Noise Or Interference Elimination Patents (Class 455/296)
  • Patent number: 11558836
    Abstract: One example discloses a near-field wireless communications device, including: a near-field antenna; a near-field noise detector coupled to receive a first set of near-field signals from the near-field antenna; wherein the near-field noise detector is configured to identify a set of attributes of the near-field noise within the first set of near-field signals; a controller configured to generate at least one synchronization signal based on at least one of the attributes of the near-field noise; and a transmitter circuit configured to transmit a second set of near-field signals in response to the synchronization signal.
    Type: Grant
    Filed: August 7, 2020
    Date of Patent: January 17, 2023
    Assignee: NXP B.V.
    Inventors: Anthony Kerselaers, Liesbeth Gommé
  • Patent number: 11442493
    Abstract: Disclosed in various embodiments of the present invention are an electronic device for controlling a clock frequency and an operating method therefor. The electronic device comprises a communication module and a processor, wherein the processor can be configured to check, by using the communication module, a state of a downlink channel of a carrier to be transmitted, determine, on the basis of the channel state, a reference frequency band for a signal to be transmitted through the communication module, determine, as a first clock frequency, a clock frequency for at least one constituent element included in the electronic device if the reference frequency band is a first reference frequency band, and determine, as a second clock frequency, a clock frequency for at least one constituent element included in the electronic device if the reference frequency band is a second reference frequency band. Other embodiments are also possible.
    Type: Grant
    Filed: November 28, 2018
    Date of Patent: September 13, 2022
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyunsoo Kim, Jungmin Park, Yongjun Park, Gunjong Bong
  • Patent number: 11444490
    Abstract: A power transmission device of a non-contact power feeding device according one or more embodiments may include a control circuit configured to control at least one of a switching frequency or a voltage of AC power supplied from a power supply circuit to a transmission coil, on the basis of a change over time in a strength of a magnetic field detected by a magnetic field detection element configured to detect a strength of a magnetic field generated from the transmission coil of the power transmission device. Whereas, a power reception device has a resonant circuit having a reception coil configured to receive electric power from the power transmission device and a resonance suppression coil arranged to be capable of being electromagnetically coupled to the reception coil.
    Type: Grant
    Filed: October 16, 2019
    Date of Patent: September 13, 2022
    Assignee: OMRON Corporation
    Inventors: Goro Nakao, Yusuke Kawai, Kenichi Tabata, Atsushi Nomura, Takahiro Takeyama, Masanobu Nakajo
  • Patent number: 11444688
    Abstract: In one implementation, a wireless communication terminal includes a sense antenna module configured to sample an interference signal. The wireless communication terminal also includes a primary antenna module configured to receive a desired signal. The sense antenna module has a first polarization type, and the primary antenna module has a second polarization type, substantially orthogonal to the first polarization type of the sense antenna module. In addition, the wireless communication terminal includes at least one signal combiner configured to receive output from the sense antenna module and output from the primary antenna module. The at least one signal combiner is configured to mitigate interference with the desired signal by shifting the phase of the output from the sense antenna module by substantially 180 degrees and combining the phase-shifted output from the sense antenna module with the output of the primary antenna module to produce an interference mitigated signal.
    Type: Grant
    Filed: April 6, 2020
    Date of Patent: September 13, 2022
    Assignee: IRIDIUM SATELLITE LLC
    Inventor: Jeffrey Bull
  • Patent number: 11438020
    Abstract: Example signal processing methods and apparatus are described. The signal processing apparatus includes a first power amplifier, a second power amplifier, a first filter, a second filter, and a combiner. The first filter filters a second signal obtained by the first power amplifier to obtain a first sub-signal belonging to a first frequency band and a second sub-signal belonging to a second frequency band. The second filter filters a fourth signal obtained by the second power amplifier to obtain n sub-signals including at least a third sub-signal belonging to a third frequency band. The combiner combines the first sub-signal and i sub-signals in the n sub-signals based on a preset condition to obtain a first combined signal. The communication module sends the first combined signal by using a first port, and sends the second sub-signal by using a second port.
    Type: Grant
    Filed: June 28, 2021
    Date of Patent: September 6, 2022
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Jia Lv, Haizheng Tang, Ling Guo
  • Patent number: 11431388
    Abstract: Aspects of the disclosure relate to channel estimation and tracking in a wireless communication system. A wireless communication entity estimates a received signal utilizing any suitable process. The wireless communication entity applies a Wavelet decomposition filter to the estimated received signal to generate a channel coefficient estimate. The Wavelet decomposition filter may be configured to employ a Haar mother Wavelet. The wireless communication entity generates a prediction of a future channel estimate at a later time, by characterizing the channel according to a first-order autoregressive model of channel aging. Other aspects, embodiments, and features are also claimed and described.
