Having Distributed Parameters Patents (Class 455/281)
  • Patent number: 8970791
    Abstract: Provided a circuit board including an input terminal to which a high-frequency signal is input, a high-frequency amplifier for amplifying the high-frequency signal input to the input terminal, at least one distributor distributing the high-frequency signal, a plurality of high-frequency processing circuits of which transmission path lengths for inputting each of the high-frequency signals distributed by the distributor into signal inputting sections of the plurality of high-frequency processing circuits are different from one another, and a plurality of attenuating devices which are mounted at previous stages of each of the plurality of high-frequency processing circuits and possess amounts of attenuation which increase with decrease of the transmission path lengths.
    Type: Grant
    Filed: July 18, 2012
    Date of Patent: March 3, 2015
    Assignee: Sony Corporation
    Inventors: Toshikazu Yoshida, Hideaki Ozawa
  • Patent number: 8335483
    Abstract: A receiver device, A system and a method for reception of a signal having an amplitude that has been modulated with information, wherein a resistive element is provided that converts an electrical quantity into a physical parameter.
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: December 18, 2012
    Inventor: Frank Schmidt
  • Patent number: 8285238
    Abstract: A compact receiver which is easy in adjustment of a reference signal level is provided. A receiver having an antenna for receiving a wireless signal, a single pole single through switch which passes a signal received via the aforesaid antenna and outputs the signal when a first control signal is in a first state, and connects a signal received via the aforesaid antenna to a reference potential when the first control signal is in a second state, and a difference circuit which outputs a difference signal of an output signal of the aforesaid single pole single through switch when the first control signal is in the first state and an output signal of the aforesaid single pole single through switch when the first control signal is in the second state is provided.
    Type: Grant
    Filed: December 31, 2007
    Date of Patent: October 9, 2012
    Assignee: Fujitsu Limited
    Inventor: Masaru Sato
  • Patent number: 8270907
    Abstract: Aspects of a method and system for matching an integrated system to an antenna utilizing on-chip measurement of reflected signals are provided. In a chip comprising at least a portion of a receiver and at least a portion of a transmitter, a best impedance match between an antenna and the chip may be determined based on on-chip measurement of one or more signals reflected from the antenna. The best impedance match between the antenna and the chip may be determined utilizing a correction algorithm. The correction algorithm may be determined utilizing data from an external test set that measures signals transmitted by the chip via the antenna. The reflected signals may be routed to a signal analyzer via on on-chip directional coupler. The best impedance match may be determined for each of a plurality of frequencies and/or each of a plurality of transmit signal strengths.
    Type: Grant
    Filed: April 5, 2011
    Date of Patent: September 18, 2012
    Assignee: Broadcom Corporation
    Inventor: Thomas Baker
  • Patent number: 8200168
    Abstract: A programmable antenna assembly includes a configurable antenna structure, a configurable antenna interface, and a control module. The configurable antenna structure includes a plurality of antenna elements that, in response to an antenna configuration signal, are configured elements into at least one antenna. The configurable antenna interface module is coupled to the at least one antenna and, based on an antenna interface control signal, provides at least one of an impedance matching circuit and a bandpass filter. The control module is coupled to generate the antenna configuration signal and the antenna interface control signal in accordance with a first frequency band and a second frequency band such that the at least one antenna facilitates at least one of transmitting and receiving a first RF signal within the first frequency band and facilitates at least one of transmitting and receiving a second RF signal within the second frequency band.
    Type: Grant
    Filed: August 23, 2011
    Date of Patent: June 12, 2012
    Assignee: Broadcom Corporation
    Inventors: Ahmadreza (Reza) Rofougaran, Maryam Rofougaran
  • Patent number: 8185062
    Abstract: A configurable antenna assembly includes an antenna structure and a configurable antenna interface. The antenna structure is operable, in a first mode, to provide a first antenna structure and a second antenna structure, wherein the first antenna structure receives an inbound radio frequency (RF) signal and the second antenna structure transmits an outbound RF signal. The configurable antenna interface is operable in the first mode to provide a first antenna interface and a second antenna interface, wherein the first antenna interface is configured in accordance with a receive adjust signal to adjust at least one of phase and amplitude of the inbound RF signal, and wherein the second antenna interface is configured in accordance with a transmit adjust signal to adjust at least one of phase and amplitude of the outbound RF signal.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: May 22, 2012
    Assignee: Broadcom Corporation
    Inventors: Ahmadreza (Reza) Rofougaran, Maryam Rofougaran
  • Patent number: 8140042
    Abstract: A distributing apparatus distributes a high-frequency signal received from a transmitting-and-receiving module of a first wireless terminal to transmitting-and-receiving modules of other wireless terminals with a wiring scheme. The apparatus has at least three signal transmission lines each transmitting the high-frequency signal. It also has a connecting node that connects an end of each of the signal transmission lines to each other, and an attenuator on each of the signal transmission lines and positioned near the connecting node, the attenuator on each signal transmission line attenuating the high-frequency signal on that signal transmission line. An input or output terminal of each of the transmitting-and-receiving modules of the wireless terminals is connected to any one of the signal transmission lines with a wiring scheme. One of the transmitting-and-receiving modules then transmits a communication signal.
