Abstract: A tennis ball having an outer felt fabric comprising at least two layers of non-woven fabric with the outer layer having a weight ratio of wool therein greater than 45% and the inner or bottom layer having a weight ratio of wool therein less than 40%.
Abstract: A recoat layer 2 formed of a nonwoven fabric is laminated onto a pattern layer 4 provided on the surface of a substrate sheet 3 to constitute a recoatable decorative sheet 1, and the recoatable decorative sheet 1 is laminated onto a substrate for a decorative material, thereby constituting a recoatable decorative material. The above constitution can provide a recoatable material, which can form a surface having excellent build.
Abstract: The absorbent sheet comprising at least hydrophilic fibers and thermally fusible bonding fibers or a strengthening assistant, and a superabsorbent polymer is characterized in that the superabsorbent polymer is not present on an absorbent surface of the absorbent sheet for absorbing liquid but distributed inside the absorbent sheet, and is adhered and fixed to the hyrophilic fibers constituting the absorbent sheet, the superabsorbent polymer is spread at an amount of 5 to 300 g per 1 m.sup.2 of the absorbent sheet and the absorbent sheet has thickness of 0.3 to 1.5 mm.
Type:
Grant
Filed:
December 28, 1995
Date of Patent:
October 13, 1998
Assignee:
Kao Corporation
Inventors:
Kazumichi Masaki, Yoshihito Kubota, Eichi Ichikawa, Mari Kaganoi, Minoru Nakanishi, Mitsugu Hamajima, Yasuhiro Y. Yamamoto, Hironori Kawasaki, Tetsuya Kusagawa
Abstract: Nonwoven fabrics having a desirable level of bulk, elasticity and low permanent set are produced by creasing a precursor web and heat setting the creases. Such webs may have varying basis weights and compositions depending on the intended end use. Applications disclosed include components for personal care products such as disposable diapers and feminine hygiene products, for example, as well as garment applications such as training pants, surgical gowns and the like. Also, absorbent products such as wipers are disclosed. Methods for forming the creased nonwoven fabric are disclosed using interdigitated rolls for creasing in the machine direction or in the cross-machine direction.
Type:
Grant
Filed:
June 30, 1995
Date of Patent:
September 29, 1998
Assignee:
Kimberly-Clark Worldwide, Inc.
Inventors:
Ty Jackson Stokes, Jon Richard Butt, Sr., Alan Edward Wright
Abstract: The present invention is directed to elastic fibrous nonwoven web laminates which exhibit elastic properties in at least one direction and, if desired, two or more directions due to the use of at least one fibrous nonwoven web facing layer which contains a plurality of slits. The resultant laminates are useful in a wide variety of applications not the least of which include garments, surgical drapes and other supplies as well as personal care absorbent articles including diapers, training pants, sanitary napkins, incontinence garments, bandages and the like. Processes for forming such laminates are also disclosed.
Type:
Grant
Filed:
May 10, 1996
Date of Patent:
September 8, 1998
Assignee:
Kimberly-Clark Worldwide, Inc.
Inventors:
Frank Paul Abuto, Andrew Edward Diamond, Ruth Lisa Levy, Stephen Clark Smith
Abstract: A method for improving the strike through properties of hot melt adhesive compositions comprising the step of incorporating therein a nonionic fluorchemical surfactant in an amount of 0.1 to 10 parts by weight per 100 parts adhesive.
Type:
Grant
Filed:
November 5, 1997
Date of Patent:
September 8, 1998
Assignee:
National Starch and Chemical Investment Holding Corporation
Abstract: The present invention relates to mat-shaped composites having porosities above 60% and densities below 0.6 g/cm.sup.3, comprising an aerogel and fibers dispersed therein, the aerogel having cracks and the aerogel fragments enclosed by the cracks, whose average volume is 0.001 mm.sup.3 to 1 cm.sup.3, being held together by the fibers. The present invention further relates to processes for producing the composites of the invention and to their use.
Abstract: There is provided thermally stabilized polypropylene melt-blown microfiber acoustical insulation web which has a resistance to thermal degradation at a temperature of 135.degree. C. for at least 10 days. The polypropylene has a thermal stabilizer uniformly distributed within the melt-blown microfiber polymer which polymer when produced is subject to thermal and/or catalytic degradation in the absence of significant levels of thermal stabilizer or antioxidant.
Abstract: Layered carbon-carbon composites having improved interlaminar tensile strength are disclosed together with a process for making such composites. A metal catalyst is first deposited on a panel comprising a plurality of layers of carbon fiber cloth. The panel is then exposed to a gaseous hydrocarbon in an inert atmosphere at elevated temperature in order to promote the growth of graphite whiskers between the carbon cloth layers.
