Specified Stage (e.g., Mixer, Amplifier, Or Demodulator) Patents (Class 455/293)
-
Patent number: 11165365Abstract: A radio-frequency (RF) power rectifier circuit is provided. The RF power rectifier circuit includes a pair of differential voltage input nodes, a pair of input transistors respectively connected to the pair of differential voltage input nodes, a current mirror including a first, a second, and a third transistors, a pair of cascode transistors electrically connected between the pair of input transistors and the first transistor, a control resistor and a control transistor, and an output node. The control resistor is electrically connected to a source of the control transistor and the ground to provide a DC bias to the control transistor, and the control transistor is electrically connected to the second transistor to provide a dynamic bias to the pair of cascode transistors. This structure can lead to an increased input voltage range and reduced power consumption.Type: GrantFiled: October 14, 2020Date of Patent: November 2, 2021Assignee: Beken CorporationInventors: Xingyu Wang, Jiazhou Liu
-
Patent number: 10581415Abstract: In described examples, a quadrature phase shifter includes digitally programmable phase shifter networks for generating leading and lagging output signals in quadrature. The phase shifter networks include passive components for reactively inducing phase shifts, which need not consume active power. Output currents from the transistors coupled to the phase shifter networks are substantially in quadrature and can be made further accurate by adjusted by a weight function implemented using current steering elements. Example low-loss quadrature phase shifters described herein can be functionally integrated to provide low-power, low-noise up/down mixers, vector modulators and transceiver front-ends for millimeter wavelength (mmwave) communication systems.Type: GrantFiled: December 25, 2017Date of Patent: March 3, 2020Assignee: TEXAS INSTRUMENTS INCORPORATEDInventor: Sudipto Chakraborty
-
Patent number: 9929761Abstract: This disclosure relates to radio frequency (RF) front end circuitry for portable communication devices. In one embodiment, the RF front end circuitry includes an antenna, a switchable receive path configured to be opened and to be closed, a coaxial cable, and a low noise amplifier (LNA). The LNA is coupled so as to drive the coaxial cable. Thus, when the switchable receive path is closed, an RF receive signal received by the antenna can propagate through the switchable receive path to the LNA. Since the LNA is driving the coaxial cable, the RF receive signal can propagate through the coaxial cable without being excessively degraded. In this manner, embodiments of the RF front end circuitry can be utilized to provide antenna swapping and RF transceiver circuitry coupled to the coaxial cable can receive the RF receive signal from the coaxial cable without excessive degradation.Type: GrantFiled: March 7, 2016Date of Patent: March 27, 2018Assignee: Qorvo US, Inc.Inventors: Nadim Khlat, Marcus Granger-Jones
-
Patent number: 9841486Abstract: A detection calibration circuit includes a first distributor distributing a high frequency input signal, an amplifier amplifying the first high frequency output signal of the first distributor, a second distributor distributing the amplified first high frequency output signal of the first distributor, a reference signal generator outputting a reference signal in accordance with a switchable reference voltage, a switcher selecting a third high frequency output signal of the second distributor or a reference signal of the reference signal generator and outputting the selected signal, a detector detecting the third high frequency output signal of the second distributor or the reference signal of the reference signal generator from the switcher, a sensitivity switcher adjusting a sensitivity for an output signal of the detector, and a calibration control circuit adjusting a detection gain of an input signal of the detector and an input-output sensitivity for an output signal of the detector.Type: GrantFiled: May 15, 2015Date of Patent: December 12, 2017Assignee: Panasonic Intellectual Property Management Co., Ltd.Inventors: Taiji Akizuki, Masaki Kanemaru
-
Patent number: 9455741Abstract: A method for collecting a signal with a frequency lower than a Nyquist frequency includes, by a data transmitting end, selecting a suitable transformation base matrix for an input signal, deriving a sparse representation of the signal using the transformation base matrix to determine a sparsity of the signal, calculating a number M of compressive sampling operations according to the sparsity, sampling the signal with fNYQ/M using M channels, and integrating sampling values of each channel to obtain M measurement values. A reconstruction end reconstructs an original signal by solving optimization problems. Based on theory, compressive sampling can be performed on a sparse signal or a signal represented in a sparse manner with a frequency much lower than the Nyquist frequency, overcoming restrictions of the typical Nyquist sampling theorem. The method can be implemented simply and decrease pressure on data collection, storage, transmission and processing.Type: GrantFiled: July 22, 2015Date of Patent: September 27, 2016Assignee: Institute of Microelectronics, Chinese Academy of SciencesInventors: Dongmei Li, Xiaojing Li, Shengfa Liang, Hao Zhang, Qing Luo, Changqing Xie, Ming Liu
-