    Type: Grant
    Filed: August 16, 2005
    Date of Patent: March 20, 2012
    Assignee: Sony Corporation
    Inventor: Takanori Washiro
  • Patent number: 8040586
    Abstract: One exemplary metamaterial is formed from a plurality of individual unit cells, at least a portion of which have a different permeability than others. The plurality of individual unit cells are arranged to provide a metamaterial having a gradient index along at least one axis. Such metamaterials can be used to form lenses, for example.
    Type: Grant
    Filed: April 15, 2009
    Date of Patent: October 18, 2011
    Assignee: The Regents of the University of California
    Inventors: David R. Smith, David Schurig, Anthony F. Starr, Jack J. Mock
  • Patent number: 8014732
    Abstract: A programmable antenna assembly includes a configurable antenna structure, a configurable antenna interface, and a control module. The configurable antenna structure includes a plurality of antenna elements that, in response to an antenna configuration signal, are configured elements into at least one antenna. The configurable antenna interface module is coupled to the at least one antenna and, based on an antenna interface control signal, provides at least one of an impedance matching circuit and a bandpass filter. The control module is coupled to generate the antenna configuration signal and the antenna interface control signal in accordance with a first frequency band and a second frequency band such that the at least one antenna facilitates at least one of transmitting and receiving a first RF signal within the first frequency band and facilitates at least one of transmitting and receiving a second RF signal within the second frequency band.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: September 6, 2011
    Assignee: Broadcom Corporation
    Inventors: Ahmadreza (Reza) Rofougaran, Maryam Rofougaran
  • Patent number: 7933562
    Abstract: A radio frequency (RF) transceiver includes a baseband processing module, a configurable receiver section, a configurable transmitter section and a configurable antenna assembly. The baseband processing module converts outbound data into an outbound symbol stream, converts an inbound symbol stream into inbound data and generates a transmit adjust signal and a receive adjust signal. The receiver section converts an inbound RF signal into the inbound symbol stream. The transmitter section converts the outbound symbol stream into an outbound RF signal. The antenna assembly receives the inbound RF signal via a first antenna structure and transmits the outbound RF signal via a second antenna structure. The first antenna structure and/or the configurable receiver section adjusts phase and/or amplitude of the inbound RF signal in accordance with the receive adjust signal.
    Type: Grant
    Filed: May 11, 2007
    Date of Patent: April 26, 2011
    Assignee: Broadcom Corporation
    Inventors: Ahmadreza Reza Rofougaran, Maryam Rofougaran
  • Patent number: 7925220
    Abstract: Aspects of a method and system for matching an integrated FM system to an antenna utilizing on-chip measurement of reflected signals are provided. In this regard a portion of a signal output by an integrated FM radio transmit block and reflected by an antenna may be routed to an on-chip signal analyzer. Accordingly, measurements of the reflected signals may be utilized to configure a matching network in order to provide a best impedance match between the FM radio and the antenna. In this regard, a best impedance match may maximize radiation efficiency and/or radiated power. Additionally, the configuration of the matching network may incorporate a correction algorithm/offset experimentally determined via a calibration utilizing external components.
    Type: Grant
    Filed: August 1, 2007
    Date of Patent: April 12, 2011
    Assignee: Broadcom Corporation
    Inventor: Thomas Baker
  • Patent number: 7787830
    Abstract: There is provided a transceiver comprising a first node for receiving a received signal and transmitting a transmitted signal; a receiver, connected between a first voltage and the first node, for processing the received signal; a transmitter, connected between a second voltage and the first node, for generating the transmitted signal; and a DC voltage controller for selecting a DC component of a voltage of the first node to at least one of: selectively activate at least one of the transmitter and the receiver; and selectively substantially deactivate at least one of the transmitter and receiver.
    Type: Grant
    Filed: May 30, 2006
    Date of Patent: August 31, 2010
    Assignee: Jennic Limited
    Inventors: Simon P. Goddard, Kim Li
  • Patent number: 7761061
    Abstract: A programmable antenna assembly includes a configurable antenna structure, a configurable antenna interface, and a control module. The configurable antenna structure includes a plurality of antenna elements that, in response to an antenna configuration signal, are configured elements into at least one antenna. The configurable antenna interface module is coupled to the at least one antenna and, based on an antenna interface control signal, provides at least one of an impedance matching circuit and a bandpass filter. The control module is coupled to generate the antenna configuration signal and the antenna interface control signal in accordance with a first frequency band and a second frequency band such that the at least one antenna facilitates at least one of transmitting and receiving a first RF signal within the first frequency band and facilitates at least one of transmitting and receiving a second RF signal within the second frequency band.