    Type: Grant
    Filed: October 13, 2020
    Date of Patent: August 30, 2022
    Assignee: QUALCOMM Incorporated
    Inventors: Vikas Arya, Shubham Kshiteesh Mishra, Anil Kumar Allada
  • Patent number: 11418235
    Abstract: One example discloses a near-field wireless device, including: a controller configured to be coupled to a near-field antenna; wherein the near-field antenna includes, a near-field electric antenna configured to transmit and/or receive near-field electric (E) signals; and a near-field magnetic antenna configured to transmit and/or receive near-field magnetic (H) signals; a conductivity monitor configured to determine a conductivity of a medium proximate to the near-field device; wherein the controller is configured to modulate an E/H ratio of fields generated by and/or received from the near-field electric (E) antenna and the near-field magnetic (H) antenna based on the conductivity of the medium.
    Type: Grant
    Filed: November 10, 2020
    Date of Patent: August 16, 2022
    Assignee: NXP B.V.
    Inventors: Liesbeth Gommé, Anthony Kerselaers
  • Patent number: 11417952
    Abstract: An antenna device with an electrostatic discharge protection function and an electrostatic discharge protection method thereof are provided. The antenna device includes a first and a second antennae, and a voltage level, a switching, and a radio frequency (RF) front end circuits. The switching circuit is selectively coupled to the first or second antenna. The RF front end circuit is coupled to the switching circuit and controls the switching circuit to couple to one of the first and second antennae for communication transmission. The voltage level circuit detects a voltage level of the one of the first and second antennae. When determining that the voltage level is greater than a threshold voltage, the voltage level circuit transmits a control signal to the RF front end circuit to control the switching circuit to couple to another one of the first and second antennae to continue the communication transmission.
    Type: Grant
    Filed: September 17, 2020
    Date of Patent: August 16, 2022
    Assignee: PEGATRON CORPORATION
    Inventor: Chih-Wei Wang
  • Patent number: 11363601
    Abstract: Apparatuses, methods, and systems for coordinated beamforming in a wireless mesh network, are disclosed. One system includes a network that includes a plurality of nodes connected through wireless links, and a controller. The wireless links including aggressor links and victim links wherein the aggressor links interfere with the victim links. The controller is operative to identify aggressor links and victim links of a group of nodes of the plurality of nodes, coordinate beam scans of the one or more victim receive nodes associated with the victim links of the group, coordinate transmission of one or more aggressor transmit nodes associated with the aggressor links of the group, characterize or receive characterizations of measured interference at the one or more victim receive nodes during the coordinated beam scans, and select beamforming coefficients for the victim receive nodes based at least on the characterizations of the measured interference.
    Type: Grant
    Filed: May 19, 2020
    Date of Patent: June 14, 2022
    Assignee: Meta Platforms, Inc.
    Inventors: Brian Dunn, Krishna Gomadam, Djordje Tujkovic
  • Patent number: 11357060
    Abstract: Methods, systems, and devices for wireless communication are described. A base station may transmit a first signal; listen, after transmitting the first signal and during a listening interval, for a second signal from a user equipment (UE) affected by the first signal, the second signal being indicative of interference at the first UE; receive the second signal during the listening interval; and initiate an interference management procedure based on receipt of the second signal.
    Type: Grant
    Filed: August 18, 2020
    Date of Patent: June 7, 2022
    Assignee: QUALCOMM Incorporated
    Inventors: Ahmed Kamel Sadek, Aleksandar Damnjanovic
  • Patent number: 11349465
    Abstract: In described examples, a quadrature phase shifter includes digitally programmable phase shifter networks for generating leading and lagging output signals in quadrature. The phase shifter networks include passive components for reactively inducing phase shifts, which need not consume active power. Output currents from the transistors coupled to the phase shifter networks are substantially in quadrature and can be made further accurate by adjusted by a weight function implemented using current steering elements. Example low-loss quadrature phase shifters described herein can be functionally integrated to provide low-power, low-noise up/down mixers, vector modulators and transceiver front-ends for millimeter wavelength (mmwave) communication systems.
    Type: Grant
    Filed: February 28, 2020
    Date of Patent: May 31, 2022
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Sudipto Chakraborty
  • Patent number: 11336239
    Abstract: A high-frequency amplifier circuit has a source-grounded first transistor that amplifies a high-frequency input signal, a gate-grounded second transistor that further amplifies the amplified signal, a first inductor and a first reference voltage node, a second inductor connected between a first node and a second reference voltage node, a third transistor that is connected between the first node and a drain of the second transistor, is turned on at the time of selecting the first mode to transmit the amplified signal to the first node, and is turned off when selecting a second mode to disconnect the first node from the drain of the second transistor, a bypass path that bypasses the high-frequency input signal from an input node of the high-frequency input signal to the first node at the time of selecting the second mode, and a bypass switching circuit that is connected on the bypass path.