Patent number: 9431696Abstract: A communication device including a ground element, a dielectric substrate, and an antenna element is provided. The dielectric substrate is disposed nearby the ground element and has a first surface and a second surface. The antenna element includes a first metal portion and a second metal portion. The first metal portion is disposed on the first surface and has a feeding point. The second metal portion is disposed on the second surface. The first metal portion is electrically connected to the second metal portion through a conductive via-hole, and the conductive via-hole is located at or nearby a first edge of the first metal portion. The first edge is away from the ground element. The projection of the second metal portion on the first surface is covered by the first metal portion.Type: GrantFiled: July 24, 2013Date of Patent: August 30, 2016Assignee: Acer IncorporatedInventors: Kin-Lu Wong, Tseng-Wei Weng
-
Patent number: 9351688Abstract: The present disclosure relates to systems and methods for collecting patient data via a monitoring system, with reduced power consumption. In one embodiment, the monitoring system is configured to emit pulses of light, and detect the light after passing through patient tissue. The light data is emitted sporadically, and a waveform is reconstructed from the sporadically sampled light data. Physiological parameters from the patient may be calculated from the reconstructed waveform. The sporadic sampling may reduce the power consumption by the monitoring system.Type: GrantFiled: January 29, 2013Date of Patent: May 31, 2016Assignee: COVIDIEN LPInventors: Darshan Iyer, Mark Su
-
Patent number: 9319009Abstract: An apparatus comprising an amplifier comprising an input, a capacitor having a capacitor first side and a capacitor second side, wherein the capacitor first side is coupled to the input, a switch having a switch first side and a switch second side, wherein the switch first side is coupled to the capacitor second side, and a transistor having a transistor gate, and a transistor source, wherein the transistor gate is coupled to the input and the capacitor first side, wherein the transistor source is coupled to the switch second side and wherein the switch is positioned directly between the capacitor second side and the transistor source.Type: GrantFiled: July 31, 2013Date of Patent: April 19, 2016Assignee: Futurewei Technologies, Inc.Inventors: Lawrence Connell, Terrie McCain, William Roeckner
-
Patent number: 9071325Abstract: A low noise receiver includes a downconverter configured to receive a radio frequency (RF) signal, the downconverter comprising a switching architecture configured to generate a plurality of output phases based on a respective plurality of local oscillator (LO) signals, a differencing circuit configured to combine the plurality of output phases such that an nth output phase is differenced with an (n+K)th output phase, resulting in gain-added output phases, and a summation filter configured to receive the gain-added output phases and configured to combine the gain-added output phases such that a response of the receiver effectively reduces odd harmonics of the RF signal.Type: GrantFiled: September 14, 2011Date of Patent: June 30, 2015Assignee: Skyworks Solutions, Inc.Inventors: Rajasekhar Pullela, William J. Domino
-
Patent number: 9042844Abstract: A transceiver includes: a power amplifying circuit arranged to generate differential output signals during a transmitting mode of the transceiver; a balance-unbalance circuit arranged to convert the differential output signals into a single-ended output signal; a switchable matching circuit arranged to receive the single-ended output signal on a signal port of the transceiver during the transmitting mode, and to convert a single-ended receiving signal on the signal port into a single-ended input signal during a receiving mode of the transceiver; and a low-noise amplifying circuit arranged to convert the single-ended input signal into a low-noise input signal during the receiving mode. The power amplifying circuit, the Balun, the switchable matching circuit, and the low-noise amplifying circuit are configured as a single chip.Type: GrantFiled: October 2, 2013Date of Patent: May 26, 2015Assignee: MediaTek Singapore Pte. Ltd.Inventors: Ti-Ku Yu, Sang Won Son, Chia-Hsin Wu, Tsung-Ming Chen, Wei-Chia Chan
-
Patent number: 9008604Abstract: A mixer includes an input stage to convert an RF input signal to an output signal, and a mixer core to mix the output signal from the input stage with a local oscillator signal. The input stage may include an input cell having a first differential pair of cross-connected transistors, and a linearizer coupled to the input cell. The linearizer may include a second differential pair of transistors having first and second inputs coupled to the input terminals and first and second outputs coupled to the output terminals.Type: GrantFiled: January 28, 2011Date of Patent: April 14, 2015Assignee: Analog Devices, Inc.Inventors: Iliana Fujimori-Chen, Ed Balboni
-
Patent number: 8989688Abstract: A circuit for a low-noise interface between an amplifier and an analog-to-digital converter (ADC) may comprise a capacitor element having a capacitance of C coupled between a first and second output node of the amplifier. A first resistor R1 may be coupled in parallel with the capacitor. A second resistor R2 may be coupled between the first output node of the amplifier and a first input node of the ADC. A third resistor R3 may be coupled between the second output node of the amplifier and a second input node of the ADC. Initial values of the resistances R1, R2, and R3 may be selected to provide a desired value RL for a load resistance of the amplifier. A value of the capacitance C may be selected so that, in combination with the desired value RL, a desired bandwidth for the amplifier is achieved.Type: GrantFiled: December 18, 2012Date of Patent: March 24, 2015Assignee: Broadcom CorporationInventors: Mohyee Mikhemar, Amir Hadji-Abdolhamid, Hooman Darabi
