicomponent fibers to provide a nonwoven spunbonded fabric exhibiting superior strength and durability without the need for thermal bonding.Type: ApplicationFiled: March 28, 2007Publication date: December 29, 2011Inventors: Behnam Pourdeyhimi, Nataliya V. Fedorova, Stephen R. Sharp
-
Publication number: 20110250812Abstract: The subject matter disclosed herein relates generally to fabrics composed of micro-denier fibers wherein said fibers are formed as bicomponent fibrillated fiber. The energy is sufficient for fibrillating as well as entangling (bonding) the fibers. These fabrics can be woven or knitted and made from made from bicomponent islands in the sea fibers and filaments or can be nonwovens and formed by either spunbonding or through the use of bicomponent staple fibers formed into a web by any one of several means and bonded similarly to those used for the spunbonded filament webs.Type: ApplicationFiled: June 24, 2011Publication date: October 13, 2011Inventors: Behnam Pourdeyhimi, Nataliya V. Fedorova, Stephen R. Sharp
-
Publication number: 20110230111Abstract: Polymer fibers having therein at least one infrared attenuating agent is provided. The infrared attenuating agent is at least substantially evenly distributed throughout the polymeric material forming the polymer fibers. In exemplary embodiments, the infrared attenuating agents have a thickness in at least one dimension of less than about 100 nanometers. Alternatively, the polymer fibers are bicomponent fibers formed of a core and a sheath substantially surrounding the core and the infrared attenuating agent is at least substantially evenly distributed throughout the sheath. The modified polymer fibers may be used to form insulation products that utilize less polymer material and subsequently reduce manufacturing costs. The insulation products formed with the modified polymers have improved thermal properties compared to insulation products formed of only non-modified polymer fibers. Additionally, the insulation product is compatible with bio-based binders.Type: ApplicationFiled: March 19, 2010Publication date: September 22, 2011Inventors: Charles R. Weir, Harry A. Alter, Yadollah Delaviz, Jeffrey A. Tilton
-
Patent number: 7998887Abstract: To provide a nonwoven fabric containing ultra-fine fibers suitable as a leather-like sheet, and also a leather-like sheet with an excellent compactness. A nonwoven fabric containing ultra-fine fibers, characterized in that it contains staple fibers with a fiber fineness of 0.0001 to 0.5 decitex and a fiber length of 10 cm or less, and has a weight per unit area of 100 to 550 g/m2, an apparent density of 0.280 to 0.700 g/cm3, a tensile strength of 70 N/cm or more, and a tear strength of 3 to 50 N.Type: GrantFiled: July 7, 2004Date of Patent: August 16, 2011Assignee: Toray Industries, Inc.Inventors: Tomoyuki Horiguchi, Kyoko Yokoi, Kentaro Kajiwara
-
Patent number: 7993727Abstract: An advanced grid structure has high strength and low thermal expansion, and includes first, second, and third tape prepreg groups each including a plurality of tape prepregs. Each tape prepreg includes carbon fibers that are aligned in a first, second, or third direction and that form respective first, second, and third grid sides. A plurality of each the first, second, and third grid sides are spaced apart at equal intervals in the respective first, second, or third direction to form respective first, second, and third grid side groups. A structure ratio of the advanced grid structure is larger than 0 and 0.107 or less, 0.053 or less, or 0.040 or less. A thermal expansion coefficient of the advanced grid structure is ?0.9 ppm/K or more and 0.9 ppm/K or less. The carbon fibers have a tensile modulus of elasticity of 280 GPa or more and 330 GPa or less.Type: GrantFiled: June 2, 2008Date of Patent: August 9, 2011Assignee: Mitsubishi Electric CorporationInventors: Kazushi Sekine, Hajime Takeya, Tsuyoshi Ozaki, Masami Kume
-
Publication number: 20110183563Abstract: A polymer alloy fiber that has an islands-in-sea structure of two or more kinds of organic polymers of different levels of solubility, wherein the island component is made of a low solubility polymer and the sea component is made of a high solubility polymer, while the diameter of the island domains by number average is in a range from 1 to 150 nm, 60% or more of the island domains in area ratio have sizes in a range from 1 to 150 nm in diameter, and the island components are dispersed in a linear configuration. A method for manufacturing the polymer alloy fiber includes melt spinning of a polymer alloy that is made by melt blending of a low solubility polymer and a high solubility polymer.Type: ApplicationFiled: April 1, 2011Publication date: July 28, 2011Inventors: Takashi Ochi, Akira Kishiro