    Type: Grant
    Filed: May 26, 2020
    Date of Patent: May 17, 2022
    Assignees: KABUSHIKI KAISHA TOSHIBA, TOSHIBA ELECTRONIC DEVICES & STORAGE CORPORATION
    Inventors: Toshiki Seshita, Yasuhiko Kuriyama
  • Patent number: 11309014
    Abstract: Disclosed is a memory device, which includes a buffer die that outputs a first power supply voltage to a first through-substrate via (e.g., through-silicon via (TSV)) and receives a small swing data signal from a second TSV generated based on the first power supply voltage, and a core die that is electrically connected to the buffer die through the first and second TSVs, includes a first cell capacitor electrically connected to the first TSV and configured to block a first noise introduced to the first power supply voltage received through the first TSV. The core die outputs the small swing data signal to the second TSV.
    Type: Grant
    Filed: January 7, 2021
    Date of Patent: April 19, 2022
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Byongmo Moon, Sungoh Ahn
  • Patent number: 11296738
    Abstract: An RF module includes a switch IC on a surface of a module substrate and a passive circuit provided in and/or on the module substrate. The switch IC includes a high-frequency circuit on an IC substrate and a digital control circuit. In a plan view of the IC substrate, the digital control circuit is surrounded by the high-frequency circuit. The high-frequency circuit includes analog ground electrodes in a boundary portion with the digital control circuit in the high-frequency circuit to surround the digital control circuit in the plan view.
    Type: Grant
    Filed: October 5, 2020
    Date of Patent: April 5, 2022
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Yusuke Naniwa, Hideki Muto
  • Patent number: 11282531
    Abstract: A method includes receiving multiple samples of time-domain data that includes noise, computing a first two-dimensional (2D) time-frequency representation of the time domain data, and processing the first time-frequency representation using a time-frequency noise reduction mask to generate a second, noise-reduced time-frequency representation of the time domain data. The method also includes generating a time domain output based on the noise-reduced time-frequency representation.
    Type: Grant
    Filed: February 3, 2020
    Date of Patent: March 22, 2022
    Assignee: Bose Corporation
    Inventors: Ankita D. Jain, Cristian Marius Hera, Elie Bou Daher
  • Patent number: 11249527
    Abstract: A system for controlling electrical power supply of an aircraft includes at least two control boards and at least two switching members. Each switching member is connected to each control board. Each control board includes a processor. Each processor is configured to determine a command for switching states of switch contacts of each switching member and to determine information relating to validity of each switching command. Each switching member includes a transmitter to determine a command to be transmitted to a detector to detect parallelization, a power actuator configured to transmit a power signal to the switch contacts depending on the command received from the detector, and switch contacts configured to selectively open or close an electrical power supply line. The command is selected from the switching commands and the information relating to the validity of each switching command.
    Type: Grant
    Filed: August 1, 2016
    Date of Patent: February 15, 2022
    Assignee: Zodiac Aero Electric
    Inventor: Jean-Pierre Balbinot
  • Patent number: 11227622
    Abstract: A speech communication system for improving speech intelligibility may comprise one or more processors; and a memory storing instructions that, when executed by the one or more processors, cause the system to perform: determining a cutoff frequency based on an estimation of a spectrum of noise, wherein the cutoff frequency defines a noise dominant region of frequency; lifting a spectrum of a speech above the noise dominant region of frequency, wherein a frequency range of the spectrum of the speech increases by the cutoff frequency; and applying an adaptive filter to the speech to achieve echo cancelation, wherein the adaptive filter is controlled by a volume of the noise.
    Type: Grant
    Filed: December 6, 2018
    Date of Patent: January 18, 2022
    Assignee: Beijing DiDi Infinity Technology and Development Co., Ltd.
    Inventors: Yi Zhang, Hui Song, Yongtao Sha, Si Qin
  • Patent number: 11101841
    Abstract: Systems, circuitries, and methods are disclosed that generate an interference replica signal that estimates interference in a receive signal that is due to a transmit signal. The interference replica signal is combined with the receive signal to generate a corrected receive signal. The method includes quantizing the transmit signal to generate a quantized transmit signal; weighting the quantized transmit signal based on one or more quantization weights; filtering the weighted quantized transmit signal based on two or more filter weights to generate the interference replica signal; and determining the quantization weights and the filter weights based on the corrected receive signal.