Type:
Grant
Filed:
November 7, 1996
Date of Patent:
June 30, 1998
Assignee:
Fiber Materials, Inc.
Inventors:
James R. Lennox, Daniel C. Nelson, Roger T. Pepper
Abstract: A liquid-distribution garment worn in body-side combination with substantially impermeable protective apparel. The garment is composed of at least one layer of a hydrophilically transmuted reinforcing fabric; and at least one layer of a hydrophilically transmuted absorbent nonwoven fabric joined to the layer of reinforcing fabric so that the joined layers have a water wicking rate of at least about 4 centimeters per 30 seconds in at least one direction. The garment may contain a body portion, sleeve portions and/or leg portions, at least one of those portions being formed from the material composed of at least one layer of a hydrophilically transmuted reinforcing fabric and at least one layer of a hydrophilically transmuted absorbent nonwoven fabric. The garment may have sub-portions that contain superabsorbents.
Type:
Grant
Filed:
April 28, 1995
Date of Patent:
June 23, 1998
Assignee:
Kimberly-Clark Corporation
Inventors:
Kimberly Bradshaw Dennis, Ronald Francis Cook, Craig Farrell Thomaschefsky
Abstract: There is provided a web which has been spun from a mixture of thermoplastic polymer and a softening additive in an amount up to about 3 weight percent, and which has been mechanically treated to increase softness. The web has a final cup crush value which is less than 50 percent of the starting cup crush value and the drop in cup crush value is greater than the sum of the treatments individually. The web may be a single layer or may be a laminate of spunbond and other materials such as meltblown and coform fabrics.
Abstract: The present invention teaches a textile structure and method of making thereof which is useful for fire blocking a structure and insulating it from sound and heat. The textile structure includes at least one composite having three layers which are placed upon one another to form top, middle and bottom layers. The middle layer is a densified matt or batting having at least 10% by weight of carbonaceous fibers. The top and bottom layers are less densified matts or battings which have at least 10% by weight of carbonaceous fibers. Multiple composites may be secured together for increased protection against fire, sound and heat.
Abstract: A combined thermal and acoustic insulator comprises a first metallic material layer formed, for example, from a metal foil, a fibrous low density material batt layer adjacent the first metallic layer, a high density plastic material layer, for example, a mass loaded elastomer, adjacent the batt material layer, and a second metallic foil layer. The first metallic material layer forms the heat exposed side and the second metallic layer forms the shielded side of the insulator. Alternatively, additional layers may be provided, for example, a third foil layer adjacent the fibrous material layer and a second fibrous layer between the third metal foil layer and the first metal foil layer.
Abstract: The present invention provides a splittable conjugate fiber containing at least two incompatible polymers that are arranged in distinct segments across the cross-section of the fiber, wherein the segments are continuous along the length of the fiber. The fiber can be characterized in that the segments of the fiber dissociate in less than about 30 seconds when contacted with a hot aqueous fibrillation-inducing medium. The invention also provides a fabric containing the split fibers produced from the precursor splittable conjugate fiber and laminates containing the split fiber fabric. Additionally provided is a process for producing the split fibers.
Type:
Grant
Filed:
November 30, 1995
Date of Patent:
June 2, 1998
Assignee:
Kimberly-Clark Worldwide, Inc.
Inventors:
Richard Daniel Pike, Philip Anthony Sasse, Edward Jason White, Ty Jackson Stokes
Abstract: An improved article of manufacture and method thereof utilizing a fibrous structure of initially discrete layers, each having first and second sides. At least one side of each layer is rough and the structure has a shrinkage of no more than about 2 percent. The structure is impregnated with a thermoplastic-type polymeric material, and in the final structure there is no visible layer separation.
Abstract: Hand-tearable barrier laminates are provided which include a reinforcing layer having a first tensile strength laminated to flexible cellulosic web comprising open porosity and a second tensile strength which is less than the first tensile strength. The web is treated with a water-resistant polymeric resin for providing liquid water resistance to the web while permitting water vapor to pass through it. Inexpensive web materials can be substituted for polymer foam and microperforated plastic films currently employed by the housing industry.