-
Publication number: 20110177395Abstract: The present invention relates to a fiber assembly obtained by electrifying a resin in a melted state by application of voltage between a supply-side electrode and a collection-side electrode so as to extend the resin into an ultrafine composite fiber by electrospinning, and accumulating the ultrafine composite fiber, wherein the ultrafine composite fiber includes at least two polymeric components and the ultrafine composite fiber includes at least one type of composite fiber selected from a sea-island structure composite fiber and a core-sheath structure composite fiber as viewed in fiber cross section, at least one selected from an island component and a core component has a volume specific resistance of 1015?·cm or less, and at least one selected from a sea component and a sheath component has a volume specific resistance exceeding 1015?·cm.Type: ApplicationFiled: September 4, 2009Publication date: July 21, 2011Applicants: DAIWABO HOLDINGS CO., LTD., DAIWABO POLYTEC CO., LTD.Inventor: Toshio Kamisasa
-
Publication number: 20110142896Abstract: Disclosed are water-dispersible fibers derived from sulfopolyesters having a Tg of at least 25° C. The fibers may contain a single sulfopolyester or a blend of a sulfopolyester with a water-dispersible or water-nondispersible polymer. Also disclosed are multicomponent fibers comprising a water dispersible sulfopolyester having a Tg of at least 57° C. and a water non-dispersible polymer. The multicomponent fibers may be used to produce microdenier fibers. Fibrous articles may be produced from the water-dispersible fibers, multicomponent fibers, and microdenier fibers. The fibrous articles include water-dispersible and microdenier nonwoven webs, fabrics, and multilayered articles such as wipes, gauze, tissue, diapers, panty liners, sanitary napkins, bandages, and surgical dressings. Also disclosed is a process for water-dispersible fibers, nonwoven fabrics, and microdenier webs.Type: ApplicationFiled: December 13, 2010Publication date: June 16, 2011Applicant: EASTMAN CHEMICAL COMPANYInventors: William Alston Haile, Scott Ellery George, Wesley Raymond Hale, Waylon Lewellyn Jenkins
-
Patent number: 7935645Abstract: A method of producing a nonwoven fabric comprising spinning a set of bicomponent fibers which include an external fiber component and an internal fiber component. The external fiber enwraps said internal fiber and has a higher elongation to break value than the internal fiber and a lower melting temperature than the internal fiber component. The set of bicomponent fibers are positioned onto a web and thermally bonded to produce a nonwoven fabric.Type: GrantFiled: September 26, 2008Date of Patent: May 3, 2011Assignee: North Carolina State UniversityInventors: Behnam Pourdeyhimi, Nataliya V. Fedorova, Stephen R. Sharp
-
Patent number: 7902094Abstract: Disclosed are water-dispersible fibers derived from sulfopolyesters having a Tg of at least 25° C. The fibers may contain a single sulfopolyester or a blend of a sulfopolyester with a water-dispersible or water-nondispersible polymer. Also disclosed are multicomponent fibers comprising a water dispersible sulfopolyester having a Tg of at least 57° C. and a water non-dispersible polymer. The multicomponent fibers may be used to produce microdenier fibers. Fibrous articles may be produced from the water-dispersible fibers, multicomponent fibers, and microdenier fibers. The fibrous articles include water-dispersible and microdenier nonwoven webs, fabrics, and multilayered articles such as wipes, gauze, tissue, diapers, panty liners, sanitary napkins, bandages, and surgical dressings. Also disclosed is a process for water-dispersible fibers, nonwoven fabrics, and microdenier webs.Type: GrantFiled: August 16, 2005Date of Patent: March 8, 2011Assignee: Eastman Chemical CompanyInventors: William Alston Haile, Scott Ellery George, Wesley Raymond Hale, Waylon Lewellyn Jenkins
-
Patent number: 7892993Abstract: Disclosed are multicomponent fibers derived from a blend of a sulfopolyester with a water non-dispersible polymer wherein the as-spun denier is less than about 6 and wherein the water dispersible sulfopolyester exhibits a melt viscosity of less than 12,000 poise measured at 240° C. at a strain rate of 1 rad/sec, and wherein the sulfopolyester comprising less than about 25 mole % of residues of at least one sulfomonomer, based on the total moles of diacid or diol residues. The multicomponent fiber is capable of being drawn at a relatively high fiber speed, particularly at least about 2000 m/min, and may be used to produce microdenier fibers. Fibrous articles may be produced from the multicomponent fibers and microdenier fibers. Also disclosed is a process for multicomponent fibers, nonwoven fabrics, and microdenier webs.Type: GrantFiled: January 31, 2006Date of Patent: February 22, 2011Assignee: Eastman Chemical CompanyInventors: Rakesh Kumar Gupta, Scott Ellery George, Daniel William Klosiewicz, Kab Sik Seo, Coralie McKenna Fleenor, Allen Lynn Crain