-
Patent number: 8977225Abstract: A unidirectional sampling mixer utilizes a stepped phase modulation to shift the frequency of an input signal. An RF input signal is supplied to an RF input switch from an RF input port. An ordered set of phase shift values to be applied to the RF input signal and a set of times each element of which correspond to a time at which a phase shift value is be applied to the RF signal are determined. For each phase shift value within the ordered set of phase shift values, a controller controls the RF input switch to select an input of a phase shifting device and controls an RF output switch to select an output of the phasing shifting device. The input of the phase shifting device and the output of the phase shifting device are selected to apply the phase shift value at its corresponding time to the RF input signal. A frequency shifted signal is supplied to an RF output port from an output of the RF output switch.Type: GrantFiled: June 19, 2014Date of Patent: March 10, 2015Assignee: Invertix CorporationInventors: Brecken H. Uhl, Daniel A. Law
-
Patent number: 8942313Abstract: An open loop envelope tracking system calibration technique and circuitry are proposed. A radio frequency power amplifier receives a modulated signal. An envelope tracker power converter generates a modulated power amplifier supply voltage for the radio frequency power amplifier based on a control signal derived from the modulated signal. A first output power and a second output power of the radio frequency power amplifier are measured when the control signal is respectively delayed by a first delay period and a second delay period. A sensitivity of the output power of the radio frequency power amplifier is near a maximum near the first delay period and the second delay period. The first delay period and/or the second delay period are adjusted until the first output power substantially equals the second output power. The first delay period and the second delay period are used to obtain a calibrated fine tuning delay offset.Type: GrantFiled: February 7, 2012Date of Patent: January 27, 2015Assignee: RF Micro Devices, Inc.Inventors: Nadim Khlat, Karl Francis Horlander
-
Patent number: 8928423Abstract: A narrow band receiver or transceiver for processing electrical signals. The narrow band receiver or transceiver includes an amplifier, a voltage controlled oscillator and a tuning assembly comprising at least one control loop for tuning of the voltage controlled oscillator. At least a gain control of the amplifier is coupled to the control loop for simultaneously tuning the output amplitude of the voltage controlled oscillator and the gain of the amplifier. A compensation of the effect of variation on the gain of the amplifier, which includes an LC tank circuit, is performed by using an information in another LC tank circuit of the voltage controlled oscillator in the control loop.Type: GrantFiled: January 11, 2013Date of Patent: January 6, 2015Assignee: EM Microelectronic-Marin S.A.Inventors: Armin Tajalli, Marc Morin
-
Patent number: 8913978Abstract: A multiphase mixer using a rotary traveling wave oscillator is disclosed. In addition to the oscillator, the mixer includes first and second mixer circuits. The rotary traveling wave oscillator generates a first set of N/2 phase and a second set of N/2 phases, where each phase has a frequency that is a factor of N/2 less than the incoming radio frequency signal. The first set of phases are sine signals and the second set of phases are cosine signals. The first mixer circuit generates a first down-converted signal from the first set of phases and the incoming rf signal. The second mixer circuit generates a second down-converted signal from the second set of phases and the rf signal.Type: GrantFiled: April 9, 2008Date of Patent: December 16, 2014Assignee: Analog Devices, Inc.Inventor: Gregoire Le Grand de Mercey
-
Patent number: 8897466Abstract: Embodiments of the present invention include methods and apparatuses for adjusting audio content when more multiple audio objects are directed toward a single audio output device. The amplitude, white noise content, and frequencies can be adjusted to enhance overall sound quality or make content of certain audio objects more intelligible. Audio objects are classified by a class category, by which they are can be assigned class specific processing. Audio objects classes can also have a rank. The rank of an audio objects class is used to give priority to or apply specific processing to audio objects in the presence of other audio objects of different classes.Type: GrantFiled: June 15, 2012Date of Patent: November 25, 2014Assignee: Dolby International ABInventors: Chi Fai Ho, Shin Cheung Simon Chiu
-
Patent number: 8885782Abstract: A device is provided for use of an antennal base formed of two antennas which pick up the emissions present and produce two radioelectric signals S1 and S2. These two signals are used to produce at least one intermediate-frequency signal Fl by demodulation of one of the two signals by the other (autotransposition). The demodulation is carried out by firstly transposing one of the signals, S1 for example, around a given frequency F1, the signal S2 being preserved around its initial central frequency F0. Thus, whatever the central frequency F0 of the emission picked up by the antennas, the demodulation produces a signal of central frequency F1, thereafter demodulated into a given intermediate frequency Fl by a local oscillator of constant frequency F2=F1+Fl. The device is applied to the production of a device for detecting emissions and for characterizing the emissions picked up.Type: GrantFiled: January 6, 2012Date of Patent: November 11, 2014Assignee: ThalesInventors: Pascal Cornic, Daniel Jahan, Patrick Garrec