    Type: Grant
    Filed: May 2, 2007
    Date of Patent: July 20, 2010
    Assignee: Broadcom Corporation
    Inventors: Ahmadreza Reza Rofougaran, Maryam Rofougaran
  • Patent number: 7702296
    Abstract: A radio frequency (RF) transmit/receive switch. The transmit/receive switch comprises an impedance matching circuit and a voltage scaling circuit. The impedance matching circuit matches an incoming RF signal to a low noise amplifier and an outgoing RF signal from a power amplifier. The voltage scaling circuit, coupled to the impedance matching circuit, the power amplifier, and the low noise amplifier, attenuates the outgoing RF signal to a scaled signal within a breakdown voltage of a transistor device in the low noise amplifier during transmission of the outgoing RF signal.
    Type: Grant
    Filed: August 1, 2007
    Date of Patent: April 20, 2010
    Assignee: Mediatek USA Inc.
    Inventor: Christopher Siu
  • Publication number: 20080200141
    Abstract: A compact receiver which is easy in adjustment of a reference signal level is provided. A receiver having an antenna for receiving a wireless signal, a single pole single through switch which passes a signal received via the aforesaid antenna and outputs the signal when a first control signal is in a first state, and connects a signal received via the aforesaid antenna to a reference potential when the first control signal is in a second state, and a difference circuit which outputs a difference signal of an output signal of the aforesaid single pole single through switch when the first control signal is in the first state and an output signal of the aforesaid single pole single through switch when the first control signal is in the second state is provided.
    Type: Application
    Filed: December 31, 2007
    Publication date: August 21, 2008
    Inventor: Masaru Sato
  • Patent number: 7330703
    Abstract: The present invention relates to a transceiver for bidirectional frequency division multiplexed transmission, a communication system including one or more transceivers. Optionally, the communication system is a communication system for a digital subscriber line. The transceiver comprises transmission means with a voltage source output or a current source output for transmitting data in a transmission frequency range, receiving means for receiving data in a receiving frequency range, and a coupling impedance for connecting the transmission means and the receiving means to a transmission medium. The magnitude of the coupling impedance in the transmission frequency range is smaller than the magnitude of the coupling impedance in the receiving frequency range if the transmission means has a voltage source output and is higher than the magnitude of the coupling impedance in the receiving frequency range if the transmission means has a current source output.
    Type: Grant
    Filed: October 29, 2003
    Date of Patent: February 12, 2008
    Assignee: Broadcom Corporation
    Inventor: Rudi Verbist
  • Patent number: 7269391
    Abstract: A transceiver front end includes a transmit/receive (T/R) switch, a first balun, a second balun, a low noise amplifier, a power amplifier, and compensation circuitry. The T/R switch is operably coupled to an antenna for receiving inbound radio frequency (RF) signals and for transmitting outbound RF signals. The first balun includes a single ended winding and a differential winding, where the single ended winding is operably coupled to the T/R switch. The second balun includes a single ended winding and a differential winding, where the single ended winding is operably coupled to the T/R switch. The low noise amplifier is operably coupled the differential winding of the first balun. The power amplifier is operably coupled to the differential winding of the second balun. The compensation circuitry is operably coupled to the first balun to compensate for at least one of phase imbalance, amplitude imbalance, and impedance imbalance of the first balun.
    Type: Grant
    Filed: May 24, 2004
    Date of Patent: September 11, 2007
    Assignee: Broadcom Corporation
    Inventors: Janice Chiu, Shahla Khorram, Qiang (Tom) Li
  • Patent number: 7242917
    Abstract: An apparatus and method of for attaching an antenna to a mobile communication device. The apparatus can include radio frequency generation circuitry, a radio frequency feed point coupled to the radio frequency generation circuitry, a direct current voltage source coupled to the radio frequency feed point, and an antenna detection module coupled to the radio frequency feed point and the direct current voltage source. The antenna detection module is configured to detect a type of antenna coupled to the radio frequency feed point based on a detected direct current voltage. The antenna detection module can be coupled to the radio frequency feed point and a ground contact point. The apparatus can additionally include a parameter of operation adjustment module coupled to the antenna detection module. The adjustment circuitry can be configured to adjust a parameter of operation of the mobile communication device.
    Type: Grant
    Filed: November 5, 2002
    Date of Patent: July 10, 2007
    Assignee: Motorola Inc.