    Type: Grant
    Filed: October 30, 2019
    Date of Patent: August 24, 2021
    Assignee: Intel Corporation
    Inventors: Peter Noest, Andreas Menkhoff
  • Patent number: 11063687
    Abstract: A wireless communication system having base stations, remotely located terminal units and a base station controller. The base stations and the remotely located terminal units communicate data over operational wireless communication links between them. The base stations include respective in-channel detectors and out-of-channel detectors for detecting radar or other extraneous received signals. The in-channel detectors analyse signals over the operational communication links. The out-of-channel detectors include respective out-of-channel receiver elements that monitor possibly available channels alternative to the respective operational communication link channels. The base station controller registers whether channels are available or not for communication links, and allocates to the base stations respective target channel parameters including frequencies available for operational and alternative communication links.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: July 13, 2021
    Assignee: OCADO INNOVATION LIMITED
    Inventors: David Sharp, Amy Stephens, Montague Fraser Barlow, Adam Nikolai Green, Fraser Murray Edwards
  • Patent number: 11041939
    Abstract: A signal demodulation device includes an IQ mixer, a differential element and a signal processor. The IQ mixer is configured to output a first mixed signal and a second mixed signal. The differential element is electrically connected to the IQ mixer for receiving the first and second mixed signals and configured to differentiate the first and second mixed signals and output a first derivative signal and a second derivative signal. The signal processor is electrically connected to the differential element for receiving the first and second derivative signals and configured to demodulate the first and second derivative signals and output a first demodulated signal.
    Type: Grant
    Filed: November 6, 2018
    Date of Patent: June 22, 2021
    Assignee: NATIONAL SUN YAT-SEN UNIVERSITY
    Inventors: Fu-Kang Wang, Tzyy-Sheng Horng, Pin-Hsun Juan
  • Patent number: 11038730
    Abstract: The frame preamble in current wireless systems is designed to facilitate various PHY-layer functions, including frequency offset estimation and frame detection. However, this preamble is assumed to be constant and is seldom used to convey any frame-specific bits. Embedding information into the preamble can open the door for new PHY-layer applications. P-modulation, a method that enables an OFDM-based wireless transmitter to embed frame-specific bits into the frame preamble to accomplish PHY-layer applications (while remaining backward-compatible with legacy receivers), is presented.
    Type: Grant
    Filed: February 16, 2018
    Date of Patent: June 15, 2021
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF THE UNIVERSITY OF ARIZONA
    Inventors: Marwan M. Krunz, Hanif Rahbari
  • Patent number: 11018783
    Abstract: Systems and methods for operating a communication device so as to mitigate intermodulation interference to a signal. The methods comprise: continuously monitoring several communication channels by the communication device; using a noise floor level estimate of the communication device to detect when the communication device is under an influence of hig interference; determining an optimal level of attenuation to be applied by a variable attenuator of the communication device's receiver so as to mitigate the influence of intermodulation interference to the signal; and selectively adjusting an amount of attenuation being applied by the variable attenuator to achieve the optimal level of attenuation for mitigating intermodulation interference.
    Type: Grant
    Filed: July 12, 2019
    Date of Patent: May 25, 2021
    Assignee: EAGLE TECHNOLOGY, LLC
    Inventors: Mac L. Hartless, Daniel W. Ericson, Nathan T. Prosser, Catherine D. Royster, Dennis Layne
  • Patent number: 11012970
    Abstract: A method for processing radio frequency (RF) interference and an electronic device are provided. The method includes the following. Functional components in operating status are determined while an RF signal received by an RF circuit has signal strength lower than a preset threshold. For each functional component, an interference intensity to the RF circuit and a distance to the RF circuit are acquired. For each functional component, an interference value is acquired according to the interference intensity and the distance. A target functional component with an interference value meeting a preset condition is disabled.
    Type: Grant
    Filed: November 14, 2019
    Date of Patent: May 18, 2021
    Assignee: GUANGDONG OPPO MOBILE TELECOMMUNICATIONS CORP., LTD.
    Inventors: Huai Yang, Kui Fu, Zaicheng Chen
  • Patent number: 10988132
    Abstract: A vehicle comprises a processor programmed to: responsive to detecting a predefined event, transition a plurality of vehicle systems from a normal mode of operation to a quiet mode of operation, the transition including to adjust vehicle exhaust setting to a quiet mode, engage active noise cancellation, close vehicle windows, and adjust vehicle suspension to a predefined suspension mode.
    Type: Grant
    Filed: August 22, 2018
    Date of Patent: April 27, 2021
    Assignee: Ford Global Technologies, LLC
    Inventors: Hani Mohammad Ayesh, Keith Weston, Nolen Thomas Barnes, III
  • Patent number: 10979091
    Abstract: A reconfigurable image suppressing receiver includes a front-end amplifier, a first multi-mode circuit, a second multi-mode circuit, a wideband combining transformer, and a controller. The front-end amplifier is configured to receive a radio frequency (RF) signal from an antenna and adjust a gain of the RF signal. The first multi-mode circuit is configured to mix a first instance of the RF signal with an in-phase local oscillator signal to generate an in-phase intermediate frequency (IF) signal. The second multi-mode circuit is configured to mix a second instance of the RF signal with a quadrature local oscillator signal to generate a quadrature IF signal. The wideband combining transformer is configured to combine the in-phase IF signal and the quadrature IF signal to generate a combined IF signal. The controller is configured to adjust one or more tunable parameters associated with the combined IF signal.