Abstract: The present invention provides composite nonwoven fabric laminates and processes for producing such. The fabric is comprised of a web of thermoplastic filaments laminated to at least one other web. Preferably, the filaments are spunbonded continuous polyolefin filaments which have an oxidatively degraded outer sheath portion to promote better interfilamentary bonding and improved fabric laminate strength. In a preferred embodiment, two outer nonwoven webs comprise oxidatively degraded spunbonded filaments and are positioned around and laminated to a web of meltblown microfibers thus forming an spunbond/meltblown/spunbond fabric. Additionally, a stretch compatible fabric may be formed in which a web of oxidatively degraded filaments is laminated to an elastic web. The fabrics of the invention may be advantageously used in numerous applications such as medical garments and disposable adsorbent products.
Abstract: There is provided a laminate of nonwoven fabrics for barrier applications which has improved ratios of barrier and strength to weight, of softness to strength and of vapor transmission to barrier. The laminate has a meltblown layer sandwiched between spunbond layers to produce an SMS laminate. The meltblown and spunbond layers may have between 0.1 to 2.0 weight percent of a fluorocarbon and the meltblown layer preferably between 5 and 20 weight percent polybutylene. The laminate also may have pigments if desired. Such laminates are useful for garments.
Type:
Grant
Filed:
November 8, 1996
Date of Patent:
November 18, 1997
Assignee:
Kimberly-Clark Worldwide, Inc.
Inventors:
Stephen Stewart Bradley, David Craige Strack, Randall Dee Lowery, Deborah Jean Zemlock, Mary Katherine Lawson
Abstract: In an improved power transmission belt, the circumferentially disposed reinforcing cords are made from multi-filament yarns of heterofilaments. These cords, when fused, have good inter-filament bonding without the solvent of the solvent/adhesive systems.
Abstract: A nonwoven disposable face mask includes a filtration layer formed of a plurality of thermoplastic microfine meltblown microfibers having an average fiber diameter of less than 1.5 microns. The filtration layer also has a basis weight of less than ten grams per square meter. The resultant face mask provides improved wearer comfort and barrier and filtration properties.
Abstract: A process is provided for preparing recyclable reinforced composite structures having enhanced surface appearance by heating a self-supporting porous batt comprised of an intimate homogenous blend of high modulus reinforcing fibers and thermoplastic resin fibers to a temperature sufficient to melt the resin component and convert the batt into moldable form, placing the moldable batt into a heated mold to flow, solidify and substantially crystallize the component, introducing a thermosetting resin-containing coating material into the mold adjacent at least one surface of the crystallized structure to provide a coating on the one surface and dwelling the coated structure in the mold for a time sufficient to set the coating material.
Abstract: Conductive meltblown fabrics are disclosed which have improved strength and hand over conventional conductive meltblown fabrics. Also disclosed is a process for spraying a solution containing a conductive agent into a molten stream of meltblown fibers before they are deposited onto a forming wire. By applying the solution onto the fibers before they are deposited onto the forming wire, the heat of the molten stream vaporizes the solvent carrying the conductive agent and thereby eliminates the need to subsequently dry the formed material. By eliminating the drying step, degradation of the strength and hardening of the hand of the material normally resulting from the wetting and drying of meltblown fabrics are avoided. There is also disclosed a conductive SMS laminate having a conductive meltblown layer sandwiched between two untreated and nonconductive spunbond layers.
Type:
Grant
Filed:
May 17, 1995
Date of Patent:
March 25, 1997
Assignee:
Kimberly-Clark Corporation
Inventors:
Anthony Jobe, Cheryl A. Perkins, Michael D. Powers
Abstract: A laminate comprising a fabric is provided wherein the fabric has comparable strength characteristics to conventional fabrics yet is softer. The fibers of the fabric are a blend of a high crystallinity polypropylene polymer and a random block copolymer of polypropylene and polyethylene. The laminate of this invention may include other spunbond layers, meltblown nonwoven fabrics or films.The laminate of this invention may be used in products such as, for example, garments, personal care products, medical products, protective covers and outdoor fabrics.
Type:
Grant
Filed:
May 17, 1995
Date of Patent:
March 4, 1997
Assignee:
Kimberly-Clark Corporation
Inventors:
Peter M. Kobylivker, Simon K. Ofosu, Susan E. Shawver, Roger L. Lance
Abstract: A thermoplastic thermoformable composite material for shaping and stretching into a desired form without voids and holes, including a core formed by at least one layer of chopped fibers enveloped and impregnated by thermoplastic material to form a fabric layer. Layers of thermoplastic material respectively positioned on opposite sides of the fabric layer core, and the layers of thermoplastic material provided with a sufficient thickness to flow into and heal any voids or holes formed in the core as the composite material is shaped and stretched into a desired form.