    Inventors: Aamir Abbasi, Roger Harmon
  • Patent number: 7167688
    Abstract: An RF transceiver module for wireless communication devices includes a multi-layered substrate, an RF transceiver IC mounted on the multi-layered substrate for receiving and transmitting voice or data signals, at least one band selection filter mounted on the multi-layered substrate for filtering received RF signals, an antenna switch integrated in the multi-layered substrate which can be switched to transmit RF signals generated by the power amplifiers to the external antenna or to receive RF signals from an external antenna to the RF transceiver IC through the band selection filter, a plurality of passive devices embedded in the multi-layered substrate, and wiring embedded in the multi-layered substrate for electrically connecting the passive devices, the RF transceiver IC, and the band selection filter.
    Type: Grant
    Filed: July 30, 2003
    Date of Patent: January 23, 2007
    Assignee: Chi Mei Communication Systems, Inc.
    Inventors: Ko-Mai Li, Yo-Shen Lin, Chien-Chang Liu
  • Patent number: 7146137
    Abstract: To provide a high frequency switch capable of dealing with multiple frequency bands without having plurality of switch circuits. A first diode that conducts due to a bias current when a first switch is closed is interposed between first signal terminal and a second signal terminal. A strip line with the electrical length L1 is connected to the cathode of the first diode, the other end being grounded. At a position with a distance L2 from one end of the strip line, a capacitor and a second switch are connected to be equivalently grounded when the second switch is closed. The strip line resonates with the electrical length L1 when the second switch is opened, and resonates with the electrical length L2 when the second switch is closed.
    Type: Grant
    Filed: June 6, 2002
    Date of Patent: December 5, 2006
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventor: Yasuaki Namura
  • Patent number: 7113087
    Abstract: Proximity of a user body part can be detected by measuring the effects such proximity has on antenna impedance mismatches. The amount of mismatch affects the amount of RF signal energy reflected back into a transmission line connecting the antenna to a RF signal source. A directional coupler has a main line electrically connected to the transmission line, as well as a coupled line. The directional coupler produces a signal on its coupled line in relation to the magnitude of reflected energy on the transmission line; the amount of reflected energy varies in response to how well the antenna impedance matches the transmission line impedance. A signal detector is electrically connected to the coupled line, and responds to signals produced in the coupled line by the main line. The signal detector output is then used to determine whether a body part is in proximity. Other aspects the invention include an adaptive algorithm to adjust a threshold for proximity determination.
    Type: Grant
    Filed: April 8, 2003
    Date of Patent: September 26, 2006
    Assignee: Microsoft Corporation
    Inventors: Mark W. Casebolt, Craig S. Ranta
  • Patent number: 7113759
    Abstract: A controller area network transceiver and a transmission method for a controller area network provides improved symmetry between its differential output signal CANH and CANL such that capacitive imbalance is minimized. The transceiver disclosed herein includes a driver including a non-inverted output that couples to the first output terminal CANH and a inverted output that couples to the second output terminal CANL. A receiver comparator includes a non-inverted input coupled to the first output terminal CANH and a inverted input coupled to the second output terminal CANL. A first and second impedance matching circuit portions capacitively balance the first and second output terminals such that efficient common-mode rejection is enabled by setting the RC time constants formed by each impedance matching circuit and external resistances to be substantially equivalent.
    Type: Grant
    Filed: August 28, 2002
    Date of Patent: September 26, 2006
    Assignee: Texas Instruments Incorporated
    Inventors: Ricky D. Jordanger, Anton M. Antonsen
  • Patent number: 7092691
    Abstract: The present invention discloses a generic approach to the design of single-path, switchless multi-resonant, multi-band power amplifiers. In the preferred embodiments, the amplifier includes one or more amplification stages, a switchless, multi-resonant, input impedance network, a switchless, multi-resonant, output impedance network, and if multi-stage, a switchless, multi-resonant, interstage impedance network between each amplification stage. Multi-band amplification is accomplished without the need for externally-applied, frequency-indicating control signals. Moreover, the amplifier may be designed to provide concurrent multi-band amplification or non-concurrent amplification.
    Type: Grant
    Filed: March 8, 2002
    Date of Patent: August 15, 2006
    Assignee: California Insitute of Technology
    Inventors: Florian Bohn, Seyed-Ali Hajimiri
  • Patent number: 6985760
    Abstract: A foldable portable radio terminal is disclosed which normally optimizes an antenna characteristic by an antenna matching circuit even if the body length of the foldable portable radio terminal varies. A folded state detection circuit sends a detection signal to a control section depending upon whether or not the foldable portable radio terminal is folded. An antenna matching circuit is determined so that the antenna characteristic of an antenna is optimized when the foldable portable radio terminal is in a folded state. When the foldable portable radio terminal is unfolded, the control section renders a matching characteristic changeover circuit operative to change over the matching characteristic of the antenna matching circuit so that, even when the foldable portable radio terminal is in an unfolded state, the antenna characteristic by the antenna matching circuit may be optimized.