-
Patent number: 8856857Abstract: This technique relates to a receiving device, a receiving method, and a program that can demodulate transmitted signals with high accuracy. A receiving device of this disclosure includes: an amplifying unit that amplifies a received signal; an adjusting unit that adjusts gain of the amplifying unit in accordance with power of the signal; a demodulating unit that demodulates the amplified signal; and a detecting unit that detects an interval from the signal, information having the same content continuously appearing in the interval. The adjusting unit restricts the process of adjusting the gain of the amplifying unit in accordance with a result of the detection of the interval. This disclosure can be applied to receiving devices that receive broadcast signals compliant with DVB-C2 via a CATV network.Type: GrantFiled: March 23, 2012Date of Patent: October 7, 2014Assignee: Sony CorporationInventors: Kenichi Kobayashi, Naoki Yoshimochi
-
Patent number: 8792846Abstract: A demodulator includes a sampler configured to sample a plurality of first amplitude values of a modulated carrier signal using a constant sampling frequency and a plurality of second amplitude values of the modulated carrier signal at different times using the same constant sampling frequency. The constant sampling frequency is equal to a carrier frequency of the modulated carrier signal with a tolerance of +/?1% of the carrier frequency.Type: GrantFiled: April 6, 2010Date of Patent: July 29, 2014Assignees: Infineon Technologies AG, Technische Universitaet GrazInventors: Walter Kargl, Edmund Ehrlich
-
Patent number: 8761707Abstract: A circuit comprising a transconductor amplifier, and a load connected to the transconductor amplifier, wherein the load comprises a load transistor that is passively biased.Type: GrantFiled: March 11, 2013Date of Patent: June 24, 2014Assignee: Futurewei Technologies, Inc.Inventors: Lawrence Connell, William Roeckner, Terrie McCain, Matthew Miller
-
Patent number: 8761710Abstract: A portable computing device includes an FEM, a SAW-less receiver, a SAW-less transmitter, and a baseband processing unit. The FEM isolates one or more outbound RF signals from one or more inbound RF signals. The SAW-less receiver converts the one or more inbound RF signals into one or more inbound intermediate frequency (IF) signals by frequency translating a baseband filter response to an IF filter response and/or an RF filter response. The SAW-less receiver filters the inbound RF signal(s) in accordance with the RF filter response and/or filters the inbound IF signal(s) in accordance with the IF filter response. The SAW-less receiver then converts the inbound IF signal(s) into inbound symbol stream(s). The SAW-less transmitter converts outbound symbol stream(s) into the outbound RF signal(s). The baseband processing unit converts outbound data into the outbound symbol stream(s) and convert the inbound symbol stream(s) into inbound data.Type: GrantFiled: March 30, 2011Date of Patent: June 24, 2014Assignee: Broadcom CorporationInventors: Ahmadreza (Reza) Rofougaran, Hooman Darabi
-
Publication number: 20140171005Abstract: A circuit for a low-noise interface between an amplifier and an analog-to-digital converter (ADC) may comprise a capacitor element having a capacitance of C coupled between a first and second output node of the amplifier. A first resistor R1 may be coupled in parallel with the capacitor. A second resistor R2 may be coupled between the first output node of the amplifier and a first input node of the ADC. A third resistor R3 may be coupled between the second output node of the amplifier and a second input node of the ADC. Initial values of the resistances R1, R2, and R3 may be selected to provide a desired value RL for a load resistance of the amplifier. A value of the capacitance C may be selected so that, in combination with the desired value RL, a desired bandwidth for the amplifier is achieved.Type: ApplicationFiled: December 18, 2012Publication date: June 19, 2014Applicant: BROADCOM CORPORATIONInventors: Mohyee MIKHEMAR, Amir HADJI-ABDOLHAMID, Hooman DARABI
-
Patent number: 8705675Abstract: An RF signal reception device including: a transposition device of signals of frequency fRF to a first intermediate frequency IF1<fRF; a first bandpass filter centered on IF1; a sampler at a frequency fs<IF1; a second discrete-time filter centered on a second intermediate frequency IF2=?·fs/M+fs/(M·n); a decimation device of a factor M; an analog-digital convertor to operate at a frequency fs/M; where ?, n and M are strictly positive real numbers chosen such that: ?<fs/(2·BWch·M), and BWch/2<fs/M·n), with BWch: bandwidth of a channel of the received RF signals.Type: GrantFiled: December 16, 2010Date of Patent: April 22, 2014Assignee: Commissariat à l'énergie atomique et aux énergies alternativesInventors: Luis Lolis, Michael Pelissier
-