    Type: Grant
    Filed: July 22, 2019
    Date of Patent: April 13, 2021
    Assignee: Rockwell Collins, Inc.
    Inventor: Russell D. Wyse
  • Patent number: 10862519
    Abstract: Exemplary aspects are directed to FM-radio circuitries and systems in which, at the receiving end of a broadcast transmission, circuitry is used set the bandwidth and band position for receiving the desired channel of the broadcast signal based on measured signal properties of immediately-adjacent channel(s). The adjustments to the received channel include bandwidth selection and offset frequency adjustment. These adjustments are, in part, based on USN signal levels as well as modulation symmetry detection which are affected by the modulation level of the desired and other channel(s). Signal processing circuitry such as logic/CPU circuitry, then receives the desired channel, including information carried by the broadcast signal, in response to setting the bandwidth based on the measured signal properties.
    Type: Grant
    Filed: April 22, 2020
    Date of Patent: December 8, 2020
    Assignee: NXP B.V.
    Inventor: Erik Keukens
  • Patent number: 10855347
    Abstract: A base station according to this disclosure includes a plurality of antennas used for transmission and reception, an adaptive array processing unit that performs adaptive array processing on reception signals received by the plurality of antennas, and a control unit that decides a transmission antenna used for the transmission from the plurality of antennas at a time when a transmission signal is transmitted, and the control unit decides the transmission antenna based on transmission weight vectors respectively corresponding to the plurality of antennas obtained from a processing result of the adaptive array processing unit.
    Type: Grant
    Filed: February 16, 2017
    Date of Patent: December 1, 2020
    Assignee: KYOCERA Corporation
    Inventors: Tooru Yoneyama, Sakiko Yamada
  • Patent number: 10852333
    Abstract: Systems and methods for detecting low-loss eigenmodes of a spherical waveguide bounded by the Earth's surface and its ionosphere are disclosed. One or more eigenmodes of the Earth-ionosphere waveguide may be computed based on a mathematical model incorporating electrical properties of the terrestrial surface and plasma physics of the ionospheric layer. A transmitter apparatus may be used transmit electrical power into the Earth-ionosphere waveguide in the form of an electromagnetic wave, which may, in turn, be detected by a receiver apparatus remote from the transmitter apparatus. A coupling strength between the transmitted electromagnetic wave and the one or more eigenmodes may be determined by measuring power received by the receiver apparatus in the detected electromagnetic wave.
    Type: Grant
    Filed: December 11, 2017
    Date of Patent: December 1, 2020
    Assignee: X Development LLC
    Inventor: Brian John Adolf
  • Patent number: 10840956
    Abstract: An RF module includes a switch IC on a surface of a module substrate and a passive circuit provided in and/or on the module substrate. The switch IC includes a high-frequency circuit on an IC substrate and a digital control circuit. In a plan view of the IC substrate, the digital control circuit is surrounded by the high-frequency circuit. The high-frequency circuit includes analog ground electrodes in a boundary portion with the digital control circuit in the high-frequency circuit to surround the digital control circuit in the plan view.
    Type: Grant
    Filed: April 8, 2019
    Date of Patent: November 17, 2020
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Yusuke Naniwa, Hideki Muto
  • Patent number: 10819037
    Abstract: Devices and systems, and methods of using them, for point-to-point transmission/communication of high bandwidth signals. Radio devices and systems may include a pair of reflectors (e.g., parabolic reflectors) that are adjacent to each other and configured so that one of the reflectors is dedicated for sending/transmitting information, and the adjacent reflector is dedicated for receiving information. Both reflectors may be in a fixed configuration relative to each other so that they are aligned to send/receive in parallel. In many variations the two reflectors are formed of a single housing, so that the parallel alignment is fixed, and reflectors cannot lose alignment. The device/systems may be configured to allow switching between duplexing modes. These devices/systems may be configured as wide bandwidth zero intermediate frequency radios including alignment modules for automatic alignment of in-phase and quadrature components of transmitted signals.
    Type: Grant
    Filed: June 3, 2019
    Date of Patent: October 27, 2020
    Assignee: Ubiquiti Inc.
    Inventors: Gary D. Schulz, Paul Odlyzko, John R. Sanford, Christopher Fay, Jude Lee, Charles D. Macenski, Richard J. Keniuk, Lance D. Lascari
  • Patent number: 10797648
    Abstract: A mixer module includes a mixer, at least one DC offset circuit, a filter and a controller. The mixer mixes an input signal to generate a first signal. The at least one DC offset circuit generates a second signal based on the first signal. The filter filters out an AC portion of the second signal and generates a third signal according to a DC portion of the second signal. The controller controls the at least one DC offset circuit based on the third signal to reduce a DC portion of the first signal.
    Type: Grant
    Filed: September 24, 2019
    Date of Patent: October 6, 2020
    Assignee: RichWave Technology Corp.