-
Patent number: 7871946Abstract: A nonwoven fabric composed of ultra-fine continuous fibers having a mean fineness of not more than 0.5 dtex is prepared. The nonwoven fabric comprises a water-soluble thermoplastic resin in a proportion of not more than 5% by weight relative to the nonwoven fabric, has an absorbing height of not less than 30 mm as determined at 20° C. after 10 minutes based on Byreck method when the nonwoven fabric immersion-treated for 60 minutes in a water of 80° C. is used, and satisfies the following formula: (B)/(A)?0.25, wherein the symbol (B) represents a tensile strength [N/5 cm] in the longitudinal direction and the lateral direction of the nonwoven fabric and the symbol (A) represents a fabric weight [g/m] of the nonwoven fabric. In the nonwoven fabric, not less than 30% of the surface may be coated with the water-soluble thermoplastic resin. The water-soluble thermoplastic resin may be a water-soluble thermoplastic polyvinyl alcohol, e.g.Type: GrantFiled: September 27, 2004Date of Patent: January 18, 2011Assignee: Kuraray Co., Ltd.Inventors: Takuya Tsujimoto, Naoki Fujiwara, Midori Okazaki, Nozomu Sugo
-
Patent number: 7838449Abstract: A dryer sheet substrate is provided having improved loft and reduced fuzz wherein the substrate comprises relatively low denier bicomponent fibers. The bicomponent fibers may comprise two or more polymers having different melting temperatures, with the relatively lower melting temperature polymer making up at least a portion of the outer surface of the fiber. Upon heating to a sufficient temperature, the lower melting temperature fibers may soften and melt, providing bonding at crossover points of the fibers in the laid web. The web indicates advantageous characteristics with respect to thickness (loft), fuzz factor and ability to absorb a fabric treating composition.Type: GrantFiled: May 29, 2008Date of Patent: November 23, 2010Assignee: Freudenberg Spunweb CompanyInventors: Samuel Keith Black, Terezie Zapletalova, John McNabb, Jeffrey Stine
-
Patent number: 7829486Abstract: The leather-like sheet substrate of the present invention comprises a fiber-entangled nonwoven fabric that comprises a microfine fiber bundle (A) and a microfine fiber bundle (B) in a blending ratio (A)/(B) of 30/70 to 70/30 by mass and a polymeric elastomer contained in the fiber-entangled nonwoven fabric. The microfine fiber bundle (A) comprises 10 to 100 microfine fibers each of which has a single fiber fineness of 0.5 dtex or less and which are made of an elastic polymer having a JIS A hardness of 90 to 97. The microfine fiber bundle (B) comprises a microfine fiber which has a single fiber fineness of 0.5 dtex or less and which is made of a non-elastic polymer. Because of its excellent stretchability in both the machine and transverse directions and drapeability, the leather-like sheet substrate is particularly suitable as the material for clothing.Type: GrantFiled: January 29, 2004Date of Patent: November 9, 2010Assignee: Kuraray Co., Ltd.Inventors: Yoshiki Nobuto, Yoshihiro Tanba
-
Patent number: 7820568Abstract: A leather-like sheet excellent in repulsive feeling is provided by a leather-like sheet substantially including a fibrous material which is a leather-like sheet in which a staple fiber nonwoven fabric (A) in which ultra-fine fibers of an average single fiber fineness of 0.0001 to 0.5 dtex and an average fiber length of 1 to 10 cm are entangled with each other and a woven or knitted fabric (B) including a conjugate fiber in which two or more polyesters are disposed in side-by-side or eccentric sheath-core relationship are laminated.Type: GrantFiled: August 1, 2005Date of Patent: October 26, 2010Assignee: Toray Industries, Inc.Inventors: Tomoyuki Horiguchi, Kentaro Kajiwara, Satoru Shimoyama
-
Patent number: 7820569Abstract: A composite sheet used for artificial leather with low elongation and excellent softness which includes a non-woven fabric layer, a woven or knitted fabric layer and a polyurethane resin, wherein the non-woven fabric layer and the woven or knitted fabric layer are entangled with each other.Type: GrantFiled: January 29, 2003Date of Patent: October 26, 2010Assignee: Kolon Industries Inc.Inventors: Young-Nam Hwang, Won-Jun Kim, Jae-Hoon Chung
-