    Type: Grant
    Filed: May 29, 2001
    Date of Patent: January 10, 2006
    Assignee: NEC Corporation
    Inventor: Yoshimasa Hosonuma
  • Patent number: 6917814
    Abstract: A method (500) and a mobile station (160) for reporting multi-path signals based on a report window are described herein. The mobile station (160) may determine a distribution of a plurality of multi-path signals observed by a receiving unit (220) within the mobile station (160). The mobile station (160) may determine a report window based on the distribution. Based on the report window, the mobile station (160) may report at least one of the plurality of multi-path signals.
    Type: Grant
    Filed: August 6, 2002
    Date of Patent: July 12, 2005
    Assignee: Motorola, Inc.
    Inventors: Christopher Becker, Karthik Ramaswamy, Michael Carney
  • Patent number: 6892058
    Abstract: N input signals are fed (702) to a first Fourier Transform Matrix (FTM) (208) to produce N intermediate signals. Each of the N intermediate signals is split (704) via a non-isolating splitter (300) to produce M split signals. At least one of the M split signals from each of the N intermediate signals is amplified (706) to produce at least N amplified signals. The at least N amplified signals are coupled (708) to N non-isolating combiners (300), each having at least M input ports, to produce N combiner output signals. The N combiner output signals are applied (710) to a second FTM (210) to produce N final output signals.
    Type: Grant
    Filed: March 26, 2003
    Date of Patent: May 10, 2005
    Assignee: Motorola, Inc.
    Inventor: Rodney Wayne Hagen
  • Patent number: 6850752
    Abstract: In a single-to-differential conversion circuit for converting a single signal into a differential signal formed of first and second signal components: a source-grounded (or emitter-grounded) first transistor receives the single signal at the drain (or collector); the gate (or base) and drain (or collector) of the first transistor are connected; the gate (or base) of a source-grounded (or emitter-grounded) second transistor is connected to the gate (or base) of the first transistor; the drain (or collector) of a gate-grounded (or base-grounded) third transistor outputs the first signal component; the source (or emitter) of the third transistor is connected to the drain (or collector) of the first transistor; the drain (or collector) of a gate-grounded (or base-grounded) fourth transistor outputs the second signal component; and the source (or emitter) of the fourth transistor is connected to the drain (or collector) of the second transistor.
    Type: Grant
    Filed: February 28, 2002
    Date of Patent: February 1, 2005
    Assignee: Fujitsu Limited
    Inventors: Wakako Hoshino, Noriaki Shirai
  • Patent number: 6766155
    Abstract: A novel terminating differential bus receiver with automatic compensation for process, voltage, and temperature variation is presented. A termination circuit is connected internal to the integrated circuit to the input of a differential receiver in parallel with a transmission line connectable to the receiver. Both the termination circuit and the differential receiver are implemented with at least one p-channel transistor and at least one n-channel transistor, such that the p-channel transistors of the termination circuit and receiver and the n-channel transistors of the termination circuit and receiver are ratioed to vary similarly under PVT variation.
    Type: Grant
    Filed: January 24, 2002
    Date of Patent: July 20, 2004
    Assignee: Agilent Technologies, Inc.
    Inventors: Manuel Salcido, Salvador Salcido, Jr., Scott T. Evans, Gilbert Yoh
  • Publication number: 20040087295
    Abstract: An apparatus and method of for attaching an antenna to a mobile communication device. The apparatus can include radio frequency generation circuitry, a radio frequency feed point coupled to the radio frequency generation circuitry, a direct current voltage source coupled to the radio frequency feed point, and an antenna detection module coupled to the radio frequency feed point and the direct current voltage source. The antenna detection module is configured to detect a type of antenna coupled to the radio frequency feed point based on a detected direct current voltage. The antenna detection module can be coupled to the radio frequency feed point and a ground contact point. The apparatus can additionally include a parameter of operation adjustment module coupled to the antenna detection module. The adjustment circuitry can be configured to adjust a parameter of operation of the mobile communication device.
    Type: Application
    Filed: November 5, 2002
    Publication date: May 6, 2004
    Inventors: Aamir Abbasi, Roger Harmon
  • Publication number: 20040009754
    Abstract: According to some embodiments of the present invention, an impedance transformation circuit is provided for use with a transmitter, a receiver, and an antenna. The transmitter may provide transmission signals for transmission by the antenna. The antenna may provide received signals having an associated signal parameter to the receiver. The impedance transformation circuit includes an impedance adjusting circuit and a controller. The impedance adjusting circuit is connected between the antenna, the receiver, and the transmitter. The impedance adjusting circuit is configured to change an impedance difference presented between at least one of: 1) the transmitter and the antenna, and 2) the antenna and the receiver, in response to a control signal. The controller generates the control signal to change the presented impedance difference in response to a signal parameter.