    Inventor: Ting-Yuan Cheng
  • Patent number: 10785806
    Abstract: Methods, systems, and devices for wireless communication are described. A base station may transmit a first signal; listen, after transmitting the first signal and during a listening interval, for a second signal from a user equipment (UE) affected by the first signal, the second signal being indicative of interference at the first UE; receive the second signal during the listening interval; and initiate an interference management procedure based on receipt of the second signal.
    Type: Grant
    Filed: May 16, 2018
    Date of Patent: September 22, 2020
    Assignee: QUALCOMM Incorporated
    Inventors: Ahmed Kamel Sadek, Aleksandar Damnjanovic
  • Patent number: 10756774
    Abstract: The representative embodiments discussed in the present disclosure relate to techniques in which a transmitter may operate in an uplink multiple-input, multiple-output (MIMO) mode of operation. More specifically, in some embodiments, the transmitter may concurrently transmit a first and a second signal within the same frequency band via a first and second antenna, respectively. Further, in some embodiments, the transmitter may include circuitry and/or logic to offset nonlinear interference present in the transmitted signals as a result of antenna coupling between the first and second antenna and a nonlinear element (e.g., a power amplifier) within the transmitter.
    Type: Grant
    Filed: December 18, 2018
    Date of Patent: August 25, 2020
    Assignee: APPLE INC.
    Inventors: Ioannis Sarkas, Elmar Wagner
  • Patent number: 10734830
    Abstract: A terminal and a fast charging method to fast charge the terminal, where the method includes sending, by the terminal, instruction information to a charger connected to the terminal in order to instruct the charger to adjust an output voltage and an output current, converting, by the terminal, the output voltage of the charger into 1/K times the output voltage, and converting the output current of the charger into K times the output current such that a charging circuit between two sides of a battery charges the battery with the 1/K times the output voltage and the K times the output current, where K is a conversion coefficient of a conversion circuit with a fixed conversion ratio in the terminal and is a constant value, and K is any real number greater than one.
    Type: Grant
    Filed: October 1, 2018
    Date of Patent: August 4, 2020
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Xujun Liu, Ce Liu, Yanding Liu, Jinbo Ma, Pinghua Wang
  • Patent number: 10721729
    Abstract: There is provided a management server including a holding unit for holding a location/frequency list in which location information and frequency information are associated, a list creation unit for creating an available frequency list by extracting, from the location/frequency list, frequency information corresponding to location information received from a base station, and a list transmission unit for transmitting the available frequency list created by the list creation unit to the base station.
    Type: Grant
    Filed: March 4, 2019
    Date of Patent: July 21, 2020
    Assignee: Sony Corporation
    Inventor: Shinichiro Tsuda
  • Patent number: 10707811
    Abstract: A noise generator for generating a noise signal over a frequency spectrum has a first noise source and a first digital filter for a first frequency band, a second noise source and a second digital filter for a second frequency band, and an interpolator and a combiner. The first digital filter has a first sample rate and the second digital filter has a second sample rate, wherein the ratio between the second sample rate and the first sample rate, with regard to a sign, corresponds to a ratio between center frequencies of the second frequency band and the first frequency band, wherein an edge of the second digital filters which determines a lower frequency band limit is steeper than an edge of the first digital filter which determines an upper frequency band limit.
    Type: Grant
    Filed: February 8, 2018
    Date of Patent: July 7, 2020
    Assignee: Innovationszentrum für Telekommunikationstechnik GmbH IZT
    Inventor: Rainer Perthold
  • Patent number: 10659065
    Abstract: Apparatus and methods for phase synchronization of phase-locked loops (PLLs) are provided. In certain configurations, an RF communication system includes a PLL that generates one or more output clock signals and a phase synchronization circuit that synchronizes a phase of the PLL. The phase synchronization circuit includes a sampling circuit that generates samples by sampling the one or more output clock signals based on timing of a reference clock signal. Additionally, the phase synchronization circuit includes a phase difference calculation circuit that generates a phase difference signal based on the samples and a tracking digital phase signal representing the phase of the PLL. The phase synchronization circuit further includes a phase adjustment control circuit that provides a phase adjustment to the PLL based on the phase difference signal so as to synchronize the PLL.
    Type: Grant
    Filed: April 19, 2018
    Date of Patent: May 19, 2020
    Assignee: ANALOG DEVICES, INC.
    Inventors: Christopher Mayer, David J. McLaurin, Christopher W. Angell, Sudhir Desai, Steven R. Bal
  • Patent number: 10637403
    Abstract: The present disclosure relates to digital up-conversion for a multi-band Multi-Order Power Amplifier (MOPA) that enables precise and accurate control of gain, phase, and delay of multi-band split signals input to the multi-band MOPA. In general, a multi-band MOPA is configured to amplify a multi-band signal that is split across a number, N, of inputs of the multi-band MOPA as a number, N, of multi-band split signals, where N is an order of the multi-band MOPA and is greater than or equal to 2. A digital upconversion system for the multi-band MOPA is configured to independently control a gain, phase, and delay for each of a number, M, of frequency bands of the multi-band signal for each of at least N?1, and preferably all, of the multi-band split signals.