Patent number: 8704654Abstract: A high temperature communications circuit includes a power conductor for concurrently conducting electrical energy for powering circuit components and transmitting a modulated data signal, and a demodulator for demodulating the data signal and generating a serial bit stream based on the data signal. The demodulator includes an absolute value amplifier for conditionally inverting or conditionally passing a signal applied to the absolute value amplifier. The absolute value amplifier utilizes no diodes to control the conditional inversion or passing of the signal applied to the absolute value amplifier.Type: GrantFiled: June 7, 2007Date of Patent: April 22, 2014Assignee: The United States of America as Represented by the Administrator of National Aeronautics and Space AdministrationInventors: Michael J. Krasowski, Norman F. Prokop
-
Patent number: 8692702Abstract: Disclosed is an analog-digital converter which includes a pre-amplifier configured to output a comparison result between a sampled analog input signal and a reference signal and to control a power supply operation in response to a power control signal; a digital signal processor configured to generate a digital signal based on the comparison result; a power controller configured to generate an amplifier operation clock signal for controlling the pre-amplifier; and a counter configured to count the number of falling edges of the amplifier operation clock signal and to detect a power interruption point of time of the pre-amplifier according to the counted falling edge number. The power controller generates the power control signal for interrupting a power to be supplied to the pre-amplifier when the power interruption point of time of the pre-amplifier is detected.Type: GrantFiled: September 13, 2012Date of Patent: April 8, 2014Assignee: Electronics and Telecommunications Research InstituteInventors: Jaewon Nam, Young Kyun Cho, Yil Suk Yamg
-
Patent number: 8676148Abstract: A differential amplifier circuit includes a source follower circuit to which is input one of the differential signals and a common source circuit that is connected in series with the source follower circuit and to which is input the other of the differential signals.Type: GrantFiled: April 6, 2010Date of Patent: March 18, 2014Assignee: Kabushiki Kaisha ToshibaInventor: Yosuke Ogasawara
-
Patent number: 8666345Abstract: The invention relates to a filter (20) filtering a downlink signal of an antenna (13) of an indoor cellular system, the filter comprising a signal determining unit (24) determining a signal strength of an uplink signal received by said antenna (13), the filter adjusting a signal strength of the downlink signal of said antenna (13) in accordance with the signal strength of the uplink signal.Type: GrantFiled: April 9, 2009Date of Patent: March 4, 2014Assignee: Telefonaktiebolaget L M Ericsson (publ)Inventors: Said Soulhi, Taoufiq Abouzid
-
Patent number: 8655299Abstract: A SAW-less receiver includes an FEM interface module, an RF to IF receiver section, and a receiver IF to baseband section. The RF to IF receiver section includes a frequency translated bandpass filter (FTBPF), an LNA, and a mixing section. The FTBPF includes a switching network and a plurality of baseband impedances. The switching network is operable to couple the plurality of baseband impedances to the FEM interface in accordance with a plurality of phase-offset RF clock signals to RF bandpass filter the inbound RF signal. The LNA amplifies the filtered inbound RF signal and the mixing section mixes the amplified inbound RF signal with a local oscillation to produce an inbound IF signal. The receiver IF to baseband section converts the inbound IF signal into one or more inbound symbol streams.Type: GrantFiled: March 30, 2011Date of Patent: February 18, 2014Assignee: Broadcom CorporationInventors: Ahmad Mirzaei, Hooman Darabi
-
Patent number: 8639206Abstract: The teachings presented herein allow the same sequence of local oscillator waveform sample values to be used for driving two harmonic rejection mixers for which quadrature operation is desired, irrespective of whether the oversampling rate of the sequence is divisible by four or only divisible by two. This ability is obtained by controlling whether the quadrature mixer clocks coincidentally with the in-phase mixer, or clocks a half clock cycle out of phase relative to the in-phase mixer. Several advantages attend the contemplated circuit arrangement and method of operation. Example advantages include the improved matching that comes from operating both mixers with the identical waveform sample values, and the improved flexibility in optimizing the harmonic rejection and/or interference-related operation of the mixers over a broader range of frequencies of interest, which flows from having a larger set of usable OSRs.Type: GrantFiled: October 5, 2012Date of Patent: January 28, 2014Assignee: Telefonaktiebolaget L M Ericsson (Publ)Inventors: Staffan Ek, Lars Sundström
-
Patent number: 8626105Abstract: A mixer-amplifier of an RF signal including at least an amplifier circuit and a mixing circuit controlled at a local oscillator frequency, for amplifying a signal applied on at least one input terminal and converting a first frequency of this signal into a second, lower, frequency, and including a reverse feedback loop switched at the local oscillator frequency.Type: GrantFiled: September 16, 2009Date of Patent: January 7, 2014Assignee: STMicroelectronics S.A.Inventors: Valérie Danelon, Patrice Garcia
-