    Type: Application
    Filed: July 12, 2002
    Publication date: January 15, 2004
    Inventor: Edward Lee Smith
  • Patent number: 6654618
    Abstract: A variation compensating unit that compensates an amplitude variation and phase variation efficiently and that improves system reliability and communication quality. A first combining section generates a first combined signal by combining signal on different transmission paths in which a variation has not occurred. A second combining section generates a second combined signal by combining signal on the different transmission paths in which a variation has occurred. A compensation value calculating section calculates compensation values for compensating variation according to the transmission paths on the basis of the first combined signal, the second combined signal, and signal on each transmission path in which a variation has not occurred or in which a variation has occurred. A compensating section compensates variation dynamically on the basis of the compensation values.
    Type: Grant
    Filed: March 1, 2002
    Date of Patent: November 25, 2003
    Assignee: Fujitsu Limited
    Inventor: Shuji Kobayakawa
  • Publication number: 20030139164
    Abstract: A novel terminating differential bus receiver with automatic compensation for process, voltage, and temperature variation is presented. A termination circuit is connected internal to the integrated circuit to the input of a differential receiver in parallel with a transmission line connectable to the receiver. Both the termination circuit and the differential receiver are implemented with at least one p-channel transistor and at least one n-channel transistor, such that the p-channel transistors of the termination circuit and receiver and the n-channel transistors of the termination circuit and receiver are ratioed to vary similarly under PVT variation.
    Type: Application
    Filed: January 24, 2002
    Publication date: July 24, 2003
    Inventors: Manuel Salcido, Salvador Salcido, Scott T. Evans, Gilbert Yoh
  • Publication number: 20030092420
    Abstract: A dielectric antenna is provided for a high frequency wireless communication apparatus. The antenna includes a dielectric substrate and a conductive meander line layer formed on the dielectric substrate. A conductive feed line layer, having a greater line width than the width of the meander line layer, is also formed on the dielectric substrate. A conductive taper layer connects the conductive meander line layer to the conductive feed line layer. An edge of the conductive taper layer slants at an angle from an adjacent edge of the conductive feed line layer in a direction toward the conductive meander line layer.
    Type: Application
    Filed: October 9, 2002
    Publication date: May 15, 2003
    Inventors: Noriyasu Sugimoto, Takashi Kanamori, Daisuke Nakata, Susumu Wakamatsu, Toshikatsu Takada
  • Patent number: 6289204
    Abstract: A multilayer ceramic integrated circuit module for a receiver front-end of a wireless communication device is provided. The module contains an embedded component portion, which has a plurality of thick film capacitors; a plurality of multilayer capacitors; and a plurality of transmission lines deposited internal to the multilayer ceramic integrated circuit module to interconnect the plurality of thick film capacitors and the plurality of multilayer capacitors. The module also contains a mounted component portion, which has a pair of pin diodes; a transistor and a plurality of resistors coupled thereto, for controlling the bias of the pair of pin diodes; and a low-noise-amplifier. The module reduces the size and weight of wireless devices and combines multiple functions into a highly integrated device.
    Type: Grant
    Filed: July 9, 1998
    Date of Patent: September 11, 2001
    Assignee: Motorola, Inc.
    Inventors: John Estes, Rong-Fong Huang, Rich Kommrusch
  • Patent number: 5930689
    Abstract: An apparatus and method produce a plurality of output signals (917-921) with fixed phase relationships therebetween. The apparatus (900) includes a first signal generator (901), a second signal generator (903), and a signal processor (907). The first signal generator produces a first input signal (911) at a first frequency. The second signal generator produces a second input signal (915) at a second frequency, wherein the second frequency is an integer multiple of the first frequency. The signal processor receives the first and second input signals and produces a plurality of output signals (917-921) having fixed phase relationships therebetween at the first frequency, wherein the fixed phase relationships are based on the integer multiple and wherein each of the output signals has a single, determinate phase relative to the phase of the first input signal.
    Type: Grant
    Filed: October 24, 1997
    Date of Patent: July 27, 1999
    Assignee: Motorola, Inc.
    Inventors: Jeffrey B. Wilhite, Paul H. Gailus, Rostyslaw Zbotaniw
  • Patent number: 5878331
    Abstract: An integrated circuit includes a single pole double throw switch including a transmitting and receiving port, a transmitting port, and a receiving port. A transmission switch is coupled between the transmitting port and the transmitting and receiving port. A reception switch is coupled between the receiving port and the transmitting and receiving port. The reception switch includes a field effect transistor having a gate, a drain and a source. A voltage generating circuit receives first and second power supply voltages. The first power supply voltage is greater than the second power supply voltage. The voltage generating circuit generates a third voltage lower than the second power supply voltage and applies the third voltage to the gate of the field effect transistor of the reception switch during transmission.