    Type: Grant
    Filed: January 4, 2017
    Date of Patent: April 28, 2020
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Bradley John Morris, Harpreet Panesar
  • Patent number: 10637521
    Abstract: A receiver device includes an I-Q mixer circuit configured to provide an I-phase signal and a Q-phase signal. The receiver device also includes a first analog-to-digital converter (ADC) circuit configured to digitize the I-phase signal. The receiver device also includes a second ADC circuit configured to digitize the Q-phase signal. The receiver device also includes a 25% duty cycle clock generator configured to provide 25% duty cycle clock signals to the I-Q mixer. The 25% duty cycle clock generator includes a divider circuit with an inverter ring arrangement.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: April 28, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Prasanth K
  • Patent number: 10623047
    Abstract: A system for interference mitigation includes: a first transmit coupler; a receive-band noise cancellation system; a first transmit-band filter; a second transmit coupler; a first receive coupler; a transmit-band noise cancellation system; a first receive-band filter; and a second receive coupler.
    Type: Grant
    Filed: January 15, 2019
    Date of Patent: April 14, 2020
    Assignee: Kumu Networks, Inc.
    Inventors: Jung-il Choi, Mayank Jain, Wilhelm Steffen Hahn, Alfred Riddle
  • Patent number: 10616768
    Abstract: In one implementation, a wireless communication terminal includes a sense antenna module configured to sample an interference signal. The wireless communication terminal also includes a primary antenna module configured to receive a desired signal. The sense antenna module has a first polarization type, and the primary antenna module has a second polarization type, substantially orthogonal to the first polarization type of the sense antenna module. In addition, the wireless communication terminal includes at least one signal combiner configured to receive output from the sense antenna module and output from the primary antenna module. The at least one signal combiner is configured to mitigate interference with the desired signal by shifting the phase of the output from the sense antenna module by substantially 180 degrees and combining the phase-shifted output from the sense antenna module with the output of the primary antenna module to produce an interference mitigated signal.
    Type: Grant
    Filed: June 5, 2017
    Date of Patent: April 7, 2020
    Assignee: Iridium Satellite LLC
    Inventor: Jeffrey Bull
  • Patent number: 10601456
    Abstract: A passive intermodulation detection system is provided to remotely identify passive intermodulation at a base station site and diagnose the type of intermodulation and location of the non-linearity that is the source of the passive intermodulation. A passive intermodulation cancelation system can generate an equivalent signal to a received interference signal and use the equivalent signal to generate an error signal. The error signal can then be used to reinforce a learning system and converge on a steady state of the interference signal to cancel other interference signals.
    Type: Grant
    Filed: January 2, 2019
    Date of Patent: March 24, 2020
    Assignee: AT&T INTELLECTUAL PROPERTY I, L.P.
    Inventors: Ernest Tsui, Paul Maxwell, Weihua Ye
  • Patent number: 10601542
    Abstract: Methods and apparatus for transmitting Ethernet data along an Ethernet link with a BASE-T transceiver are disclosed. One exemplary BASE-T Ethernet transceiver includes an Ethernet data framing module having an input interface to receive Ethernet block data bits at a first data rate. Logic associates the Ethernet block data bits with an auxiliary bit and a number of zero bits. An error encoder is coupled to the logic to encode all of the data bits, auxiliary bit and zero bits into an error encoded transport frame having plural error check bits. A symbol mapper receives the error encoded transport frame and transforms the error encoded transport frame into multiple symbols. A transmitter coupled to the symbol mapper transmits the multiple symbols over an Ethernet link at one of a selection of symbol rates. The data rate of data transmitted over the Ethernet link is based on the number of zero bits.
    Type: Grant
    Filed: August 27, 2018
    Date of Patent: March 24, 2020
    Assignee: Marvell Asia Pte, LTD.
    Inventors: Ramin Farjadrad, Paul Langner, Hossein Sedarat, Ramin Shirani, Kamal Dalmia
  • Patent number: 10593337
    Abstract: To enable to favorably send a compressed digital audio signal at a high data rate. First, second, and third metadata are added to a compressed digital audio signal of a predetermined number of channels. The first metadata is metadata indicating a sending frequency of the compressed digital audio signal. The second metadata is metadata indicating a sampling frequency used for converting an uncompressed digital audio signal of each channel into an analog signal. The third metadata is metadata indicating a ratio of the sending frequency to the sampling frequency. The compressed digital audio signal provided with each type of the metadata is transmitted to an external device through a predetermined sending path.