Patent number: 8606210Abstract: A polyphase harmonic rejection mixer, comprising a plurality of stages following each other; wherein a first stage is arranged to perform at least frequency conversion; and a second stage is arranged to perform at least selective weighting and combining; wherein at least two of the plurality of stages are arranged to perform at least combining. In an embodiment, the first stage (28) comprises three single-ended gain blocks (10, 12, 14), arranged to perform selective weighting, frequency conversion and combining; and a second stage (30) following the first stage (28) and arranged to perform selective weighting and combining. The second stage (30) may reduce the number of phases output by the first stage (28) and may output (32) a complex differential down converted signal. The mixer may be directly interfaced to an antenna of an LNA-less receiver without weighting in the first stage. The mixer may be included in a software-defined radio.Type: GrantFiled: February 3, 2010Date of Patent: December 10, 2013Assignee: NXP, B.V.Inventors: Zhiyu Ru, Eric A. M. Klumperink, Bram Nauta, Johannes H. A. Brekelmans
-
Patent number: 8594574Abstract: Methods and apparatus are provided for receiving a first signal and generating an output signal indicative of radio data system (“RDS”) information. A receiver circuit of the invention can include mixer circuitry, lowpass filter circuitry, downsampler circuitry, and decoder circuitry. Advantageously, the receiver circuit can operate entirely within the digital domain, promoting interoperability with digital frequency modulation (“FM”) demodulator circuitry.Type: GrantFiled: November 19, 2012Date of Patent: November 26, 2013Assignee: Marvell International Ltd.Inventors: Jungwon Lee, Dimitrios-Alexandros Toumpakaris, Hui-Ling Lou, Chris Cheng-Chieh Lee
-
Patent number: 8594604Abstract: Capacitive circuits are implemented with desirable quality factors in various implementations. According to an example embodiment, a fringe capacitor includes two capacitive circuits (e.g., plates), respectively having a plurality of capacitive fingers extending from an end structure, and respectively having a connecting pin that is adjacent the connecting pin of the other capacitive circuit, on a common side fringe capacitor. The capacitive fingers are arranged in stacked layers, with vias connecting the fingers in different layers back to the connecting pins.Type: GrantFiled: December 18, 2009Date of Patent: November 26, 2013Assignee: NXP, B.V.Inventors: Edwin van der Heijden, Lukas Frederik Tiemeijer, Maristella Spella
-
Patent number: 8594601Abstract: Aspects of a method and system for on-demand linearity in a receiver are provided. In this regard, in a receiver such as on-chip receiver, a strength of a signal received by one or more antennas may be measured and linearity of the receiver may be controlled in response to the measured signal strength. The linearity may be controlled based on signal strength of in-band and/or out-of-band signals and by configuring component(s) of the receiver. Exemplary components may comprise one or more filter, amplifier, mixer, analog-to-digital converter, feedback loop, and equalizer and/or post corrector. Linearity may be increased, by switching one or more feedback loops and/or an equalizers and/or post correctors into a signal path of the receiver. Power consumption may be decreased, at the expense of reduced linearity, by switching one or more feedback loops and/or an equalizers and/or post correctors out of a signal path of the receiver.Type: GrantFiled: March 9, 2012Date of Patent: November 26, 2013Assignee: Broadcom CorporationInventors: Ahmadreza Rofougaran, Maryam Rofougaran
-
Patent number: 8588727Abstract: An adaptive linearity communication device and its operation are disclosed. The adaptive linearity communication device may include a component having a linearity dependent upon a bias and a processor configured to change the bias in response to the detection of a connection between the wireless communication device and a high-capacity power source. A method of operating an adaptive linearity communication device having a bias dependent component where the device is configured to operate in a high efficiency mode in the absence of a connection between the device and a high-capacity power source, may include determining whether a high-capacity power source is connected to the wireless communication device, and varying the operation of the bias dependent component based on whether a high-capacity power source is connected to the wireless communication device.Type: GrantFiled: March 18, 2009Date of Patent: November 19, 2013Assignee: QUALCOMM IncorporatedInventors: Stanley S. Toncich, Samir S. Soliman, Amol Rajkotia
-
Publication number: 20130303102Abstract: A long-wave or medium-wave receiver receives a first signal from a first terminal of a loopstick antenna on a positive antenna input terminal of the receiver and receives a second signal from a second terminal of the loopstick antenna on a negative antenna input terminal of the receiver. The first and second signals are processed differentially in the receiver. The receiver may optionally be configured to operate in either a differential mode or a single-ended mode by setting switches to selectively connect one of the antenna input terminals to ground in single-ended mode.Type: ApplicationFiled: May 10, 2012Publication date: November 14, 2013Inventors: Michael S. Johnson, Russell Croman, Scott D. Willingham
-
Patent number: 8571510Abstract: A receiver includes a low noise amplifier (LNA) and multiple pairs of mixers. The LNA receives and amplifies an LNA input signal and provides at least one LNA output signal. Each pair of mixers downconverts one of the at least one LNA output signal when enabled. Each pair of mixers may be selectively enabled or disabled, e.g., based on a mode selected from among multiple modes. In one design, the LNA includes multiple load sections coupled in parallel. Each load section may be selectively enabled or disabled, e.g., based on the selected mode. In one design, first and second pairs of mixers and first and second load sections may be enabled for a high linearity mode. The first pair of mixers and the first load section may be enabled and the second pair of mixers and the second load section may be disabled for a low linearity mode.Type: GrantFiled: August 18, 2008Date of Patent: October 29, 2013Assignee: Qualcomm IncorporatedInventors: Li Liu, Prasad S. Gudem