    Type: Grant
    Filed: July 30, 1996
    Date of Patent: March 2, 1999
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Kazuya Yamamoto, Kosei Maemura
  • Patent number: 5475712
    Abstract: A low-delay code excited linear prediction (LD-CELP) voice coding systemapplied to a scheme, in which the transmitting side interrupts transmission during the voice-nonactive period and the receiving side generates and outputs a comfort noise during the voice-nonactive period. At the transmitting side, when voice non activity is detected by the voice activity detector, the CN flag indicating the interruption of transmission is sent from the CN flag generator and shortly thereafter a background noise from the LD-CELP encoder is sent, followed by the interruption of transmission. At the receiving side, when the background noise following the CN flag is decoded by the LD-CELP decoder, the internal gain and synthesis filter coefficients are held, which is subsequently used to decode the input from the pseudo-noise generator.
    Type: Grant
    Filed: December 2, 1994
    Date of Patent: December 12, 1995
    Assignee: Kokusai Electric Co. Ltd.
    Inventor: Seishi Sasaki
  • Patent number: 5379452
    Abstract: In an active circuit which separates and amplifies signals received via an antenna (A) into a higher-frequency FM band and a lower-frequency FM band, weakening of the FM signals by the AM-band amplifier is avoided by adding, to the previously known circuit which has first, second, and third capacitors (C1, C2, C3), a third inductance (L3) between the second (C2) and third (C3) capacitors, and by removing any serial inductance from the adaptor or matching circuit (AP) at the input of the FM amplifier stage (UKW).
    Type: Grant
    Filed: December 23, 1992
    Date of Patent: January 3, 1995
    Assignee: Robert Bosch GmbH
    Inventor: Hans-Joachim Raddant
  • Patent number: 5307514
    Abstract: A frequency independent strong signal suppressor comprised of an amplitude dependent voltage standing wave ratio device for receiving and substantially absorbing incident radio frequency signals characterized by amplitudes greater than a predetermined threshold and substantially reflecting signals characterized by amplitudes less than the threshold, such that strong signals are absorbed and thereby suppressed while weak signals are reflected for reception by an external signal processing device.
    Type: Grant
    Filed: August 30, 1991
    Date of Patent: April 26, 1994
    Assignee: Telemus Electronic Systems Inc.
    Inventor: Andre Gagnon
  • Patent number: 5257407
    Abstract: A communication system 100 comprising a dispatch sub-system 100A, a plurality of transmitters 100B, and a plurality of mobile transceivers 100C is disclosed. An antenna coupler 410 and a location sensor 414 are coupled to one another via a coax cable 412. The bias current to the coupler is supplied by the location sensor 414 via the resistor 406. A detector 200 measures the voltage across the resistor 406 which is relative to the current flowing in to the antenna coupler 410. The detector 200 compares the measured voltage via comparators 218 and 238 and determines if the measured voltage is beyond a certain boundary. The NOR gate 244 routes the comparison result to a MPU 250. The MPU 250 processes the result and transmits a signal to a base station 104 via the mobile transceiver 118. The base station 104 decodes the received signal and presents it to a dispatch center 106.
    Type: Grant
    Filed: September 20, 1990
    Date of Patent: October 26, 1993
    Assignee: Motorola, Inc.
    Inventor: David W. Heinzelmann
  • Patent number: 5175878
    Abstract: The antennas of a cellular telephone system are each connected to a signal divider/combiner array which/divides combines the antenna connecting path(s) into a plurality of antenna-radio/radio-antenna connecting paths. The divider array aspect is used for signal reception and the combiner array aspect is used for signal transmission. Each of these antenna connecting paths is connected to a controllable switch which in turn selectively couples it to/from a second plurality of radio transceivers. The antenna transmission/receive paths comprising the signal divider/combiners are embodied as strip type transmission lines in a multi layer PCB with all the paths having equal transmission losses. Micro vias are provided to permit electrical access to the various layers. The controllable switches are surface mounted on the outside of the PCB and are coupled to the various dividers/combiner through the micro vias.
    Type: Grant
    Filed: February 2, 1990
    Date of Patent: December 29, 1992
    Assignee: AT&T Bell Laboratories
    Inventors: Bernard P. Davis, George M. Reed
  • Patent number: 5161255
    Abstract: The microstrip antenna embodying the present invention employs a dielectric material that forms part of a motor vehicle body shell as a dielectric composing element thereof. The motor vehicle-mounted GPS receiver comprising an outer unit, an inner unit, a wireless signal transfer device for transferring signals between the outer unit and the inner unit, and a power source for supplying an electric power to the outer unit, whereby the signal transfer device is provided by a radio receiver installed in the inner unit or by a coupling capacitor consisting of a pair of flat plates and the dielectric motor vehicle body shell sandwiched therebetween. According to the present invention, there is no need of providing the finished motor vehicles with through holes and it is quite simple to equip the finished motor vehicle with the GPS receiver.