    Type: Grant
    Filed: July 5, 2016
    Date of Patent: March 17, 2020
    Assignee: SONY CORPORATION
    Inventor: Gen Ichimura
  • Patent number: 10582537
    Abstract: Embodiments of an access point (AP), station (STA) and method for channel access are generally described herein. The AP may contend for access to a channel. The contention may be performed in accordance with an omni-directional enhanced distributed channel access function (EDCAF) for transmission within an omni-directional pattern. The contention may be further performed in accordance with a directional EDCAF for transmission to a station (STA) in a directional pattern. The AP may determine whether to transmit within the omni-directional pattern based at least partly on an omni-directional backoff parameter. The AP may further determine whether to transmit in the directional pattern based at least partly on a directional backoff parameter.
    Type: Grant
    Filed: December 12, 2016
    Date of Patent: March 3, 2020
    Assignee: Intel IP Corporation
    Inventors: Laurent Cariou, Carlos Cordeiro, Ou Yang, Solomon B. Trainin
  • Patent number: 10567210
    Abstract: Methods and apparatus for facilitating wireless communication using digital Quadrature Amplitude Modulation are disclosed. A mapping module electronic component of a wireless communication device utilizes a signal constellation for quadrature modulating a signal for transmission or quadrature demodulating a received signal. The signal constellation includes multiple constellation symbols and associated bit sequences. Specific signal constellations are disclosed. The signal constellations may be obtained through an optimization procedure which accounts for both phase noise and power amplifier nonlinearity.
    Type: Grant
    Filed: October 10, 2017
    Date of Patent: February 18, 2020
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Guido Montorsi, Sergio Benedetto, Yan Xin, Min Yan
  • Patent number: 10567020
    Abstract: A device for processing an audio signal arising from a radiofrequency signal, including: an instantaneous multipath sensor able to analyze the radiofrequency signal so as to determine an instantaneous multipath rate, an instantaneous filter block able to attenuate the audio signal in line with an instantaneous attenuation that is an increasing function of the instantaneous multipath rate, also including a mean multipath sensor able to determine a mean multipath rate, and a mean filter block able to attenuate the audio signal in line with a mean attenuation that is an increasing function of the mean multipath rate. A radio receiver having such a processing device is also disclosed.
    Type: Grant
    Filed: September 12, 2017
    Date of Patent: February 18, 2020
    Assignees: Continental Automotive France, Continental Automotive GmbH
    Inventors: Jean-Christophe Grzeskowiak, Laurent Thery
  • Patent number: 10523182
    Abstract: Disclosed systems and methods relate to an adaptive harmonic cancellation circuit for communication. The adaptive harmonic cancellation circuit includes a harmonic generator circuit configured to generate a reference harmonic of an interference signal. The adaptive harmonic cancellation circuit includes a harmonic prediction circuit coupled to the harmonic generator circuit. The harmonic prediction circuit is configured to receive an input signal including a target signal at a frequency and a radiated harmonic of the interference signal. The harmonic prediction circuit is configured to generate a predicted harmonic of the interference signal by modifying the reference harmonic of the interference signal to match the radiated harmonic of the interference signal in the input signal. The adaptive harmonic cancellation circuit includes a cancellation circuit coupled to the harmonic prediction circuit.
    Type: Grant
    Filed: August 22, 2018
    Date of Patent: December 31, 2019
    Assignee: ROCKWELL COLLINS, INC.
    Inventor: William Bascom Sorsby
  • Patent number: 10511290
    Abstract: In a sine-wave multiplier, signal components included in an output signal Qu1 and corresponding to the product of a third-order harmonic component of a first square wave W1 and an input signal Vi and the product of a fifth-order harmonic component of the first square wave W1 and the input signal Vi are offset by a signal component included in an output signal Qu2 and corresponding to the product of a fundamental component of a second square wave W2 and the input signal Vi and a signal component included in an output signal Qu3 and corresponding to the product of a fundamental component of a second square wave W3 and the input signal Vi.
    Type: Grant
    Filed: April 11, 2018
    Date of Patent: December 17, 2019
    Assignee: ALPS ALPINE CO., LTD.
    Inventors: Akira Asao, Kiyoshi Sasai, Tatsumi Fujiyoshi
  • Patent number: 10482810
    Abstract: A portable information handling system display integrates a MIMO antenna configuration that cooperates with a radio to adapt display operations for supporting wireless communication. For example, plural antenna nanowires integrated with display pixel control wires selectively interface with a MIMO radio with the antenna wires selected based upon display operational characteristics, such as the presentation of visual information at the display and the enablement or disablement of touch detection circuits.
    Type: Grant
    Filed: March 8, 2016
    Date of Patent: November 19, 2019
    Assignee: Dell Products L.P.
    Inventors: Deeder M. Aurongzeb, Jung-Hwan Hong, Brian Hargrove Leonard, Christopher A. Torres, Erin K. Walline