-
Patent number: 8565711Abstract: A SAW-less receiver includes an FEM interface module, an RF to IF receiver section, and a receiver IF to baseband section. The RF to IF receiver section includes a mixing module, a mixed buffer section, and a frequency translated BPF (FTBPF) circuit module. The mixing module converts an inbound RF signal into an in-phase (I) mixed signal and a quadrature (Q) mixed signal. The mixed buffer section filters and buffers the I mixed signal and filter and buffer the Q mixed signal. The FTBPF circuit module frequency translates a baseband filter response to an IF filter response such that the FTBPF circuit module filters undesired signal components of the IF I signal and the IF Q signal to produce an inbound IF signal. The receiver IF to baseband section converts the inbound IF signal into one or more inbound symbol streams.Type: GrantFiled: March 30, 2011Date of Patent: October 22, 2013Assignee: Broadcom CorporationInventors: Ahmad Mirzaei, Hooman Darabi
-
Patent number: 8559906Abstract: An embodiment of a system and method provides a carbon nanotube transistor (CNT) mixer with a low local oscillator power requirement and no inter-modulation products. Specifically, an embodiment of the system and method provides two kinds of device current-voltage (I-V) characteristics on the same integrated circuit: exponential and linear. The CNT I-V characteristics support both the ideal exponential control characteristic (determined by physics constants) and the ideal linear control characteristic (also determined by physics constants), resulting in an ideal multiplier. In other words, the CNT mixer is mathematically equivalent to an ideal multiplier. Such an ideal multiplier can be used as a mixer with low local oscillator power requirement and virtually no inter-modulation products.Type: GrantFiled: June 24, 2011Date of Patent: October 15, 2013Assignee: Northrop Grumman Systems CorporationInventors: Dale E. Dawson, John X. Przybysz, Maaz Aziz
-
Patent number: 8554165Abstract: The present invention provides a universal demodulation circuit, a load modulation circuit and associated method, and an associated power transfer system, all suitable for use in wireless power transfer. A power receiver with signal strength detection is also provided. Modulation of the impedance of the demodulation circuit is determinable by detecting the amplitudes of a first and a second electrical parameter, thereby demodulating data communicated by modulation of the impedance of the demodulation circuit. The modulation circuit has a communication modulator to modulate the impedance of the modulation circuit, to a predetermined minimum modulation depth, thereby to communicate data.Type: GrantFiled: September 11, 2012Date of Patent: October 8, 2013Assignee: ConvenientPower HK Ltd.Inventors: Xun Liu, Wai Pong Choi
-
Patent number: 8548410Abstract: The method and apparatus described herein address problems associated with conventional wireless receivers configured for intra-band carrier aggregation. The disclosed solution applies the received signal to a single front-end amplifier, which may comprise a low-noise amplifier, and divides the amplified signal into two or more processing paths, where each path is associated with a different local oscillator frequency corresponding to a different reception band. To compensate for the impact of the additional processing paths on the amplifier performance, a negative resistor unit applies a negative resistance to the output of the front-end amplifier when two or more processing paths are active.Type: GrantFiled: November 30, 2011Date of Patent: October 1, 2013Assignee: St-Ericsson SAInventors: Jarkko Jussila, Pete Sivonen
-
Patent number: 8538341Abstract: Method of communicating by radio frequencies in a home-automation installation comprising at least one command transmitter and at least one command receiver, comprising the following steps: receiving by virtue of a radiofrequency receiver of a command receiver a signal transmitted by a command transmitter, —measuring the power level of the signal received, comparing the power level measured with a power level recorded in a memory of powers that are blocked at the level of the command receiver, in the case where the measured power level corresponds to the power level recorded in memory, not processing the signal received.Type: GrantFiled: July 3, 2007Date of Patent: September 17, 2013Assignee: SOMFY SASInventor: Fabien Rousseau
-
Patent number: 8538366Abstract: In one embodiment, the present invention includes a mixer circuit to receive and generate a mixed signal from a radio frequency (RF) signal and a master clock signal, a switch stage coupled to an output of the mixer circuit to rotatingly switch the mixed signal to multiple gain stages coupled to the switch stage, and a combiner to combine an output of the gain stages.Type: GrantFiled: October 31, 2011Date of Patent: September 17, 2013Assignee: Silicon Laboratories IncInventor: Aslamali A. Rafi
-