Patent number: 7807593Abstract: In one embodiment the invention is an article comprising at least two layers, a first or low crystallinity layer comprising a low crystallinity polymer and a second or high crystallinity layer comprising a high crystallinity polymer. The high crystallinity polymer has a melting point as determined by differential scanning calorimetry (DSC) that is about the same or within less than 25 C of the melting point of the low crystallinity polymer. The article is elongated at a temperature below the melting point of the low crystallinity polymer in at least one direction to an elongation of at least about 50% of its original length or width, to form a pre-stretched article. Preferably, the high crystallinity layer is capable of undergoing plastic deformation upon the elongation.Type: GrantFiled: October 24, 2006Date of Patent: October 5, 2010Assignee: Dow Global Technologies Inc.Inventors: Rajen M. Patel, Andy Chang
-
Patent number: 7737060Abstract: According to an aspect of the present invention, medical devices are provided that contain at least one multi-component polymeric fiber. The multi-component polymeric fiber further contains at least two components of differing composition.Type: GrantFiled: March 31, 2006Date of Patent: June 15, 2010Assignee: Boston Scientific Scimed, Inc.Inventors: Frederick H. Strickler, Barron Tenney
-
Patent number: 7704900Abstract: Provided is an artificial leather sheet that comprises microfine fibers of an inelastic polymer having a mean fiber diameter of at most 5 ?m and an elastic polymer, in which the major portion of the elastic polymer forms a fibrous structure of the entangled nonwoven fabric with the microfine fibers of inelastic polymer throughout the entire layer of the artificial leather sheet in the thickness direction thereof, and a part of the elastic polymer forms a porous layer integrated with the entangled nonwoven fabric structure on at least one face of the artificial leather sheet. The artificial leather sheet does not substantially undergo structure deformation even when repeatedly elongated and deformed. It has good elastic stretchability, and has a soft and dense feel, and its appearance is good not detracting from the drapability of the sheet.Type: GrantFiled: August 30, 2004Date of Patent: April 27, 2010Assignee: Kuraray Co., Ltd.Inventors: Shinichi Yoshimoto, Tetsuya Ashida, Hisao Yoneda
-
Patent number: 7642208Abstract: A composite polymeric material is provided that may be used to construct an abrasion resistant layer or sheet such as an abrasion resistant meltblown layer. Desirably, the composite polymeric material comprises blends of syndiotactic and isotactic polypropylene with ferroelectric materials. The composite polymeric material is particularly useful for constructing a filter media comprising an abrasion resistant fine fiber layer such as a nonwoven layer. The composite polymeric material of the present invention also allows for electret treatment to improve its filtration characteristics.Type: GrantFiled: December 14, 2006Date of Patent: January 5, 2010Assignee: Kimberly-Clark Worldwide, Inc.Inventors: Jeffrey Lawrence McManus, David Grant Midkiff
-
Patent number: 7612000Abstract: A modacrylic shrinkable fiber according to the present invention is containing a polymer composition obtained by mixing 50 to 99 parts by weight of a polymer (A) containing 40 wt % to 80 wt % of acrylonitrile, 20 wt % to 60 wt % of a halogen-ontaining monomer and 0 wt % to 5 wt % of a sulfonic-acid-containing monomer, and 1 to 50 parts by weight of a polymer (B) containing 5 wt % to 70 wt % of acrylonitrile, 20 wt % to 94 wt % of an acrylic ester and 1 wt % to 40 wt % of a sulfonic-acid-containing monomer containing a methallylsulfonic acid or metal salts thereof or amine salts thereof, in which a total amount of the polymer (A) and the polymer (B) is 100 parts by weight. In this way, a modacrylic shrinkable fiber that has a favorable color development property after dyeing and a high shrinkage ratio even after dyeing is obtained.Type: GrantFiled: July 8, 2005Date of Patent: November 3, 2009Assignee: Kaneka CorporationInventors: Sohei Nishida, Kohei Kawamura, Toshiaki Ebisu
-
Patent number: 7601659Abstract: The present invention relates to fabrics that can be used in the manufacture of paper. The fabrics preferably have at least three regions of fabric with specified distributions of pore sizes. The fabrics disclosed herein are an effective alternative to conventional dewatering fabrics for removing water from the incipient paper, which can provide energy cost savings in subsequent elevated temperature drying steps.Type: GrantFiled: January 11, 2006Date of Patent: October 13, 2009Assignee: E.I. du Pont de Nemours and CompanyInventors: John D. Bomberger, Karsten Keller, Glen E. Simmonds, Benjamin Fuchs