    Type: Grant
    Filed: January 24, 1991
    Date of Patent: November 3, 1992
    Assignee: Pioneer Electronic Corporation
    Inventor: Toshiaki Tsuchiya
  • Patent number: 5142698
    Abstract: A microwave integrated apparatus, particularly useful for a satellite broadcasting receiver, comprises a housing having a radiation aperture and being electromagnetically shielded except for the radiation aperture. An insulated substrate is disposed in the housing, and has formed thereon an antenna pattern capable of receiving or radiating microwaves through the radiation aperture of the housing. A signal-processing means is disposed beside the insulated substrate in the housing, and is connected to the antenna pattern on the insulated substrate. For achieving a microwave circuit arrangement having excellent performance characteristic of a very wide frequency range, a second antenna pattern is disposed at the radiation aperture of the housing, and in proximity to the above-mentioned antenna pattern.
    Type: Grant
    Filed: June 7, 1989
    Date of Patent: August 25, 1992
    Assignee: NEC Corporation
    Inventors: Hisayoshi Koga, Hiroshi Watanabe
  • Patent number: 5129099
    Abstract: A reciprocal transceiver to radiator coupling circuit uses both microstrip and waveguide modes of RF signal transmission (including a pair of nonreciprocal hybrid mode phase shifters) to gain size and weight advantages useful in feeding large scale phase arrays. At the same time, the radar cross section of such array apertures is reduced by arranging separate nonreciprocal receive and transmit branches of the circuit to route spurious intra-circuit reflections of incoming RF signals to a matched termination.
    Type: Grant
    Filed: March 30, 1989
    Date of Patent: July 7, 1992
    Assignee: Electromagnetic Sciences, Inc.
    Inventor: Roger G. Roberts
  • Patent number: 5106826
    Abstract: Systems for transmitting and/or receiving electromagnetic signal radiation are disclosed. The inventive systems are distinguished from previous such systems in that each includes at least one resonant cavity comprising a housing containing a body, e.g., a cylindrical or helical body, of relatively high T.sub.c superconducting material. Significantly, this body is fabricated using a new, unconventional procedure. As a result, the body exhibits substantially lower surface resistances than either previous such bodies of relatively high T.sub.c superconducting material, fabricated using conventional procedures, or bodies of copper, at 77 Kelvins and at frequencies ranging from about 10 MHz to about 2000 MHz. Moreover, as a consequence, the resonant cavity containing the unconventionally fabricated body exhibits much higher quality factors, Q, at the above temperature and frequencies, than previous such cavities containing either conventionally fabricated bodies of relatively high T.sub.
    Type: Grant
    Filed: July 24, 1989
    Date of Patent: April 21, 1992
    Assignee: AT&T Bell Laboratories
    Inventors: Neil M. Alford, George E. Peterson, Robert P. Stawicki
  • Patent number: 4596047
    Abstract: A compact satellite broadcasting receiver comprises a circular waveguide, a strip-line-shaped probe projected into the circular waveguide, a reflecting element provided downstream of the probe in the circular waveguide and a microwave circuit having a strip line provided around the circular waveguide and connected with the probe. Furthermore, a satellite broadcasting receiver capable of simultaneously receiving two kind of microwaves polarized perpendicularly to each other is realized by joining two compact satellite broadcasting receivers as mentioned above with their strip-line-shaped probes placed at a right angle.
    Type: Grant
    Filed: August 26, 1982
    Date of Patent: June 17, 1986
    Assignee: Nippon Electric Co., Ltd.
    Inventors: Hiroshi Watanabe, Eiji Aoki
  • Patent number: 4290068
    Abstract: A microwave television system comprising, a probe excited waveguide, an electronics circuit package contained within the waveguide, and a support for mounting the waveguide. The probe excited waveguide is an open-end waveguide which can be used as an independent antenna or a launcher for an end fire radiator, and which achieves a higher gain than conventional waveguides without an increase in size. The waveguide is formed of an elongated metallic container and includes a metal structure positioned within the container spaced from the side walls of the container and located within one half of the volume of the container, this volume being defined by cutting the cylinder along its elongated axis. A probe extends from the metal structure into the other half of the container for excitation of the waveguide. The electronics package conventionally utilized in conjunction with the waveguide can be positioned in the container beneath the metal structure.
    Type: Grant
    Filed: December 14, 1979
    Date of Patent: September 15, 1981
    Inventor: Richard D. Bogner
  • Patent number: 4267604
    Abstract: An RF input tuning circuit in a UHF electronic tuner uses a semicoaxial resonant cavity circuit which feeds amplifier and other tuning circuits not of the semicoaxial type, such as lumped constant or strip-line types.
    Type: Grant
    Filed: January 19, 1979
    Date of Patent: May 12, 1981
    Assignee: Sony Corporation
    Inventor: Akira Sato