Patent number: 8526907Abstract: The method and apparatus disclosed herein reduces the power consumption of a wireless transceiver by reducing the power consumption associated with the corresponding wireless receiver. Generally, a power mode selection unit enables or disables a low power mode based on a dynamic range requirement for the receiver. More particularly, when the dynamic range requirement is less than or equal to a threshold, the power mode selection unit lowers the transconductance of an RF front-end amplifier in the receiver and enables a negative resistance at an output of the RF front-end amplifier. When enabled, the negative resistance compensates for the gain lost by lowering the transconductance of the RF front-end amplifier, which enables the front-end gain associated with the low-power mode to be maintained relative front-end gain associated with the normal mode.Type: GrantFiled: November 30, 2011Date of Patent: September 3, 2013Assignee: ST-Ericsson SAInventors: Pete Sivonen, Jarkko Jussila
-
Patent number: 8521221Abstract: A dual mode RF transceiver is provided. The dual mode RF transceiver comprises an antenna, a differential low noise amplifier (LNA), a local oscillator and a dual mode differential mixer. The differential LNA receives an RF signal from the antenna to generate a differential amplified RF signal. The dual mode differential mixer comprises a switch module, a plurality of fundamental mixers and a plurality of sub-harmonic mixers. The fundamental mixers are activated in a first receiving mode to generate a first differential baseband signal according to a multiphase local oscillating (LO) signal from the local oscillator and the differential amplified RF signal. The sub-harmonic mixers are activated in a second receiving mode to generate a second differential baseband signal according to the multiphase LO signal from the local oscillator and the differential amplified RF signal. An RF signal receiving method is disclosed herein as well.Type: GrantFiled: December 3, 2010Date of Patent: August 27, 2013Assignee: National Taiwan UniversityInventors: Shey-Shi Lu, Hsien-Ku Chen
-
Patent number: 8503960Abstract: An amplifier receives an input signal with an input node, provides an output signal in response, and includes a main branch and an auxiliary branch. The auxiliary branch is coupled between the input node and a splitting node for input matching of the input node. The main branch, also coupled to the splitting node, has an output node of current mode, and is arranged to output the output signal at the output node. An associated receiver is also disclosed.Type: GrantFiled: November 4, 2011Date of Patent: August 6, 2013Assignee: Mediatek Singapore PTE. Ltd.Inventors: Fei Song, Chun-Geik Tan
-
Publication number: 20130183920Abstract: There is provided with a residual signal generating circuit in which the capacitive DA converter generates a first difference signal with respect to an input signal based on a criterion voltage, the criterion voltage being indicative of an input range of the input signal, the reference voltage generating circuit divides the criterion voltage to obtain at least one partial voltage signal, the residual signal generating section generates 2N?1 first residual signal according to a difference between the first difference signal and 2N?1?1 first reference signal, the 2N?1?1 first reference signal being 2N?1?1 partial voltage signal among said at least one partial voltage signal generated by the reference voltage generating circuit, the comparator compares the 2N?1 first residual signal with a fixed voltage to obtain 2N?1 first comparison signal each indicative of a logical value, and the decoder decodes the 2N?1 first comparison signal to obtain first data of N bits.Type: ApplicationFiled: September 7, 2012Publication date: July 18, 2013Applicant: KABUSHIKI KAISHA TOSHIBAInventors: Masanori FURUTA, Hirotomo Ishii
-
Patent number: 8489403Abstract: The APPARATUSES, METHODS AND SYSTEMS FOR SPARSE SINUSOIDAL AUDIO PROCESSING AND TRANSMISSION (hereinafter “SS-Audio”) provides a platform for encoding and decoding audio signals based on a sparse sinusoidal structure. In one embodiment, the SS-Audio encoder may encode received audio inputs based on its sparse representation in the frequency domain and transmit the encoded and quantized bit streams. In one embodiment, the SS-Audio decoder may decode received quantized bit streams based on sparse reconstruction and recover the original audio input by reconstructing the sinusoidal parameters in the frequency domain.Type: GrantFiled: August 25, 2010Date of Patent: July 16, 2013Assignee: Foundation For Research and Technology—Institute of Computer Science ‘FORTH-ICS’Inventors: Anthony Griffin, Athanasios Mouchtaris, Panagiotis Tsakalides
-
Patent number: 8483642Abstract: A SAW-less receiver includes a front end module (FEM) interface module, an RF to IF section, and an IF to baseband section. The RF to IF section includes a frequency translated bandpass filter (FTBPF), an LNA, and a mixing section. The FTBPF includes a switching network and a complex baseband filter having an offset baseband filter response. The switching network is operable to frequency translate the offset baseband filter response to an RF frequency response such that the FTBPF filters the inbound RF signal by passing, substantially unattenuated, a desired RF signal component and by attenuating an image signal component and/or an undesired signal component. The LNA amplifies the filtered inbound RF signal and the mixing section mixes the amplified inbound RF signal with a local oscillation to produce an inbound IF signal. The IF to baseband section converts the inbound IF signal into an inbound symbol stream(s).Type: GrantFiled: March 24, 2011Date of Patent: July 9, 2013Assignee: Broadcom CorporationInventors: Ahmad Mirzaei, Hooman Darabi